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Necessity of a Competing Risk Approach in
Risk Factor Analysis of Central Line—
Associated Bloodstream Infection

To the Editor—With great interest we read the article by
Carter et al' investigating risk factors for central line—
associated bloodstream infections (CLABSI). For estimating
the proportion without CLABSI depending on time, Kaplan-
Meier (KM) curves were calculated to account for the at-risk
time from insertion until the occurrence of CLABSI or
removal of the catheter (which is treated as censoring in the
model). If a bloodstream infection occurs during the use of a
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central venous catheter it is considered to be catheter
associated and it is rather unlikely to develop a CLABSI
48 hours after removal of the catheter.”> However, KM models
assume that the hazard of CLABSI remains unchanged when a
censoring event occurs. This censoring assumption is clearly
not fulfilled in the case of removal of the catheter since
removal leads to a reduction of risk. Hence, removal of the
catheter without CLABSI should be considered as a competing
event for CLABSI.”

Using standard KM models in the presence of competing
events leads to overestimation of the cumulative risk.” This can
be seen in figure 3 of Carter et al.' The KM curve lies at
approximately 80% without CLABSI, which corresponds to a
risk of CLABSI of approximately 20%. But considering the
actual number of patients with CLABSI this leads to a risk of
CLABSI =25 = 6.8%.

To illustrate the bias in this setting, we analyzed simulated
data of a simplified competing event setting based on values
from the article of Carter et al' (code is available upon
request). We consider 2 constant competing event hazards, A,
for CLABSI and A, for removal without CLABSI. Hence, the
cumulative incidence function (CIF) of CLABSI and the CIF of
removal without CLABSI are given by this formula*:

CIF, () = alilzz < (1= exp(—(h+4)x 1)) (1)
CIF,(t) = /111222 x (1—exp(—(4 +42) x 1)) (2)

With A; being the hazard for event i, i = 1; 2. Formulas 1 and
2 illustrate that the CIFs of the respective events depend on
both the hazard for the event of interest and the hazard for the
competing event. The right terms of formulas 1 and 2 repre-
sent the probabilities that any event occurs at time t. The left
terms m ,(1=1;2) display the probabilities that the
occurring event at time t 1s event 1.

As seen in the formulas above, there is a direct connection
between the overall risk of CLABSI and the rates of both
events”: CIF,(t) approximates the overall CLABSI risk (ili—lﬂz)
for large time points, which is estimated by
ig;ﬁﬂ = 25 = 6.8%. Analogously, the overall probability of
removal without CLABSI is 2648385 — 93 2%

The constant hazard rate A, is estimated by #linﬁfjgrlsairisk‘
Note that line-days at risk are line-days the patients are actually
at risk—that is, line-days from insertion until removal without
infection or until CLABSI. If Dj is the individual line-days

contribution of patient i, A; can also be written as

_ #CLABSI __ #CLABSI __ #CLABSI 1
— N - N - S
Y-y D Nx ﬁZ{i:l} D; N D

(3)

1

with N being the number of patients and D being the mean
line-days at risk. Similarly, the hazard for removal without
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Cumulative incidence function of CLABSI and removal w/out
CLABSI (correct and incorrect approach)
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FIGURE 1.

Cumulative incidence functions to study the bias caused by not accounting for the competing event (removal of central venous

catheter [CVC] without central line—associated bloodstream infection [CLABSI]). Comparison of cumulative incidence functions (correct
approach) with 1 minus the Kaplan-Meier curve (incorrect approach) for both events, CLABSI and removal without CLABSI.

CLABSI can be calculated by

#removalw/o CLABSI 1
= X

A N

(4)

ol

Motivated by the data of Carter et al' we simulated data. The
number of events (#CLABSI=385) and number of patients
(N=5648) are given. For the formulas of the hazard
rates 3 and 4 the mean line-days at risk is required. Since there
is no information on the line-days of the first central
venous catheter given in Carter et al' we considered

D = 50. This value lies somewhere in between the mean
line-days considering either in-hospital line-days or total line-

days as given by Carter et al: (W ~ 20and

otalline —days . 100). In Figure 1 we compare CIFs for the

ZCvVe
2 events and 1 minus the KM curve in order to demonstrate

the overestimation of the risk of developing an infection by

using standard KM models mentioned above.

In Figure 1 the CIFs (correct approach) for each event,
CLABSI and removal without CLABSI, are plotted. In addi-
tion, 1 minus the KM curve for both events (incorrect
approach, 1— KM) is shown. At every time point the
probabilities of CLABSI, removal without CLABSI, and
remaining under risk should add up to 100%. Considering
the curves of the KM approach at day 220 (dashed line) the
probabilities of CLABSI (x20%) and of removal without
CLABSI (290%) already add up to more than 100% (~110%).
The incorrect approach ignoring the presence of competing
events leads to an overestimation of the occurrence of the
event of interest. Using the correct approach the CIF for
CLABSI reaches 6.8%, which equals the actual risk of CLABSI
as seen above.

