ON THE n-PARAMETER ABSTRACT CAUCHY PROBLEM

M. JANFADA AND A. NIKNAM

Let $H_i (i = 1, 2, \ldots, n)$, be closed operators in a Banach space X. The generalised initial value problem

$$
\begin{aligned}
& \frac{\partial}{\partial t_i} u(t_1, t_2, \ldots, t_i, \ldots, t_n) = H_i u(t_1, \ldots, t_n), \quad t_i \in (0, T_i) \quad i = 1, 2, \ldots, n \\
& u(0) = x, \quad x \in \bigcap_{i=1}^{n} D(H_i),
\end{aligned}
$$

of the abstract Cauchy problem is studied. We show that the uniqueness of solution $u : [0, T_1] \times [0, T_2] \times \cdots \times [0, T_n] \to X$ of this n-abstract Cauchy problem is closely related to C_0-n-parameter semigroups of bounded linear operators on X. Also as another application of C_0-n-parameter semigroups, we prove that many n-parameter initial value problems cannot have a unique solution for some initial values.

1. INTRODUCTION

Suppose X is a Banach space and A is a linear operator from $D(A) \subseteq X$ into X. Given $x \in X$, the abstract Cauchy problem for A with the initial value x, consists of finding a solution $u(t)$ to the initial value problem

$$
\begin{aligned}
& \frac{du(t)}{dt} = Au(t) \quad t \in (0, T] \\
& u(0) = x
\end{aligned}
$$

where by a solution we mean an X-valued function $u : [0, T] \to X$ which is continuous for $t \geq 0$, continuously differentiable for $t > 0$, $u(t) \in D(A)$ for $t \in (0, T]$ and (1) is satisfied.

A one-parameter semigroup of operators is a homomorphism $T : (\mathbb{R}_+, +) \to B(X)$ for which $T(0) = I$, where $\mathbb{R}_+ = [0, \infty)$ and $B(X)$ is the Banach space of all bounded linear operators on X. The one-parameter semigroup $\{T(t)\}_{t \geq 0}$ is called strongly continuous (or C_0-continuous) if $\lim_{t \to 0} T(t)x = x$, for each $x \in X$ and is called uniformly continuous if $\lim_{t \to 0} T(t) = I$ in $B(X)$. The linear mapping A defined by

$$
A(x) = \lim_{t \to 0} \frac{T(t)x - x}{t},
$$

Received 22nd May, 2003
This work has been done under supervision of Professor J. Phillips when the first author has been in University of Victoria for a six month visit.

Copyright Clearance Centre, Inc. Serial-fee code: 0004-9727/04 $A2.00+0.00.$
where \(D(A) = \{ x : \lim_{t \to 0} (T(t)x - x)/t \text{ exist} \} \), is called the infinitesimal generator of \((T, \mathbb{R}_+, X)\).

The following Theorem which is due to Hille [5], shows the close relation of abstract Cauchy problem with semigroup theory (see also [4]).

Theorem 1.1. Let \(A \) be a closed linear operator in Banach space \(X \), then the following are equivalent:

(a) For each \(x \in D(A) \) there exists a unique solution for \((1)\).

(b) The part \(A_1 = A|_{X_1} \) of \(A \) in \(X_1 := (D(A), \| \cdot \|_A) \) is the infinitesimal generator of a \(C_0 \)-one-parameter semigroup of operators on the Banach space \(X_1 \), where \(\| \cdot \|_A \) is the graph norm on \(D(A) \).

Proof: [2, II.6.6].

The previous theorem has many applications in inhomogeneous initial value problems and evaluation systems. One can see some more applications of abstract Cauchy problem in [3, 7].

Let \(\mathbb{R}_n^+ = \{(t_1, t_2, \ldots, t_n) : t_i \geq 0, i = 1, 2, \ldots, n\} \). By an \(n \)-parameter semigroup of operators we mean a homomorphism \(W : (\mathbb{R}_n^+, +) \to B(X) \) for which \(W(0) = I \) and denote it by \((W, \mathbb{R}_n^+, X)\). Suppose \(H_i \) is the infinitesimal generator of the one-parameter semigroup \(\{W(te_i)\}_{t \geq 0} \) where \(\{e_i\}_{i=1}^n \) is the standard basis of \(\mathbb{R}^n \), we shall think of \((H_1, H_2, \ldots, H_n)\) as the infinitesimal generator of \(W \). As in the one-parameter case, \((W, \mathbb{R}_n^+, X)\) is called strongly continuous (or \(C_0 \)-continuous) if for each \(x \in X, \lim_{t \to 0} W(t)x = x, \) and is called uniformly continuous if \(\lim_{t \to 0} W(t) = I, \) where \(t \to 0 \) in \(\mathbb{R}_n^+ \). It is not hard to see that \((W, \mathbb{R}_n^+, X)\) is a \(C_0 \)-continuous (respectively uniformly continuous) if and only if for each \(i = 1, 2, \ldots, n \), \(\{W(te_i)\}_{t \geq 0} \) is strongly (respectively uniformly) continuous. The following useful proposition which states some basic properties of \(n \)-parameter semigroups can be found in [1] as is described in [6].

