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DIRECT PRODUCT DECOMPOSITIONS 
OF ELATION GROUPS 

BY 

JULIA M. NOWLIN BROWN 

1. Introduction. Let G be a collineation group of a projective plane jr. Let E 
be the subgroup generated by all elations in G. In the case that TT is finite and 
G fixes no point or line, F. Piper [6; 7] has proved that if G contains certain 
combinations of perspectivities, then E is isomorphic to PSL(3, g) for some finite 
field g. The isomorphism is geometrically significant in the sense that there 
exists a Desarguesian subplane TTI and E acts as the little projective group of 
7Ti in the natural way. 

In the case that IT is finite and G fixes a line t, let S be the subgroup of G 
generated by all elations in G which fix a fixed point Pi£. C. Hering [5] has 
determined the structure of S under the hypothesis that G contains certain 
elations with axis I. 

We allow 77 to be finite or infinite, we consider the case where G fixes a line 
t, and we study £(,)(G), the subgroup of all elations in G which have axis L It 
is well known that if E^{G) contains non-identity elations with distinct centers 
then Ey)(G) is elementary abelian and therefore is usually a direct product of 
many subgroups. But there may be no decomposition into two factors in which 
each factor is the set of all elations in E^)(G) which have a fixed point as 
center. (See Examples 4.3 and 4.4.) In Theorems 3.2 and 3.3 we find sufficient 
conditions, in terms of the existence of perspectives in G and the finiteness of 
certain subgroups of E^G) (or of G), for the existence of such a geometrically 
significant direct product decomposition into two factors. Examples 4.2, 4.3, 
and 4.5 demonstrate the necessity of the finiteness hypotheses of Theorems 3.2 
and 3.3. 

2. Notation. For any point X and line y we let (X) denote the set of all lines 
through X and we let (y) denote the set of all points on y. Thus, for example, 
for any collineation group G, G(y) is the subgroup of all collineations in G 
which have axis y, G(X)(y) is the subgroup of all collineations in G which have 
center X and axis y, and Gm,A is the subgroup of all collineations in G which 
have center X and which fix A. 
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It is well known that the set of all elations in a group G which have a fixed 
axis I forms a subgroup of G. This subgroup cannot be described concisely 
using the above conventions, so we will use the notation E^(G) for this 
subgroup. In order to have a uniform notation in some direct product 
equalities, we will sometimes use E (0 (A)(G) for the group GmA) when AIL 
When there is no chance of confusion, the " (G)" will sometimes be omitted 
from the above notations. 

For any two points A, B on a line I, the product E(€)(A)(G) - E(€)(B)(G) is a 
direct product E(<f)(A)(G)x E(<f)(B)(G). (This follows from the uniqueness of the 
center of a non-identity elation.) So to derive conclusions of the form E((0(G) = 
£(O(A)(G)xE()0(B)(G) in Theorems 3.2 and 3.3, it is sufficient merely to show 
£(/)(G) = EmA)(G) • £(<f)(B)(G). 

3. Structure theorems. The following theorem was proved by J. André [2, p. 
31] for finite planes. 

THEOREM 3.1. Let G be a collineation group of a projective plane TT and let a 
be a line of IT. If Eia)(G) is finite and non-trivial or if G(a) is finite, then either the 
set of centers of non-identity homologies in G(a) is an E(a)(G)-orbit or it is empty. 

Proof. First we show that G(a) is finite whenever E ( a ) is finite and non-trivial 
by showing that if 1 ^ e e E(a) then e has only finitely many G(a)-conjugates and 
CG(a)(e) ( t n e centralizer in G(a) of e) is finite. The elation e has only finitely 
many G(a)-conjugates because all such conjugates belong to JE(a) which is finite 
by hypothesis. If l ^ g e G ^ ) and g has center Xja, then g~1eg(X) = 
g~1e(X) ¥" e(X) because the fixed points of g - 1 consist only of X and the points 
of a. So g<£ CG(a)(e). Thus CG(fl)(e)çE (a) which is finite. 

By the finiteness of G(a), the G(a)-orbits of centers of non-identity 
homologies in G(a) are finite in number and size. Denote these orbits by Mi, 
M2,..., Mk. Let mt = \Mi\, g = |G(a)|, e = \E(a)\, and & = \G(a)(Ai)\ for some 
At e Mt. 

We can now apply the argument of J. André [2]. By the semiregularity of the 
action of E(a) on the set of points off a, it is sufficient to show either that k = 1 
and 1^x1 = 1^ )̂1 or that fc = 0. 

