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Summary

Effective population size (Ne) is an important parameter determining the genetic structure of small
populations. In natural populations, the number of adults (N) is usually known and Ne can be
estimated on the basis of an assumed ratio Ne/N, usually found to be close to 0.5. In farm animal
populations, apart from using pedigrees or genetic marker information, Ne can be estimated from
the number N of breeding animals, and a value of 1 is commonly assumed for the ratio Ne/N. The
purpose of this paper is to show the relation between effective population size and breeding herd size
in livestock species. With overlapping generations, Ne can be predicted knowing the number of
individuals entering the population per generation and the variance of family size, the latter being
directly related to the survival pattern (or replacement policy) in the breeding herd. Assuming an
ideal survivorship leading to a geometric age distribution, it can be shown that the number of
breeding animals tends to overestimate effective size, particularly in early-maturing species. The
ratio of annual effective size to the number of breeding animals is shown to be equal to
[1+(ax1)(1xs)]2/(1xs2), where a is the age at first offspring and s is the survival rate (including
culling) of the parents between successive births. This expression shows to what extent inbreeding
may be determined by demography or culling policy independently of the actual herd size. In many
situations a fast replacement or an early culling will increase annual effective size. Consequences for
the management of small populations are discussed.

1. Introduction

Effective population size is an important parameter in
determining the rate of inbreeding and genetic drift
in small populations. This concept, initially due to
Wright (1931) and first applied to populations with
discrete generations, was later extended to populations
with overlapping generations, as reviewed by Hill
(1972a, 1979). In farm animal populations, effective
population size may be predicted from the number of
breeding animals of both sexes, i.e. breeding herd size.
The purpose of this paper is to investigate the relation
between effective population size and breeding herd
size, and how this relation may be affected by various
demographic parameters. This should allow better
pedigree-free predictions of inbreeding in the various

farm animal species, and also permit designs for
maximizing the genetic variability maintained in small
populations.

2. Effective size with overlapping generations

The rule to apply in evaluating effective size (Ne) with
overlapping generations, as given by Hill (1972a,
1979), is to define Ne as equal to the effective size of
a population with discrete generations having the
same variance of lifetime family size and the same
number of individuals entering the population per
generation. Ne is then expressed as a function of the
number of males (M) and females (F) reaching
breeding age per unit of time, generation length (L),
and variances-covariances of mm, mf, fm and ff,
which are the numbers of offspring on the paths
male to male, male to female, etc. The general
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expression of Ne is :
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If family sizes follow a Poisson distribution, the vari-
ance of family size equals the mean and the above
expression yields Ne=4MFL/(M+F ). With over-
lapping generations, however, the variance of family
size exceeds the mean if, as usual, parents are used for
different numbers of breeding seasons, as pointed out
by James (1982). The effective size depends on the
variances and means of the numbers of times (l) the
sires and the dams are bred in the herd. Consider mm.
It has mean of 1 and, assuming equal fecundity at all
ages, the mean per breeding season is 1/ l̄ where l̄ is
the mean number of breeding seasons a sire is used.
If lj is the number of times the jth sire is used, its
expected number of offspring is lj/ l̄ . The variance for
a given sire, assuming Poisson distributions, equals
the mean, and averaging over sires this equals 1. But
there is also a between-sire component of
var(lj/ l̄ )=Vl/ l̄

2=vm so that Vmm=1+vm. By a similar
argument Vmf=(F/M)+(F/M)2vm and cov(mm, mf)=
(F/M)vm. Similar results apply for the terms in the
other square brackets, and when these values are
inserted, the following equation results (James, 1982,
p. 288):

Ne=4MFL=[M(1+vf)+F(1+vm)], (1)

where the vs are the standardized variances – or
squared coefficients of variation – of l in each sex.

Here it is assumed that all animals of the same sex
in the herd at any time have the same expected num-
ber of progeny. Charlesworth (1980, p. 101) pointed
out that his equation (2.39) and the equation of
Hill (1972a) used above to derive equation (1) are
equivalent for the assumed conditions. Equation (1)
may thus be seen as a particular case of Charles-
worth’s equation (2.39) which uses more general
demographic parameters and does not depend on the
family size assumptions made here.

The values of v can easily be obtained knowing the
age distribution of the parents. They actually reflect
the replacement policy applied, as shown by the
numerical example of James (1982, pp. 288–289). If
the replacement policies are the same in both sexes,
(1) becomes Ne=4MFL/(M+F)(1+v). If F is large
compared with M, (1) may be approximated by
Ne=4ML/(1+vm).