Proposition 1.2. Suppose \((W, \mathbb{R}_n^+, X)\) is a \(C_0 \)-\(n \)-parameter semigroup then

(a) If \(x \in D(H_i) \), so does \(W(t)x, \) for each \(t \in \mathbb{R}_n^+ \) and

\[H_i W(t)x = W(t)H_i x \quad (i = 1, 2, \ldots, n). \]

(b) \(\bigcap_{i=1}^n D(H_i) \) is dense in \(X \), and \(X_1 = \left(\bigcap_{i=1}^n D(H_i), \| \cdot \|_1 \right) \) is a Banach space, where for \(x \in \bigcap_{i=1}^n D(H_i), \|x\|_1 = \|x\| + \sum_{i=1}^n \|H_i(x)\|. \)

(c) For each \(1 \leq i, j \leq n \), \(D(H_i) \cap D(H_iH_j) \subseteq D(H_jH_i), \) and for \(x \in D(H_i) \cap D(H_iH_j) \),

\[H_iH_j(x) = H_jH_i(x). \]

In the rest of this note we shall state an extension of one-parameter abstract Cauchy problem and establish its relation with \(C_0 \)-\(n \)-parameter semigroups of operators.
another application of C_0-n-parameter semigroups we shall show that some n-parameter initial valued problems cannot have a unique solution. The abstract Cauchy problem also admits another natural generalisation which is discussed in [5, 6, 8].

2. THE MAIN RESULTS

Suppose as before X is a Banach space, H_i are closed linear operators from $D(H_i) \subseteq X$ into X and $T_i > 0$, ($i = 1, 2, \ldots, n$). Then, a continuous X-valued function $u : [0, T_1] \times \cdots \times [0, T_n] \rightarrow X$ with continuous partial derivatives which satisfy the following n-parameter abstract Cauchy problem (n-abstract Cauchy problem)

$$
\begin{align*}
\frac{\partial}{\partial t_i} u(t_1, t_2, \ldots, t_i, \ldots, t_n) &= H_i u(t_1, \ldots, t_n), \quad i = 1, 2, \ldots, n \quad t_i \in (0, T_i] \\
u(0) &= x, \quad x \in \bigcap_{i=1}^{n} D(H_i),
\end{align*}
$$

is called a solution of the initial value problem (2).

For convenience in the rest of this note we denote by I_T the positive n-cell $[0, T_1] \times [0, T_2] \times \cdots \times [0, T_n]$ where $T = (T_1, T_2, \ldots, T_n) \in \mathbb{R}^n_+$ and $T_i > 0$. As mentioned in the previous section, we shall illustrate that (2) is closely related to C_0-n-parameter semigroups of operators. In the following theorem we prove that if I_T is arbitrary and (H_1, H_2, \ldots, H_n) is the infinitesimal generator of a C_0-n-parameter semigroup (W, \mathbb{R}^n_+, X), then (2) has the unique solution $u(t_1, t_2, \ldots, t_n) = W(t_1, t_2, \ldots, t_n)x$, for each $x \in \bigcap_{i=1}^{n} D(H_i)$, where $(t_1, t_2, \ldots, t_n) \in I_T$.

THEOREM 2.1. Suppose I_T is a positive n-cell corresponding to $T \in \mathbb{R}^n_+$, and (H_1, H_2, \ldots, H_n) is the infinitesimal generator of the C_0-n-parameter semigroup (W, \mathbb{R}^n_+, X) of operators, then for each $x \in \bigcap_{i=1}^{n} D(H_i)$ the n-abstract Cauchy problem (2) has a unique solution.

