Proceedings of the Edinburgh Mathematical Society (1992) 35, 89-100 ©

ON THE MODULI OF CONTINUITY OF H? FUNCTIONS
WITH 0<p<!1

by MIROSLAV PAVLOVIC
(Received 26th February 1990)

We prove two inequalities which relate the IX modulus of continuity of n-th order, w,(f,),, of an H” function
J with the p-th mean values of the n-th derivative f. Using these inequalities we extend classical results of
Hardy and Littlewood [5], Gwiliam [4], Zygmund [13] and Taibleson [12] as well as a recent result of
Oswald [6].
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1. Introduction

In this paper we consider connections between the [* modulus of continuity of an H?
function and the p-th mean value of the corresponding derivative. We shall mainly be
concerned with the case where 0 <p< 1. As a consequence of our main results we have
the following two inequalities, valid for fe H?, 0<p<1 (for the case p=1 see [8]):

M (D" f,r)SC(1—r)""w,(f,1-71),, O<r<l, (1.1)

w,(f,)2<C } (1—r)"~ ' ME(D"f,r)dr, O<t<l, (1.2)

t

where

(D"f)(re) =%(re"’) (n=1.2,...).

(Here C denotes a positive real constant depending only on p and n.)

In the case n=1 the inequality (1.1) was provied by Storozenko [11].

In Section 2 we state the main results and apply them to deduce a generalization of a
result of Gwiliam [4]. The proofs are in Sections 3 and 4. Section 5 contains a simple
proof of a result, due to Taibleson [12] and Oswald [6], from the theory of Lipschitz
spaces.

Notation. Throughout the paper n denotes a fixed positive integer and p a positive
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real number. For a complex-valued function h, defined on the real line, let Afh denote
the n-th difference with step 1:

(A/ h)(0)=A; h(6)=h(6+1) - h(0),
Ah=A'AT"'h (n22).
If g is a function defined on the unit circle T, then A}g is defined by
Alg(e”®)=ATh(B), h(6)=g(e”).

For a fixed ¢, A} is a linear operator which preserves the classical spaces such as L?,
0 <p<oo. The I’ modulus of continuity of order n is defined by

w,(g,1),=sup{||A%||,: Is|<t}, t>0, ge L(T),

where ||-||, stands for the “norm” in L?(T):

1 2z i0 pde e
el = {55 Tlsepan "

The p-th mean values of a continuous function f, defined in the unit disc A, are
defined by

Mp(f,r)=”f,||p, O<r<li,
where
fiw)=f(rw), weT.
The Hardy space H” consists of all f analytic in A for which
|| £1l,:=sup{M(f,r):0<r<1}<co.
It is well-known that each fe H” has the radial limits almost everywhere on T and
that the L? norm of the boundary function equals the H? norm of f. This fact enables

us to treat H” as a subspace of L?(T). See [1].

2. Main results

Theorem 2.1. Let feH?, O<p<oo, 0<gq<oo and let Y be a non-negative function
such that Yy e L'(0,1) and

Y(2x)<Ky(x), O0<x<l1/2, Q.1)
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where K is a positive constant.” Then
1 1
[MYD (1= dr<CLe"[|A7f ]|, 1°¥(2) dr, (2.2)
(1] o
where C depends only on p,q,n and K.
Corollary 1. Ifa> —1, then

[ ME(D"f,p)(1—prdp<C | [e-|An],Jormde 23)
r o]

(0<r<1), where C is independent of r and f.
Proof. For a fixed r,0<r <1, we consider the function

x*, O0<x<l—r,
0, l1-r<x<l.

ww={

Then ¢ satisfies (2.1) with K=2% and K is independent of r. Now (2.3) follows from
(2.2).

Corollary 2. If a> —1, then
1-r 1/q
M,,(D"f,r)éC{(l—r)“’" § [t‘"||A;'f||p]"t“dt} , (2.4
0

where C is independent of r and f.

Proof. By the increasing property of M, (D"f, p),
1 1
MI(D"f,r) [(1—p)*dp < [ M4(D"f, p)(1 —p)*dp,

which, together with (2.3), gives (2.4).