Now |G(a)| = |G(a)(Ai)||G(a),AJ = |^||G(a)(A i)l (by the definition of Mt and 
by the fact that AJa). Thus 

(3.11) g = migi. 

Every element of G(a) belongs to G(a)(X) for some X and this X is unique if 
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the element of G(a) is not the identity. Thus 

g = e+I( |G, f l)(x) |- l) 
XIa 

k 

(312) = « + ! l^il(|G (a ) (A | ) |-l) 
k 

= e + £ rritigi-l) 
i = i 

= e + g Z d - g r 1 ) (by 3.11). 
i = l 

Now each &>2. Thus \-gJl>\. So, by 3.12, g^e + gk{\). But e>0, thus 
g>gfc(è). So we must have fc = 1 or 0. If fc = 1, then, by 3.12, g = e + g-ggî~1 

or g = gie. This and 3.11 show that \Mi\ = m1 = e = \Eia)\. 

REMARK 3.13. The conclusion of this theorem is false if the hypothesis that 
E(a) is finite is replaced by G(a)(A) is finite for some (or all) A}a. See Example 
4.1. The author has been unable to establish the necessity of the hypothesis 
that E(a) is non-trivial. 

THEOREM 3.2. Let G be a collineation group of a projective plane u, let t and 
a be distinct lines of IT, and let A be a point on I but not on a. If G contains a 
non-identity homology with center A and axis a (i.e., if G(A)(a)^{l}) and if 
either EmA)(G) is finite and non-trivial or G(A),a<f is finite, then JE((0(G) = 
Etf)(A)(G) X Eyyat)(G). 

A 

e 

a 

Proof. We first apply the dual of Theorem 3.1 to the group G(A)^. To 
verify that the hypotheses of this dual hold for GiA),at, we must note that 

£(A)(G(A),a/) = £(A)(<o(G) 

and 

(G(A),a^)(A)= G(A),aS 

so that, by hypothesis, either the first of these subgroups is finite and non-
trivial or the second subgroup is finite. Thus, by the dual of Theorem 3.1, the 
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set £(A)(/)(a) coincides with the set of lines which are axes of non-identity 
homologies in G(A),a^. But this last set contains E(^(a), because if l^ae 
G(A)(a) and e e E^ then e(a) is the axis of the non-identity homology eae~l 

(which is in G(A),a^ because e fixes A and at). Thus JE(A)(0(a)^£(^(a). 
Let e e E(/). By the conclusion of the above paragraph, there is an eA e E{Am 

with eA(a) = e(a). Then e~AeeE^)iaé). Thus e = eAeae for some e a ^ £ W ( ^ ) . 

REMARK 3.21. The conclusion of this theorem is false if the finiteness of 
E(A)(<0 is replaced by the finiteness of G(A)(a) or by the finiteness of E{Xw) for 
any Xlt other than X = A. See Examples 4.2 and 4.3. 

LEMMA 3.22. Let G be a collineation group of a projective plane TT and let a 
and t be distinct lines of TT. If G contains a non-identity elation with center at 
and axis a (i.e., if E(a)(a^(G)^{l}) and if E(,)(a<0(G) is finite, then E(^(G) is 
finite and |Ew(G)|^|E(0(fl /)(G)|2. 

I 

a 

Proof. Let {TJ be a set of representatives of the cosets of Ema/) in Eyy Let 
1 5* A € E(a)(af). L e t Pi = Tr1ÀTiÀ"~1. 

As pointed out by C. Hering in [4, Lemma 3.1], pt = (T^AT^A - 1 has center 
at (because it is the product of two collineations with center at) and similarly 
p^rr^ATiA"1) has axis t. Thus all pieE{£){aé). 

Now we will show that the pt are all distinct. We have p* = p, £> T^AT* = 
r^Ar, <̂> TjTj71 commutes with A. Now, if iV/, then TITJ1 e Ey)\Emaiy But the 
only elements of E^ which commute with a non-identity A e E(a)(a^ are those 
of E(,),a = Emai). Thus pt^pj if i*j. 

So finally we have: 

|E(/)I = [E(/):E(/)(o/)] |JB(/)(a/)l = KTill l^(/)(a/)l = \{pi}\ l<E(/)(a/)| ~ |*V)<a/)| • 

REMARK 3.23. It is not possible, even with stronger finiteness conditions, to 
replace the inequality in the conclusion by an equality, nor to deduce that 
E(t) = Emas) x EmX) for some Xlt in the above lemma. See Example 4.4. 