PROOF: Let I_T be arbitrary, $\{e_i\}_{i=1}^{n}$ be the standard basis of \mathbb{R}^n and H_i be the infinitesimal generator of the C_0-n-parameter semigroup $\{W(t_i)\}_{i \geq 0}$. For $x \in \bigcap_{i=1}^{n} D(H_i)$, define $u : I_T \rightarrow X$ by $u(t) = W(t)x$. One can easily see that $u(t)$ is a solution of n-abstract Cauchy problem (2) for the initial value $x \in \bigcap_{i=1}^{n} D(H_i)$. For proving the uniqueness of solution it is enough to show that (2) has no proper (that is, nonzero) solution for the initial value $x = 0$. Theorem 1.1 shows that for each $i = 1, 2, \ldots, n$, the initial value problem

$$
\begin{align*}
\frac{du^i(s)}{ds} &= H_i u^i(s), \quad s \in (0, T_i] \\
u^i(0) &= x, \quad x \in D(H_i)
\end{align*}
$$

is unique.
has a unique solution for each \(x \in D(H_i) \). By definition of solution we know that for \(t \in I_T \), \(u(t) \) which is a solution of (2) for \(x = 0 \), is in \(\bigcap_{i=1}^n D(H_i) \), so for the initial value \(x = u(t_1, t_2, \ldots, t_{i-1}, 0, t_{i+1}, \ldots, t_n) \in D(H_i) \), \(u^i(s) = u(t_1, \ldots, t_{i-1}, s, t_{i+1}, \ldots, t_n) \) and \(v^i(s) = W(se_i)u(t_1, \ldots, t_{i-1}, 0, t_{i+1}, \ldots, t_n) \) is a solution of (3) for \(x \). Uniqueness of solution of (3) implies that

\[
W(se_i)u(t_1, \ldots, t_{i-1}, 0, t_{i+1}, \ldots, t_n) = v^i(s)
\]

(4)

\[
u^i(s) = u(t_1, \ldots, t_{i-1}, s, t_{i+1}, \ldots, t_n),
\]

for each \(i = 1, 2, \ldots, n \), \(0 \leq s \leq T_i \) and \(0 \leq t_j \leq T_j \), \(i \neq j = 1, 2, \ldots, n \). Using (4) for \(t = \sum_{i=1}^n t_ie_i \in I_T \), shows that

\[
u(t) = u(t_1, t_2, \ldots, t_n) = W(t_1e_1)u(0, t_2, \ldots, t_n) \quad (i = 1, s = t_1)
\]

\[
= W(t_1e_1)(W(t_2e_2)u(0, 0, t_3, \ldots, t_n) \quad (i = 2, s = t_2)
\]

\[
(W \text{ in } n \text{-parameter}) = W\left(\sum_{i=1}^n t_ie_i\right)u(0, 0, \ldots, 0) = W(t)(0) = 0
\]

Hence \(u(t) = 0 \) and (2) cannot have a proper solution for \(x = 0 \), or equivalently (2) has a unique solution for each \(x \in \bigcap_{i=1}^n D(H_i) \).

Now let \(H_i \)’s \((i = 1, 2, \ldots, n) \) from \(D(H_i) \subseteq X \) into \(X \) be closed operators. Similarly to Proposition 1.2 (b) one can see \(X_1 = \left(\bigcap_{i=1}^n D(H_i), \| \cdot \|_i \right) \), where \(\| x \|_i = \| x \| + \sum_{i=1}^n \| H_i(x) \| \), \((x \in \bigcap_{i=1}^n D(H_i)) \) is a Banach space. In the next theorem we are going to show that for positive \(n \)-cells \(I_T \) and \(I_{T'} \), where \(I_T \subseteq I_{T'} \), if (2) has a unique solution for each \(x \in X_1 \) then there exist a \(C_0 \)-\(n \)-parameter semigroup \((W, \mathbb{R}_+^n, X_1)\) with the infinitesimal generator \((K_1, K_2, \ldots, K_n)\) for which \(W(t)x = u(t; x) \), the unique solution of (2) for \(x \in X_1 \) and \(t \in I_T \), also for \(x \in D(K_i) \), \(K_i(x) = H_i(x) \).

Theorem 2.2. Suppose \(H_i \)’s \((i = 1, 2, \ldots, n) \) are closed linear operators and for positive \(n \)-cells \(I_T \) and \(I_{T'} \), where \(I_T \subseteq I_{T'} \), the \(n \)-abstract Cauchy problem (2) has a unique solution for each \(x \in X_1 \), then there exist a \(C_0 \)-\(n \)-parameter semigroup \((W, \mathbb{R}_+^n, X_1)\) of linear bounded operators with the infinitesimal generator \((K_1, K_2, \ldots, K_n)\) such that for \(t \in I_T \) and \(x \in X_1 \), \(W(t)x = u(t; x) \) where \(u(t; x) \) is the unique solution of (2) for the initial value \(x \), and for \(x \in D(K_i) \), \(K_i(x) = H_i(x) \).

