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Scanning transmission electron microscopy (STEM) is one of the primary methods of characterizing 
heterogenous catalysts due to its unprecedented spatial resolution and the ability to perform imaging and 
chemical analysis simultaneously at the atomic scale. For the characterization of heterogenous catalysts 
that are composed of metal and oxide support, the atomic configurations are often probed by Z-contrast 
imaging while the chemical distributions can be revealed by using either electron energy loss spectroscopy 
(EELS) or energy dispersive X-ray spectroscopy (EDS). However, challenges in characterizing catalysts 
using STEM lay in detecting the subtle chemical and electronic structure changes on the metal 
nanoparticle surfaces. Possible overlapping of peaks/edges in EELS and EDS further complicate the 
analysis, making traditional analysis difficult. Machine learning offers exciting tools for analyzing EELS 
and EDS spectrum images where traditional analysis techniques struggle. We propose a new procedure 
for improving the convergence of the non-negative matrix factorization (NMF) dimension reduction 
algorithm to a meaningful and interpretable result. 
 
As a result of recent developments in machine learning algorithms and increased collaborations between 
disciplines, there has been an increase in the use of statistical machine learning applications for the study 
of materials. Among the most popular is principle component analysis (PCA), which produces abstracted 
representations of spectra because of the orthogonality requirement of the algorithm. This makes the 
resulting components difficult to interpret. NMF on the other hand, has been shown to produce 
interpretable results due to its non-negativity constraint on the components and abundance maps. A 
weakness of conventional NMF, however, is its sensitivity to local minima during convergence. One way 
to combat this effect is to impose additional constraints, or costs, on the minimization algorithm to reduce 
the likelihood of settling at a local minimum. Another approach is to use an improved initial guess, which 
increases the likelihood of the algorithm reaching the global minimum[1]. 
 
Here, we combine these techniques to improve the quality of results by using the non-linear “perfect pixel” 
algorithm, ATGP [2], to generate initial guesses for the joint-non-negative matrix factorization [3] 
algorithm that augments the cost function of NMF and encourages sparsity in the pixels and smooth 
transitions. Figures 1 and 2 show that Joint-NMF identified the palladium nanocube in the second 
component and differentiated two carbon components. The first component is the uniform lacey carbon 
support and the second component builds in thickness a feature characteristic of carbon contamination. 
The number of components was estimated by selecting the number of components required to capture the 
most variance as determined with PCA. This work shows that this new machine learning based algorithm 
is able to detect overlapping components in EELS spectrum image datasets that are challenging for 
conventional microscopy data analysis methods. [4]  
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Figure 1. Z-contrast STEM image and component maps of palladium on carbon from Joint-NMF. From 
left to right: High angle annular darkfield (HAADF)-STEM signal, lacey carbon support, palladium 
component, carbon contamination. The length of the scale bar is 2 nm. 
 

 
Figure 2. Spectral components from Joint-NMF. (i) lacey carbon support, (ii) palladium component, 
(iii) carbon contamination. 
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