As a special case we have

1-r
M, (D"f,nSC(1—r)~""? g \\Ay 11|, de,
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which implies (1.1).
Our second result is the following.

Theorem 2.2. If f is analytic in A,0<p<1 and

j'(l—r)"""Mg(D"f,r)dr<oo, (2.9)

V]
then f belongs to HP and satisfies (1.2).

Remark. That the condition (2.5) (which is independent of n) implies that e H? was
proved by Flett [2]. For more information see [3].
As an application of our main results we have an extension of Theorem 3 of [8].

Theorem 2.3. Let y be a positive non-decreasing function on the interval [1, 00) such
that for some B<n the function y(x)/x*?, x 21, is decreasing. If 0<p<1 and f is analytic
in A, then the following are equivalent:

(a) f is in H? and w,(f,1),=0(t"Y(1/1)), t->0;
(b) M, (D"f,r)=0(y(1/(1=r))), r—1".

Proof. The implication (a)=-(b) is a direct consequence of the inequality (1.1) and is
independent of the hypothesis on .
Assuming (b) we have

1 ]
| Q=rye=* ME(D"f,r)dr< | x "~ '(x)Pdx, 0<tZ1.

1-1 1/t

Using the inequality y(x)x~?<y(1/t)(1/t)"%, x>1/t, we see that the last integral is
dominated by

(/0P | X2~ dx= 72 (1) (n— P)p.

1/t

Now the assertion (a) follows from Theorem 2.2.

By taking ¢(x)=x""% where 0 <a<n, we get the following result of Gwiliam [4] and
Oswald [6]. (In fact, Gwiliam considered the case n=1, and Oswald considered the case
a<n)

Corollary. Let 0<p<1 and O0<a=n. An analytic function f is in H? with w,(f,t),=
0(¢*) if and only if M ,(D"f,r)=0((1—r)*"").

Remarks. 1. It is easily seen that Theorem 2.3 remains true if we replace “0” by “o0”.
2. It is well known that the corollary holds for p=1. If n=1, this is the famous
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theorem of Hardy and Littlewood [S]. And if n=2 and a=1, this result is due to

Zygmund [13] and is the first result concerning the moduli of continuity of higher
orders.

3. Proof of Theorem 2.1

Throughout this and the following section we shall use the notation
f(8)=f(re?).
Lemma 3.1. Let f be analytic in A, 0<p<o0,0<r<p<]1, A>0 and
F(8)=sup{|f,(6+))|: 0Sy<i(p—r)}, 0Z6=2n.
Then
IFll, = CM, (£, p),

where C depends only on i and p.

Proof. By the subharmonicity of |f|?,

1 2n 2___r2
0+l sz S0P s (3.1)

If0<y<Ai(p—r), then

|peil_rei6|§|peit___rei(0+y)|+|rei(0+y)_rei0 ]

Since
et — e =rle” -1
Srysi(p—r)
<Alpen—rei® ),
we get

Ipeix_reiol < +}.)|pei'—re“9+”|.

From this and (3.1) it follows that
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, 17 p?—r?
P<(14+4)* — WP ——— dt.
F(g) —( + ) e .([ |fp( )l |peu__re10|2
Now integration yields the desired inequality with C=(1+ 1)

Proof of Theorem 2.1. Without loss of generality we can assume that f is analytic in
|z| <R, for some R> 1. For a fixed r, 0<r<1, let h(6) = f,(6). By induction,

(A™h)(0) = | K™(0+x, +++x,) dx, ...dx,, (3.2)
tE

where tE is the n-dimensional cube [0,¢]". Hence
(D™ f)(re’®)t" =h"™(6)t"

=(ATh)(8) — | (K™(0+x, ++ -+ X,) —H™(0)) dx, ... dx,.
tE

This implies that

(D" f)(re®)e" < |A7£,(B)|+ | sup D" f(re'®™M)|(x, +- - +x,)dx, ... dx,

tE O<y<nt

=|ATf,(0)|+(n/2) sup |D"*!f(re'®*)|em*1.