Proof: Let \(u(t; x) \) be the unique solution of (2) for \(x \in X_1 \). For \(t \in I_T \), we define the operator \(W_1(t) : X_1 \to X_1 \) by \(W_1(t)x = u(t; x) \). Trivially \(W_1(t) \) is well-defined and a linear operator, since the solution is unique. We are going to show that \(W_1(t) \) is bounded. Define the mapping \(\Phi : X_1 \to C^1(I_T, X_1) \) by \(\Phi(x)(t) = W_1(t)(x) \), where \(C^1(I_T, X_1) \) is the Banach space of all continuous \(X_1 \)-valued functions on \(I_T \) with continuous partial
derivative, equipped with the supremum norm. Φ is linear, we prove it is closed. Suppose $x_m \to x$ in X_1 and $\Phi(x_m) \to f$ in $C^1(I_T, X_1)$, integrating of (2) implies that for each $i = 1, 2, \ldots, n$, $m \in \mathbb{N}$ and $t = (t_1, \ldots, t_n) \in I_T$,

(5) $W_1(t_1, \ldots, t_n) x_m = W_1(t_1, t_2, \ldots, t_{i-1}, 0, t_{i+1}, \ldots, t_n) x_m$

$+ \int_0^{t_i} H_i W_1(t_1, t_2, \ldots, t_{i-1}, s, t_{i+1}, \ldots, t_n) x_m \, ds.$

Let $m \to \infty$, so $\sup_{t \in I_T} \|\Phi(x_m)(t) - f(t)\|_1 \to 0$, this, (5), together with the closedness of H_i, imply that for each $i = 1, 2, \ldots, n$,

(6) $f(t_1, \ldots, t_n) = f(t_1, t_2, \ldots, t_{i-1}, 0, t_{i+1}, \ldots, t_n)$

$+ \int_0^{t_i} H_i f(t_1, t_2, \ldots, t_{i-1}, s, t_{i+1}, \ldots, t_n) \, ds.$

Thus (6) and the fact that $f \in C^1(I_T, X_1)$ show that

$$\begin{cases}
\frac{\partial}{\partial t_i} f(t_1, t_2, \ldots, t_i, \ldots, t_n) = H_i f(t_1, \ldots, t_n), & i = 1, 2, \ldots, n \quad t_i \in (0, T_i] \\
f(0) = \lim_{m \to \infty} \Phi(x_m)(0) = \lim_{m \to \infty} W_1(0)(x_m) = x.
\end{cases}$$

Hence f is a solution of (2) for the initial value x, the uniqueness of solution gives

$f(t) = W_1(t)x = \Phi(x)t, \quad t \in I_T,$

it means that Φ is closed operator from the Banach space X_1 into the Banach space $C^1(I_T, X_1)$ and the closed graph theorem tell us

$$\sup_{\|x\|_1 \leq 1} \|W_1(\cdot)x\|_\infty = \sup_{\|x\|_1 \leq 1} \left(\sup_{t \in I_T} \|W_1(t)x\|_1 \right) = M < \infty.$$
where \(r = (r_1, r_2, \ldots, r_n) \in I_{T'} \). By the previous parts of proof the operators in the right hand side of the last equality commute and are bounded linear operators on \(X_1 \). One can easily see that \((W, \mathbb{R}_n^+, X_1)\) is an \(n \)-parameter semigroup of operators and the fact that \(\lim_{t \to 0} W(t)x = x \) (by continuity of \(u(t; x) \)) show that \(W \) is strongly continuous. Also for \(s \in I_T \), \(W(s)x = W(s)x \), since

\[
\frac{\partial}{\partial s_i} W(s)x = \frac{\partial}{\partial r_i} W_1(r) \left[\Pi_{i=1}^n (W_1(T'_i e_i))^{m_i} \right] (x) = H_i W_1(r) \left[\Pi_{i=1}^n (W_1(T'_i e_i))^{m_i} \right] (x) = H_i W(s)x
\]

and the equality holds from the uniqueness of solution in \(I_T \). If \((K_1, K_2, \ldots, K_n)\) is the generator of \(W \) and \(x \in D(K_i) \subseteq X_1 = \bigcap_{i=1}^n D(H_i) \), then

\[
\|W(te_t)x - x\|_1 \to 0 \quad \text{as} \quad t \to 0
\]

which implies \(\lim_{t \to 0} (W(te_t)x - x)/t = K_i(x) \), but \(x \in D(H_i) \) and so

\[
\lim_{t \to 0} \frac{W(te_t)x - x}{t} = \frac{\partial}{\partial t_i} W(0,0,\ldots,0)x = H_i W(0)x = H_i(x)
\]

Thus \(K_i(x) = H_i(x) \) and this complete the proof of theorem.