Annual effective size, Na=NeL, can be derived
from the above expressions and values predicted for
various livestock species, based on known herd size
and replacement policy, as we shall now see.

3. Annual effective size predicted in farm

livestock species

Let us assume an ideal replacement rate of the breed-
ing herd leading to a geometric (or Pascal) distri-
bution of the ages, a constant proportion being kept
(or surviving) after each breeding season. In such a
situation it can be shown that v=s, s being the survival
rate (see for example Subrahmaniam, 1990). More-
over, L, M and F in (1) can be expressed as functions
of s, a, the age at first offspring, and the total
(census) number of sires (Nm) and dams (Nf) (see for
example Ollivier, 2002). Assuming equal s and a in
both sexes :

L=ax1+(1xs)x1, (2a)

M=Nm(1xs), (2b)

F=Nf(1xs), (2c)

and

v=s: (2d)

The equations (2b) and (2c) are obtained by noting
that Nm=M(1+s+s2+� � �)=M/(1xs) and similarly
for Nf.

Hence (1) becomes:

Ne=[4NmNf=(Nm+Nf)]L(1xs)=(1+s):

The ratios of effective sizes per generation and per
year to herd size, defined asN=4NmNf/(Nm+Nf), are
then obtained by replacing L by its value (2a) :

Ne=N=[1+(ax1)(1xs)]=(1+s), (3)

and

Na=N=[1+(ax1)(1xs)]2=(1xs2): (4)

It should be noted that (4) assumes that both a and
s are expressed on an annual basis. In species repro-
ducing m times a year, the time unit will usually be the
interval between successive births and equation (4)
will have to be divided by m.

Table 1 summarizes the values obtained for live-
stock species in an increasing order of generation
length, and for a range of survival rate (s) extending
from 0.6 to 0.9. It can be seen that effective size (Ne)
decreases relatively to herd size as survival rate
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increases. A longer generation time is more than offset
by a more variable family size. One can also see that
with a larger survival rate a given herd size is attained
with a smaller annual number of replacements as
shown in equations (2b) and (2c).

Equation (3) shows that Ne exceeds N as long as
s<(ax1)/a. Equation (4) shows that annual effective
size (Na) relative to herd size goes through a minimum
when s=(ax1)/a, this minimum being (2ax1)/m.
This also shows that when a>1, annual effective size
with overlapping generations always exceeds the
value Na=aN/m prevailing with discrete generations
and inspection of equation (4) shows this is also true
when a=1.

4. Annual effective size as affected by herd

management

(i) Effect of age at first offspring

In the previous section we have assumed a fixed age
(a) at first offspring. In practice, age at first offspring
may be manipulated by the breeder. Equation (4)
readily shows that annual effective size is an increas-
ing function of a. Then, for example in species repro-
ducing annually, a 1 year delay in first offspring would
increase the minimum Na/N by 2 years.

(ii) Effect of the culling policy

We have so far assumed a fixed age distribution,
determined by a given survival rate, thus excluding
voluntary culling. The breeder may change age
distribution by applying either progressive or 1-stage
culling (James, 1982), among other possible culling
policies. The consequences of progressive culling,
where a constant proportion s of the breeding animals
is culled after each breeding season, can be evaluated
by using equations (3) and (4), since a geometric
age distribution again applies. As mentioned before,
equation (4) shows that the ‘ intermediate’ culling rate
1xs=1/a yields the minimum Na/N. This ratio can
be increased either by increasing the culling rate or by
doing no culling at all. It should be noted that the

option of maximizing culling rate leads to a limit of
Na/N=a2 (as sp0). Provided fecundity is sufficient
for ensuring such a fast replacement, this option may
surpass the alternative of natural replacement if ao3.
In rabbits, for instance, a culling rate of 95% yields
a ratio of 1.4, well above the theoretical maximum of
1.26 (assuming s=0.9: see Table 1).