O<y<n
Hence, by Lemma 3.1,
M2(D"f, )" < ||A; £, |5+ Ce* VP ME(D™ ! f, (3r + 1)/4)

provided that 0<¢<1—r. Combining this with the familiar inequalities ||A7f,||,<||A?f]|,
and

M, (D" f,3r+ 1)/ SC(1—r)" ' M (D"f,(1+71)/2)
(see [1]), we obtain
ME(D"f,r) St || A f ||+ CeP(1—r)"P ME(D"f,(1+7)/2) (3.3)

where O<t<1—r.
Let 0 <g< oo and

A() =MD f,Ny(1—r), O<r<l.

It follows from (3.3) and (2.1) that
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AN SC e ™) Arf|[Sg (1 —r) + C, Ke3(1 —r) T2 A((1 +1)/2)

for 0<t<1—r. Let m be the smallest integer such that 2™C,K<1/4 and take
t=a(l—r), a=2"". Then we have

AN =C3(1=n""¢(a(l =)y (1 —r)+(1/4) A((1+1)/2),

where ¢(1)=||A7f||%. Hence, by integration,

gA(r) dr<C, 3; t™™M@(a)y(r)dt +(1/2) jl' A(r)dr,

1/2

and hence

(1/2)_I[A(r)drgjl'A(r)dr—(l/Z) } A(r) dr
W] (4]

1/2

écsit_"%(at)'//(t) dt
V]
=Cya" ! } tTM ()Y (2™ dt
0

<Cya™ K™ } £t~ () (t) de.
(4]

This concludes the proof of Theorem 2.1.

Remark. The last step in the proof is correct because the function A(r) is integrable

over (0,1): the function MZ(D"f,r) is bounded near 1 (because f(z) is analytic in

|z|] <R, R>1) and the function (1 —r) is integrable.

4. Proof of Theorem 2.2
If f satisfies (2.5), then f e H?, by Flett’s result. In order to prove (1.2) we can assume
that f is analytic in |z| <R, for some R> 1. Then (1.2) is equivalent to

llarfi)le<C j_ (1—s)"~ ' M2(D"f,s)ds. 4.1)

https://doi.org/10.1017/50013091500005344 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500005344

96 M. PAVLOVIC

In proving this we can also assume that 0<t<1/4. Then let r=1-2¢, ie. t=(1—r)/2.
It follows from (3.2) and Lemma 3.1 that

|45 £, |[5= CePME(D" £, (1 +1)/2),

which is dominated by the right hand side of (4.1) because of the increasing property of
the p-th mean values. Since

lArfillz< l|Ar s+ AT — £l

it remains to estimate ||A7(f, — f,)||%-
Using the identity

n

. = 1\t !
l—pi=p g ljc—(log > (il)!j

1 n—1 .
(log—) s lds
s

one shows that

11010 =0+ S 1 (108 o
where
1 1! .
HO)=i"" ! 5 (log ;) D"f (se®) ds,
he(0) =i~ D*f (re®).
We have
A7l < 2*]AF Al
SCt" P ME(D T D [, (1 +1)/2)= Ct(""")”M;,’(D"f, 1—1).

Hence

a7 = rallz= ¢ llATHlE + €. Z (1=nllArhll;

<C,27||H|]5+ Cr» ME(D"f, 1 —1).

Finally, we have to prove that ||H||% is dominated by the right hand side of (4.1). We
have
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|H(0)|§Ci(l —35)" " 1g(s,6)ds,

where
g(s,0) =sup{|D"f(pe’®)|:0< p <s}.

Since g(s, 0) increases with s,
1
|[H@®)|P<C[(1—9)"g(s,0)" ds.

(See Lemma 4.1 below.) Integrating this inequality from 0 to 2n and using the
Hardy-Littlewood complex maximal theorem, we get

1
|H|z<Cf(1—sy°~ ME(D"f, s)ds

SCJ(1=5)""'M2(D"f, (1 +5)/2)ds

N t—

1
=C2" | (1—95)""'M2(D"f,s)ds,

1-t

and this completes the proof.