In the previous Theorem we could replace the assumption of existence of a unique solution for (2) in \(I_T \) and \(I_{T'} \), by the assumption that (2) has a unique solution in \(I_T \) and whole of \(\mathbb{R}_n^+ \), which seems stronger than our hypothesis. As another application of \(C_0-n \)-parameter semigroups, we shall show that for a closed linear operator \(A : D(A) \subseteq X \to X \), the \(n \)-parameter initial value problem

\[
\begin{cases}
 \sum_{i=1}^n \frac{\partial}{\partial t_i} u(t_1, t_2, \ldots, t_n) = Au(t_1, t_2, \ldots, t_n), & t = (t_1, t_2, \ldots, t_n) \in I_T \\
u(0) = x, & x \in D(A)
\end{cases}
\]

does not have a unique solution in both \(I_T \) and \(I_{T'} \) for each \(x \in D(A) \), for which \(I_{T'} \subseteq I_T \).

The initial value problem (7) can have a solution, for example if \((H_1, H_2, \ldots, H_n)\) is generator of a \(C_0-n \)-parameter semigroup \((W, \mathbb{R}_n^+, X)\) and \(A = H_1 + H_2 + \cdots + H_n \), then obviously \(u(t) = W(t)x \) is a solution of (7) in any positive \(n \)-cell \(I_T \), for the initial value \(x \in \bigcap_{i=1}^n D(H_i) \subseteq D(A) \).

Before proving our claim we need the following lemmas.

Lemma 2.3. Suppose \(\{T(t)\}_{t \geq 0} \) is a \(C_0 \)-one parameter semigroup of operators with the infinitesimal generator \(A \), and \(B \in B(X) \), then \(A + B \) is the infinitesimal generator of a \(C_0 \)-semigroup \(S(t) \) on \(X \) satisfying

\[
S(t)x = T(t)x + \int_0^t T(t-s)BS(s)x \, ds, \quad x \in X.
\]
![Image](https://www.cambridge.org/core/terms). https://doi.org/10.1017/S0004972700036169

PROOF: See [7, III.1.1 and III.1.2].

Also the next lemma which provide a necessary and sufficient condition for the composition of \(C_0 \)-one parameter semigroups to be a \(C_0 \)-\(n \)-parameter semigroup, has a principal role in the next theorem.

Recall that for linear operator \(H \) in Banach space \(X \), \(\rho(H) \) denotes the resorvent set of \(H \) and for \(\lambda \in \rho(H) \), \(R(\lambda; H) \) is used for \((\lambda I - H)^{-1}\).

Lemma 2.4. Suppose \(\{U_i(t)\}_{s \geq 0} \) is a \(C_0 \)-one-parameter semigroup of operators on Banach space \(X \) with the infinitesimal generator \(H_i \), \((i = 1, 2, \ldots, n) \), then \(W(t_1, t_2, \ldots, t_n) = U_1^1(t_1)U_2^2(t_2) \ldots U_n^n(t_n) \) is a \(C_0 \)-\(n \)-parameter semigroup of operators if and only if there is a \(\omega > 0 \) such that for each \(i = 1, 2, \ldots, n \), \([\omega, \infty) \subseteq \rho(H_i) \) and for each integers \(0 \leq i, j \leq n \) and \(\lambda, \lambda' \geq \omega \), we have

\[
R(\lambda'; H_j)R(\lambda'; H_i) = R(\lambda; H_i)R(\lambda'; H_j).
\]

Proof: First suppose \(W \) is a \(C_0 \)-\(n \)-parameter semigroup of operators. Since \(H_i \) is the infinitesimal generator of \(\{u_i(t)\}_{t \geq 0} \), by the Hille-Yosida Theorem ([7, I.5.3]), there is an \(\omega_i > 0 \) such that for each \(\lambda \geq \omega_i \), \(R(\lambda; H_i) \) exist and are bounded operators. Let \(\omega = \max\{\omega_i : i = 1, 2, \ldots, n\} \). If \(\lambda \geq \omega \), from [7, I.5.4]

\[
R(\lambda; H_i)(x) = \int_0^\infty e^{-\lambda t}U_i^i(s)(x) \, ds.
\]