In a 1-stage culling system all breeding animals are
discarded after a given number of breeding seasons.
The consequences of such a system, under the as-
sumption of a natural geometric age distribution with
survival s, depend on the properties of the truncated
geometric distribution. Equations (2) can be modified
to take into account the number of times (l) the
individuals are bred before culling. If equal a, s and
l in both sexes are assumed:

L=ax1+(1xs)x1xlsl=(1xsl), (5a)

M=Nm(1xs)=(1xs l ), (5b)

F=Nf(1xs)=(1xsl), (5c)

v=[s(1xs)x2xl2sl=(1xsl)2]=[(1xs)x1xlsl=(1xsl)]2:

(5d)

The ratios (3) and (4) are then more generally ex-
pressed as:

Ne=N=L(1xs)=(1xsl)(1+v), (6)

and

Na=N=LNe=N=L2(1xs)=(1xsl)(1+v): (7)

In the ranges of a and s considered in Table 1, and
excluding l=1, which corresponds to discrete gen-
erations, the effective size (Ne/N) is a continuously
decreasing function of l. Annual effective size (Na/N)
follows a different pattern of evolution with increas-
ing l, as shown in Fig. 1. In the range 1<lf10 and
excluding the case a=2, the maximum Na/N is
obtained for l=2. The earliest possible 1-stage culling

Table 1. Generation (Ne) and annual (Na) effective sizes of livestock species relative to herd size (N), according
to age at first offspring (a) and survival (s) between successive births. Equal a and s are assumed in both sexes

Species
Time unit
(for a and s)

Age at first
offspring (a)

Generation
lengtha, L
(years) Ne/N

a

Na/N

Rangea Minimum

Rabbit 2 months 3 0.75–2.00 1.13–0.63 0.84–1.26 0.83
Pig 6 months 2 1.75–5.50 0.88–0.58 1.53–3.48 1.50
Sheep Year 2 3.50–11.00 0.88–0.58 3.06–6.37 3.00
Cattle Year 3 4.50–12.00 1.13–0.63 5.06–7.58 5.00
Horse Year 5 6.50–14.00 1.63–0.74 10.56–10.00 9.00

a Range given for s varying from 0.6 to 0.9.
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can therefore usually be recommended. As l increases,
Na/N goes through a minimum occurring for lo3
and then increases up to a limiting value given by (4).
It should be noted, however, that with high values
of s the approach to this limit is slow and irregular.
In fact the upper limits given in Table 1 imply un-
realistically high values of l which will not be reached
under practical farm conditions.

5. Discussion and conclusions

The concept of effective size is widely applied in
quantitative as well as population genetics. It serves

essentially to evaluate the potential of a population
in terms of genetic improvement and to predict the
rate of inbreeding DF, given the relation DF=1/2Ne.
Effective size is also central to conservation genetics,
since it is the criterion generally used for defining
degree of endangerment of wild as well as domestic
animal species or breeds. A very comprehensive re-
view of the methods available for predicting Ne in a
variety of situations has been provided by Caballero
(1994).

As our results are an extension of the general
approach of Hill (1972a), the same model applies. Let
us recall the main assumptions being made, namely
discrete breeding periods, constant number chosen
for breeding at each time period, constant parental
age distribution, and sampling of genes assumed to
be neutral with respect to fitness and any artificial
selection pressure. Our results therefore apply only
to situations of strict random mating without any
selection, as for instance control lines, in situ con-
servation programmes with mild selection, or wild
captive species farming.

In natural populations, the number of adults (N)
is usually known and Ne can be estimated on the basis
of an assumed ratio Ne/N, usually found to be in the
range 0.25–0.75 (Nunney, 2000). In farm animals,
apart from using pedigree or genetic marker infor-
mation, Ne can similarly be estimated from the
number N of breeding animals. A value of 1 is, for
example, implicitly assumed for the ratio Ne/N when
the degree of endangerment of livestock breeds is
evaluated on the basis of the inbreeding expected over
a given period of time (e.g. Simon & Buchenauer,
1993). Our results show that the situation in farm
animals differs from that of natural populations,
since Ne is generally expected to be closer to the
number of adults (Table 1). The higher Ne/N expected
in farm populations can be explained by the vari-
ations in both life span and fecundity which have
to be taken into account in natural populations
(Nunney, 1993), whereas only life span variation has
to be considered in farm animals. It is indeed worth
noting that the general expression of effective size of
Nunney (1993), namely equation (5) p. 1331, includes
male and female fecundity variations not likely to be
important in farm animals. As stated in the derivation
of equation (1), our model assumes equal expected
number of progeny for animals of the same sex and
therefore excludes variation of male seasonal fec-
undity, connected in particular to mating success, as
well as breeding failure of a proportion of females,
both factors included (as Ibm and af respectively) in
Nunney’s equation (5). It can be seen that when these
two parameters are excluded, and a=1 assumed as in
Nunney’s formula, our equation (1) is obtained.