THEOREM 3.3. Let G be a collineation group of a projective plane TT and let a, 
b, and t be distinct non-current lines of TT. If G contains non-identity dations 
with axes a and b and centers at and bt, respectively (i.e., if E(a)(a^(G) 9e {1} 
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and E(b)(W)(G)?*{l}), and if E(0(a/)(G) or Eimi)(G) is finite, then E(i)(G)--
E(t)(at)(G) x E(/)(W)(G). 

Proof. We may assume that E^)(a^ is finite. Then, by Lemma 3.22, E^ is 
finite and thus so is E^^^E^y Then: 

|E(/)(aol |£(/)(b*)l = |E(/)(a/) X E(0(bol 

slBml2 

^|-E(/)(a/)| |JB(/)(W)| 

by Lemma 3.22 applied twice (with a replaced by b the second time). Thus 
equality holds: \E^\2 = \E^)(a0xJE(/)(W)|

2: But these groups are finite, so E(0 = 
E(t)(at) X Ewbfi. 

REMARK 3.31. The hypothesis that E^)ia^ or E{e){h£) is finite cannot be 
removed from this theorem. See Example 4.5. 

4. Counterexamples. In each of our examples, the projective plane will be 
PG(2, gf) for a field g which will be specified. (For details, see e.g., A. Albert 
and R. Sandler [1, p. 32-42] or H. S. M. Coxeter [3, p. 111-122].) The 

notations P(x, y, z) and Lj b | will denote the point represented by the row 

vector (x, y, z) and the line represented by the column vector j b j , respec

tively. The collineation group G will be the group of collineations induced by a 

a b 0-
c d 0 

Le / L 
matrices, G will be isomorphic to the group of matrices. So we will indulge in 
the abuse of language and notation and we will regard G as the same as a 
group of matrices. 

group of matrices of the form . Because of this special form of the 
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EXAMPLE 4.1. Let g be any field of characteristic 0, let 7r = PG(2, g). 
Throughout this example let d = ±1 and let 6 range over the even integers. Let 

rd 0 0-iï /0\ 

G = \ I 0 d 0 . This set G forms a group. Let a = H 0 J. Then G = G(a) 

6 0 l j j W 
-1 0 0 i 

0 - 1 0 

6 0 1. 

and E{ ( a ) ' 

r l 0 0 

0 1 0 

6 0 1. 

. The center of is P(6/2, 0, 1). So the 

set of centers of non-identity homologies is {P(n, 0,1) | n an integer}. Thus 
P(1,0,1) and P(2,0,1) belong to this set of centers. But P(2, 0 , l )é{P(6 + 
1,0, l)} = E ( a ) (P( l ,0 ,1) (because all 6 are even). This verifies Remark 3.13. 

EXAMPLE 4.2. Let g be any field of characteristic 0, let IT = PG(2, g). In this 
example 6 and c range over the integers and d = ±l. Let 

rl 
0 

lb 

0 
d 
c 

On | 

0 

IJ 
£> = c(mod2) 

This set G is a group. Let 

t = 

A = P(0,1,0). Then 

rl 0 

0 A 

LO 0 

On 
0 
IJ 

T(A)(a) • 

is the group of order 2 and so it is non-trivial and finite. However 

r l 0 0 i 
0 1 0 

_6 c 1. 
while 

B(i) - - 6 s c(mod 2) 

-CXA) " 

rl 
0 

Lo 

0 
1 
c 

On | 

0 
lj 

c = 0(mod2) 

and 

-GO(a<f) -

rl 
0 

lb 

0 
1 
0 

On | 

0 
IJ 

6 = 0 (mod2)L 

Thus Ew ^ J5(0(A>x £(0(ao- This verifies the first part of the Remark 3.21. 
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EXAMPLE 4.3. Let % be a field and let r be transcendental over %. Let 
$ =^f(r), 77 = PG(2, g). In this example all dh d, b range over %, all i, j range 
over the integers and all summations are over the integers. Let 

(r 1 0 Oil 
G = \\ 0 T1 0 

*T + Zdi Z V 1 
LL / y J 

with almost all dj = 0. This set G of collineations forms a group. Let 

A = P(0,1,0), 

Then 

Also 

7(A)(a) " 

r l 

0 

Lo 

0 

T ' 

0 

O-i 

0 

l j 

a = . 