Also we know that for each integers \(0 \leq i, j \leq n \),

\[
U_i^i(s)U_j^j(t) = W(s_e_i)W(t_e_j) = W(t_e_j)W(s_e_i) = U_j^j(t)U_i^i(s),
\]

so

\[
R(\lambda; H_i)(U_j^j(t)x) = \int_0^\infty e^{-\lambda t}U_j^j(t)U_i^i(s)x \, ds
\]

\[
= \int_0^\infty e^{-\lambda t}U_j^j(t)U_i^i(s)x \, ds = U_j^j(t)\int_0^\infty e^{-\lambda t}U_i^i(s)x \, ds
\]

\[
= u_j^j(t)R(\lambda; H_i)x.
\]

Now let \(\lambda' \geq \omega \), we know \(R(\lambda; H_i) \) is bounded so

\[
R(\lambda; H_i)R(\lambda'; H_j)x = R(\lambda; H_i)\int_0^\infty e^{-\lambda' t}U_j^j(t)x \, dt
\]

\[
= \int_0^\infty e^{-\lambda' t}U_j^j(t)R(\lambda; H_i)x \, dt
\]

\[
= R(\lambda'; H_j)R(\lambda; H_i)x
\]

and this prove the necessary part of lemma.

For the converse suppose there is an \(\omega > 0 \) such that for each \(\lambda, \lambda' > 0 \), \(R(\lambda; H_i) \) and \(R(\lambda'; H_j) \) exist and commute. So we have \(H_i^j H_j^i = H_j^i H_i^j \) where \(H_i^j = \lambda^2 R(\lambda; H_i) - \lambda I \)
and \(H_i^\lambda = \lambda^2 R(\lambda; H_i) - \lambda I \) are the Yosida approximation of \(H_i \) and \(H_j \) respectively. Applying [7, 1.3.5] we have \(U_j(t) x = \lim_{\lambda' \to \infty} e^{t H_i^\lambda} x \) and \(U_j(t) x = \lim_{\lambda' \to \infty} e^{t H_i^\lambda} x \), thus

\[
U_i(s) U_j(t) x = \lim_{\lambda, \lambda' \to \infty} e^{s H_i^\lambda} e^{t H_j^\lambda} x = \lim_{\lambda, \lambda' \to \infty} e^{s H_i^\lambda} e^{t H_j^\lambda} x = \lim_{\lambda, \lambda' \to \infty} U_j(t) e^{s H_i^\lambda} x = U_j(t) U_i(s) x
\]

Hence \(W(t_1, t_2, \ldots, t_n) = U_1(t_1) U_2(t_2) \ldots U_n(t_n) \) is a \(C_0 \)-\(n \)-parameter semigroup of operators.}

Now we are ready for this theorem.

THEOREM 2.5. Suppose \(A \) is a closed operator from \(D(A) \subseteq X \) into \(X \) and \(f \) and \(f' \) is given. Then the initial value problem (7) cannot have a unique solution for each \(x \in D(A) \) in both \(I_T \) and \(I_{T'} \).

PROOF: Suppose to the contrary (7) has a unique solution for each \(x \in D(A) \) in both \(I_T \) and \(I_{T'} \). As in Theorem 2.2 we are going to show that if \(u(t; x) \) is the unique solution of (7) for \(x \in D(A) \) and \(t \in I_T \), then \(W_1(t) x = u(t; x) \) can be extended to a \(C_0 \)-\(n \)-parameter semigroup of operators, and using previous lemma we shall get a contradiction.

Obviously uniqueness of solution shows that \(W_1(t) x = u(t; x) \) is a well-defined linear operator on Banach space \(X_1 = (D(A), \| \cdot \|_A) \) where \(\| \cdot \|_A \) is the graph norm on \(X_1 \). Before proving the boundedness of \(W_1(t) \) we notice that \(Y = (C^1(I_T, X_1), \| \cdot \|') \), where

\[
\| f \|' = \| f \|_\infty + \sum_{i=1}^n \left\| \frac{\partial}{\partial t_i} f \right\|_\infty
\]

is a Banach space. Next we show that the mapping \(\Phi : X_1 \to Y \) defined by \(\Phi(x)(t) = W_1(t) \) is closed, for; suppose \(x_m \to x \) in \(X_1 \) and \(\Phi(x_m) \to f \) in \(Y \). Integrating of (7) for initial value \(x_m \), we have

\[
W_1(t_1, t_2, \ldots, t_n) x_m = W_1(0, t_2, \ldots, t_n) x_m - \sum_{i=2}^n \int_0^{t_1} \frac{\partial}{\partial t_i} W_1(s, t_2, \ldots, t_n) x_m ds + \int_0^{t_1} A W_1(s, t_2, \ldots, t_n) x_m ds.
\]