In a further analysis Carter et al' used a Cox proportional
hazards model in order to investigate the association between
several covariates and CLABSI. This is a suitable approach but
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it is incomplete if it is performed only for the event of interest.
Risk factors can be indirectly associated with the event of
interest if they are associated with the competing event.
Therefore, a Cox proportional hazards model for the com-
peting events should be performed in addition in order to
understand direct and indirect effects (cf. Wolkewitz et al’).
Furthermore, investigation of the cumulative risk is necessary.
This can be performed by the subdistribution hazard approach
via a Fine and Gray model.®

We hope this letter provides a constructive contribution to
future risk factor analyses in this kind of setting.
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The Impact of Carbapenem-Resistant
Enterobacteriaceae Type on Clinical Outcomes
After the Recovery of This Organism From
Urine of Critically Ill Patients

To the Editor—Carbapenem-resistant Enterobacteriaceae (CRE)
are a leading cause of nosocomial infections. In the CRE
group, the Klebsiella pneumoniae carbapenemase (KPC)
producers stand out among the others and have been
associated with serious infections and high mortality rates,
mainly in intensive care units.! Apart from that, antimicrobial
resistance among these isolates has increased worldwide,
therefore limiting the therapeutic alternatives against KPC.>

Early detection of colonized or infected patients is crucial
for the rapid management of patients and to establish infection
control practices in order to avoid further dissemination and
to curb the rise of antimicrobial resistance.®

We conducted a prospective survey from July 1, 2013,
through November 30, 2015, to assess the impact of CRE type
involved on the clinical outcomes and the emergence of
antimicrobial resistance among CRE urinary or bloodstream
isolates in a cohort of critically ill patients from an adult
intensive care unit of a tertiary hospital in Porto Alegre,
Southern Brazil.

TABLE 1.

OUTCOMES AFTER CRE BACTERIURIA 1257

Patients were included at the time of their first urine culture
in which CRE were recovered. Isolates with reduced suscept-
ibility to carbapenems (meropenem, imipenem, and/or
ertapenem) were identified by MicroScan Walkaway
automated system (Beckman Coulter) and confirmed by Etest
(AB Biodisk). The presence of carbapenemase was detected by
phenotypic testing and by gene detection using a polymerase
chain reaction procedure, as previously described.’

The primary outcomes (or clinical outcomes) were deter-
mined by result of a subsequent urine culture (negative or
recurrent/subsequent bacteriuria) and/or blood culture with
the same CRE within 90 days and mortality at 30 days.
Development of antimicrobial resistance (which was the
microbiologic outcome in this study) was evaluated comparing
results from the first CRE isolate with those obtained in a
subsequent sample (urine or blood) for amikacin, gentamicin,
polymyxin B, tigecycline, and fosfomycin.

During the study period, a total of 109 patients were inclu-
ded. In 85 patients, KPC-2-producers (mostly Klebsiella
pneumoniae [Kp]) were recovered whereas, in the remaining
24, a culture with carbapenemase nonproducers was obtained.
Of the 85 patients with KPC-2-Kp bacteriuria, 19 died during
the 30-day period, 27 had a negative urine culture or were
discharged, 14 had bacteriuria with a microorganism other
than KPC-2-producers, and 25 had a recurrent KPC-2-Kp
bacteriuria. Moreover, 15 patients, including 5 patients who
also had a recurrent urinary isolate, had an episode of
bacteremia due to KPC-2-Kp and the 30-day mortality for
these patients was 47% (Table 1). Regarding carbapenemase
nonproducers, no patients were bacteremic, and only 4 of
them had recurrent bacteriuria.

In 35 patients, a KPC-2-Kp isolate was recovered in a
subsequent bacteriuria/bacteremia case and a minor increase
in resistance was observed for polymyxin B (34% vs 43%),
gentamicin (57% vs 69%), amikacin and tigecycline (14% vs
26%). For fosfomycin, used more often nowadays as therapy
to treat urinary tract infections due to KPC producers, a sig-
nificant increase in resistance was detected (11% vs 34%; OR,
4.04 [95% CI, 1.1-14.2], P=0.03), driven by prior fosfomycin
use, as previously described.* On the other hand, no increase
of antimicrobial resistance was observed among isolates of
carbapenemase nonproducers.

In this study, the urine specimen was used as a starting point
for surveillance for KPC-2-Kp isolated during hospitalization
because KPC-2-Kp was found most commonly in urine

Microbiologic Characteristics and Clinical Outcomes After CRE Bacteriuria

Urinary outcome

Bacteremia 30-Day mortality

CRE bacteriuria (n/total n, %) Carbapenemase (n/total n, %) (n/total n, %) (n/total n, %)
Klebsiella pneumoniae (82/109, 75%) KPC-2 Recurrence (25/82, 30%) Yes (15/82, 18%) Yes (7/15, 47%)
Enterobacter cloacae (18/109, 17%) None NSC (13/18, 72%) No NA

K. pneumoniae (6/109, 6%) None NSC (4/6, 67%) No NA

Escherichia coli (3/109, 3%) KPC-2 NSC (3/3, 100%) No NA

NoTE. CRE, carbapenem-resistant Enterobacteriaceae; NA, not applied; NSC, negative subsequent culture.
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