•*{i}. 

E(A)V) - < 

V I 0 O-i 

0 1 0 

0 X d,V 1 
r 

with almost all dt = 0, and £, d, = 0, 

r r 1 ° °"n B ( a W ) = ] 0 1 0 L 
llbr 0 lJJ 

and 

with almost all dt•, = 0. Clearly 
An element 

r 1 0 1 

0 1 1 

.L i i 
the conclusions of T 

r 1 0 On 

Z> 

0 1 0 

]d, Zd;r' 1 

3 l l 
D I 
1 

îeorem 3.2 are false. 

of E«) has center P(br + Y,j dj, Zj d7r
J, 0). So two of these elements with centers 

other than A = P(0 ,1 , 0) have the same centers if and only if the (3,1) and 
(3, 2) entries of one are the same 3if-multiple of the (3, 1) and (3, 2) entries of 
the other. Thus for XU, X^ A, either |J5<xx/)| = pï| or |E<x)(ol= 1 (according as 
X can or cannot be expressed as X = P ( 6 T + £J,dh £j djT', 0) for some b, d;e9if 
with almost all dj = 0). Now let3ÎT be finite; then E(xm is finite for XII, X^ A. 
This verifies the second part of Remark 3.21. 
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EXAMPLE 4.4. Let 2, % g be distinct finite fields with fic^fcg. Let 
3if= 2 © 93 (as a vector space over 2) and let $ = 3C® 2) (as a vector space over 
9if). Let TT = PG(2, g). Let df0e®, d 0 ^0 . In this example let d range over 2>, 
let fc range over 93 and let n and m range over 2. Let 

G = < 

r 1 0 0 
rcdo 1 0 

Ld + fc fc + m l j 

This set G forms a group. Let 
/0\ 
0 ] and let a = ll 1 

Then 

Also 

and 

-(a)(a^) -

r 1 0 0-
nd0 1 0 
0 0 1. 

• * { 1 } . 

- (0(a / ) • 

r l 
0 

Id 

0 O-i 

1 0 
0 1J 

E(f) - • 

r 1 0 0-
0 1 0 

d + b b + tn 1. 

Thus |£OT(«/)| = | S | and |EOT| = | S | | » | | 2 | = |S||3St|. Hence, if degg/3T>2, it 
follows that. 

Finally, if Xlt and X¥=- at, then X = P(x, 1, 0) for some x 6 g\ Let x = fct + d, 
for k,e^T, d,e2). Then 

:(XKfl • 

1 0 0-
0 1 0 

U(di + D è 1. 

{1} 

if fc, = l. 

if fci#l and 1^(1-ki)'1 fÉW 

0-1 0 
0 1 0 

lm( l -k 1 ) - 1 (d i + fc1) m ( l - k ! r l 1_ 

if fc, # 1 and k^l-fcO^elB 

Thus |£(xW)| = |93|, 1 or |8|, and so \E(XW)\<\%\. It follows that 
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|JB(X)(o x E(a€)(€)\ < \%\ |®| = \Eif)(G)\ ; hence -Ecxxo x E<ao</) 5e E w . This verifies 
-Remark 3.23. 

EXAMPLE 4.5. Let 9if be a field and let r be a transcendental over 3C. Let 
g=3if(r) and let 7r = PG(2,g) . In what follows let a(r), fc(r),... , / ( r ) range 
over 3ST[T], the ring of polynomials in r with coefficients in 3Sf. Let 

r r a ( r ) fc(r) 0-

G = i c(r) d(r) 0 
IL(T) /(T) 1J. 

with all matrices in G having determinant 1, with a(0) + c(0) = fc(0) + d(0), and 
with e(0) = /(0). This set G of collineations forms a group. Let 

A /Ox 

Then 

Eo 

and 

Also 

o^)(o) - • 

<brxb) • 

E«) ~ ' 

' (oW) " 

r l HT) 0-| 
0 1 0 
0 0 1. 

1 
C(T) 

. 0 

1 
0 

0 0-
1 0 
0 1. 

0 
1 

o-
0 

U T ) / ( T ) 1. 

fc(o) = oU{i}, 

c(0) = 0 #{1}. 

e(0) = /(0) 

1 0 On 

0 1 0 

.0 / ( T ) 1. 

/(0) = 0 

and 

Clearly £ O T ^E ( o f l (oXE( W / ) . This verifies Remark 3.31. 

1 0 On 

0 1 0 

L«(T) 0 l j 
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