As \(m \to \infty \) by our choosing of the norm and the closeness of \(A \) we get

\[
\left\| \frac{\partial}{\partial t_i} W_1(\cdot) x_m - \frac{\partial}{\partial t_i} f(\cdot) \right\|_\infty \to 0, \quad \text{as} \quad m \to \infty, \quad i = 1, 2, \ldots, n
\]
and

\[
\|W_1(\cdot)x_m - f(\cdot)\|_{\infty} = \sup_{t \in I_T} \left(\|W_1(t)x_m - f(t)\|_A \right)
\]

\[
= \sup_{t \in I_T} \left(\|W_1(t)x_m - f(t)\| + \|AW_1(t)x_m - Af(t)\| \right) \to 0
\]
as \(m \to \infty\). Hence

\[
f(t_1, t_2, \ldots, t_n) = f(0, t_2, \ldots, t_n) - \sum_{i=2}^{n} \int_{0}^{t_1} \frac{\partial}{\partial t_i} f(s, t_2, \ldots, t_n) \, ds
\]

\[
+ \int_{0}^{t_1} Af(s, t_2, \ldots, t_n) \, ds.
\]
It gives

\[
\begin{align*}
\frac{n}{\sum_{i=1}^{n} \frac{\partial}{\partial t_i} f(t_1, t_2, \ldots, t_n) = Au(t_1, t_2, \ldots, t_n) \\
\end{align*}
\]

\[
f(0) = \lim_{m \to \infty} W_1(0)x_m = x.
\]
So \(f\) is a solution of (7) and by the uniqueness of solution we conclude \(f(t) = W_1(t)x\), equivalently \(f\) is closed and by closed graph theorem \(\Phi\) is bounded, thus \(\sup_{t \in I_T} \|W_1(t)\| < \infty\).

As in Theorem 2.2 \(W_1(t)\) can be extended to a \(C_0\)-\(n\)-parameter semigroup \((W, \mathbb{R}_+, X_1)\). Let \((H_1, H_2, \ldots, H_n)\) be the infinitesimal generator of \(W\), for \(x \in \bigcap_{i=1}^{n} D(H_i) \subseteq D(A)\) we have

\[
\frac{\partial}{\partial t_i} W(t)x = H_iW(t)x.
\]
Thus

\[
\sum_{i=1}^{n} \frac{\partial}{\partial t_i} W(t)x = \left(\sum_{i=1}^{n} H_i \right) W(t)x = AW(t)x.
\]
From the continuity of \(\frac{\partial}{\partial t_i} W(t)x\) and strong continuity of \(W(t)x\), the fact that \(\sum_{i=1}^{n} H_iW(t)x = W(t) \sum_{i=1}^{n} H_i x\) (Proposition 1.2), and the closedness of \(A\) as \(t \to 0\), the last equality yields

\[
\sum_{i=1}^{n} H_i(x) = A(x), \text{ for each } x \in \bigcap_{i=1}^{n} D(H_i).
\]
Applying Lemma 2.4 shows that there is \(\omega > 0\) such that for each \(\lambda, \lambda' \geq \omega\), we have

\[
R(\lambda'; H_j)R(\lambda; H_i) = R(\lambda; H_i)R(\lambda'; H_j).
\]
Now let $H'_1 = H_1 + I$ and $H'_2 = H_2 - I$, if $\omega' = \omega + 1$ and $\lambda, \lambda' \geq \omega'$, we have $\lambda + 1, \lambda' - 1 \geq \omega$ and

$$R(\lambda'; H'_1)R(\lambda'; H'_2) = R(\lambda' - 1; H'_3)R(\lambda + 1; H_2)$$
$$= R(\lambda + 1; H_2)R(\lambda' - 1; H'_1)$$
$$= R(\lambda; H'_2)R(\lambda'; H'_1).$$