Table 1, however, shows that large variations
around the value Ne/N=1 are to be expected,
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Fig. 1. Ratio of annual effective size to herd size (Na/N)
as a function of the number of times (l) males and females
are bred before culling, for various values of age at first
offspring (a) and survival (s) between successive breeding
seasons, and taking a time unit of 1 year for a and s. Equal
a, s and l are assumed in both sexes. Na/N is expressed in
units of a. l varies from 1, corresponding to discrete
generations (in which case Na/N=a), to 10.
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depending on age at first offspring (a) and survival
rate (s) of the breeding animals. Values close to 0.5
may even be predicted in the extreme case a=1, which
is, however, outside the range of species considered in
Table 1. Differences in s between species and also be-
tween breeds and between sexes are known to occur.
The range 0.6–0.9 considered in Table 1 is expected to
cover most survivorships commonly encountered in
farm animals. Under the assumption of a geometric
age distribution, the survival rate s, and consequently
the ratios (3) and (4), may alternatively be expressed
as functions of a and L using equation (2a). A value of
Ne/N=0.875 can then for instance be derived from
a=5 and L=10.5 years estimated by Langlois (1976)
for thoroughbreds.

The effective sizes of Table 1 should, however,
generally be considered as upper limits, because de-
viations from the simple model assumed will tend to
reduce Ne. Selection is a particularly important factor
for effective size reduction in farm animals through
mechanisms reviewed by Caballero (1994). The joint
management of genetic gain and inbreeding in arti-
ficial selection programmes has received considerable
attention in the literature starting from the basic
paper of Robertson (1961). The theory of genetic
contributions more recently developed can be used to
predict the rate of inbreeding in populations under-
going selection (Woolliams & Thompson, 1994).
Using this theory, Bijma et al. (2001) showed how
the annual rate of inbreeding could be predicted in
specific livestock improvement schemes. For given
numbers and age classes of the breeding animals,
the inbreeding predicted was increased by selection,
depending on the selection method, the selection
intensity and the heritability of the selected trait. As
an example, the breeding scheme of table 2 in Bijma
et al. (2001) with M=20, F=60, a=1 and 2 age
classes, i.e. l=2, is approximately equivalent to
s=0.7 and L=1.4 in the least intensive and lowest
heritability scheme. In such a scheme our equation
(6) predicts Ne/N=0.74 compared with 0.47 with
selection.

Our investigation also shows how effective size
may be manipulated by varying the herd demography
parameters which are controlled by the farmer,
namely age at first breeding, survival rate and culling
policy, and excluding any pedigree information. As
an example, because of the dominating effect of male
age distribution in equation (1), Ne/N is expected to
exceed 1 when male turnover is high. In the particular
situation of a large number of females compared with
males and males used only once (i.e. vm=0), it can
readily be seen that Ne/N and Na/N are approximated
by L and L2 respectively. The general tendency is
contrary to the expectation that annual effective size
would increase with increasing life span or with in-
creasing culling stage. In fact, the balance between the

positive effect of high survival rate on generation
length and its negative effect on genetic drift plays in
favour of shortening the breeding life span. In many
situations, and whenever possible, an early culling
may in fact considerably increase annual effective size.

Pedigree information, not considered in this paper,
is known to be useful for maintaining constant family
sizes and thus decreasing the rate of inbreeding, as in-
vestigated for instance in the design of control
populations (Hill, 1972b). Smith (1976) showed that
even in a balanced breeding structure aiming at equal
family sizes, the effects of mortality and fertility are
important, and in such situations the annual effective
size will be reduced as the survival rate falls, since
here a low survival acts against equalizing family size.
Mating schemes intended to avoid inbreeding have
been intensively investigated, but usually require dis-
crete generations for efficient implementation (see
Sanchez et al., 2003 and Fernandez et al., 2003 for
various schemes). The genetic contribution theory
previously mentioned also allows constraining the rate
of inbreeding to a predefined value while optimizing
the breeding scheme (Avendano et al., 2004). Finally,
it should be recalled that all predictions of effective size
assume the populations to be closed. In practice, farm
animal populations are usually managed as open
breeding systems, which automatically induce in-
creases in effective size, as shown by James (1978).

The help provided by Hervé Lagant (INRA-SGQA) in
preparing this paper and comments made by two anony-
mous referees are gratefully acknowledged.
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