Similarly $R(\lambda; H'_i)R(\lambda'; H'_j) = R(\lambda'; H'_j)R(\lambda; H'_i)$, for $\lambda, \lambda' \geq \omega'$, $i = 1, 2$, and $j = 3, 4, \ldots, n$. By Lemma 2.3 H'_1 and H'_2 are the infinitesimal generators of two C_0-one-parameter semigroups of operators. With the above equalities and Lemma 2.4, this shows that $(H'_1, H'_2, H_3, \ldots, H_n)$ is the infinitesimal generator of a C_0-n-parameter semigroup, say $(W', \mathbb{R}^n_+, X_1)$. So by Lemma 2.3, for each $x \in X_1$,

$$W'(te_1)x = W(te_1)x + \int_0^t W((t - \mu)e_1)W'(\mu e_1)x d\mu,$$

and

$$W'(te_2)x = W(te_2)x - \int_0^t W((t - \nu)e_2)W'(\nu e_2)x d\nu.$$

Also $W'(te_i) = W(te_i)$, for $i > 2$. We conclude that for $x \in \bigcap_{i=1}^n D(H_i)$,

$$\frac{\partial}{\partial t_i} W'(t_1, t_2, \ldots, t_n)x = \begin{cases} H'_i W'(t_1, t_2, \ldots, t_n) & i = 1, 2 \\ H_i W'(t_1, t_2, \ldots, t_n) & i > 2. \end{cases}$$

Hence by (8)

$$\begin{cases} \frac{\partial}{\partial t_i} W'(t) = (H'_1 + H'_2 + H_3 + \cdots + H_n)W'(t) = \sum_{i=1}^n H_i W'(t) = AW'(t)x \\ W'(0) = x. \end{cases}$$

But the solution of (7) is unique, and so for $i = 1, \ldots, n$ and $0 \leq t \leq T_i$,

$$W'(te_i) = W(te_i).$$

This implies that

$$W(te_1)x = W'(te_1)x = W(te_1)x + \int_0^t W((t - \mu)e_1)W'(\mu e_1)x d\mu$$
$$= W(te_1)x + \int_0^t W(te_1)x d\mu$$
$$= W(te_1)x + tW(te_1)x.$$

So $tW(te_1)x = 0$ or $W(te_1)x = 0$. This is a contradiction, because $0 = \lim_{t \to 0} W(te_1)x = x \neq 0$. Thus (7) cannot have a unique solution for each $x \in D(A)$. \[\Box\]
Remark 2.6. Our technique for proving Theorem 2.2 and a part of Theorem 2.5 is based on Hille’s technique for one-parameter case [5]. \(C_0 \)-\(n \)-parameter semigroups are solutions of many initial value problems contain partial derivative and as in previous Theorem, \(C_0 \)-\(n \)-parameter semigroups can be used for showing that these initial value problems cannot have a unique solution. As another example for second order initial value problems, consider the two-parameter initial value problem

\[
\begin{align*}
\frac{\partial}{\partial s} \frac{\partial}{\partial t} u(s,t) &= A u(s,t) \\
(s,t) &\in [0,S] \times [0,T] \\
u(0,0) &= x, \quad x \in D(A)
\end{align*}
\]

where \(A \) is a closed operator. If this problem has a unique solution for each \(x \in D(A) \) in both \(I(s,T) \) and \(I(s',T') \) for which \(I(s,T) \subseteq I(s',T') \), then \(W_i(s,t) = u(s,t;x) \) can be extended to a \(C_0 \)-two-parameter semigroup on Banach space \(X_1 = (D(A), \| \cdot \|_A) \), with the infinitesimal generator \((H, K) \). We know \(D(HK) \cap D(KH) = D(A) \), (it can be proved completely similarly to the proof of Proposition 1.2 (b)), so \(D(HK) \cap D(KH) \neq 0 \). Now for \(x \in D(HK) \cap D(KH) \), by Proposition 1.2 \(HK(x) = KH(x) \) and one can see that this is equal to \(A(x) \). Also it can be checked that \((H/2, 2K) \) is the generator of \(W'(s,t) = W(s/2,2t) \neq W(s,t) \). So for \(x \in D(HK) \cap D(KH) \),

\[
\begin{align*}
\frac{\partial}{\partial s} \frac{\partial}{\partial t} W'(s,t) &= \left(\frac{1}{2}H \right)(2K)W'(s,t)x = HKW(s/2,t)x = A W'(s,t) \\
W'(0,0)x &= x
\end{align*}
\]

and this is a contradiction with the uniqueness of solution.

References