Lemma 4.1. If ¢ is an increasing non-negative function on [0,1) and 0<p <1, then
1 p 1
<j(1 —5)"" 1 p(s) ds) SCi(1—s)" " 'o(s)Pds, 0=r<l,

where C=(np)' ~°.

Proof. Let

1
f(1=s)"" ' p(s)Pds=1
for a fixed r. Since ¢ is increasing we have

P [(1-9Pdss1(r<p<1),
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whence

@(p)=(np)''P(1—p)~"

Thus

fA—sy=to(s)ds=[(1—s)""" @(s)p(s)' "7 ds

1
<(np)“ _p)/p_‘-(l —s)"! @(s)P(1 —s)~"1~P gs

— (np)“ —plip,

This proves the lemma.

5. Further applications to Lipschitz spaces

Let ¢ be a positive increasing function on (0,1]. We define Lip,(¢, p,q) (0<p,q < o0)
to be the class of functions f € L?(T) for which the function F(r)=||Arf],/¢(2), 0<t<1,
belongs to the Lebesgue space Li(dt/t). If ¢(t)=1* (0 <a<n), then these spaces, denoted
by Lip,(a, p, g), coincide with the classical Lipschitz spaces as defined by Taibleson [12].
Taibleson generalized the theorems of Hardy and Littlewood and of Zygmund to the
case of Lip,(a, p,q) with p=1 by showing that the function F(t) in the above definition
can be replaced by t""*M (D"P[f], 1—t), where P[] is the Poisson integral of f. In
[6], Oswald extended Taibleson’s result to H? n Lip,{(a, p,q) with p<1. In this section
we apply Theorems 2.1 and 2.2 to prove a generalized version of Oswald’s result.

Let HA,(¢,p,q) denote the space of functions f analytic in the unit disc for which the
function

r—=(1—r)"M_(D"f,r)/¢(1—-r), O<r<l,

belongs L%(dr/(1—r)). These spaces are generalizations of the spaces HA(a,p,q) intro-
duced by Flett [3]. It follows from Theorem 2.1 that if

g (t"/(1))* dt/t < o0, (5.1)

then H? i Llpn(¢) D; Q) < HAn (¢a D q)

Theorem 5.1. The inclusion HA,(¢,p,q) < H? n Lip,(¢,p,q) holds if the function ¢
satisfies the following condition:
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(L) There exists a constant «>0 such that ¢(£)/t* is increasing for 0<t<1.

Corollary. If ¢ satisfies (5.1) and (L), then HA, (¢, p,q)=H" n Lip,(¢,p, q).

Proof. Let feHA,(¢,p,q) (0<p<1), where ¢ satisfies (L). Since then ¢(t) < d(1)t?,
we have HA,(¢,p,q)c HA(a,p,q) = H? (see [3] for various relations between H” and
HA(a,p,q)). Thus fe H?, and we have to prove that feLip,(¢,p, q).

Let g<p. It follows from 1.2 and an obvious modification of Lemma 4.1 that

o, f,1);=C ; (1=ry"~ ! o(r)*dr,

where @(r)=M (D" f,r). Muitiplying both sides of this inequality by ¢(t)" ™", then
integrating the resulting inequality and using Fubini’s theorem, we obtain

1 1 1
§ [0a(f,1),/¢(17dt/t SCJ(1—n)""" p(r)?dr | ¢p()™9t ™ de.
0 0 1-r
Now the result follows from the inequality
1 .
fo) 1t 'dt<Coh(x)79 O<x<l,

which is a consequence of the condition (L).
Assuming that ¢ >p we have, by Jensen’s inequality,

1
{apt'“" ]
l—

/ 1
(1=r) @2 (r)P(1 — )P~ ! dr}q pgapt"“” [ (1=r)r="4 @)1 —r)*P~ dr.
1—

t t

From this and (1.2) it follows that

1
0 (fLORSCE | (1=r) 7"  p(r)?dr,
l_

t

where ¢@(r)=M (D"f,r) and e=a(q— p). Hence

1

JLo.(f,0),/0(0)0dt/t SCJ(A=n"""  p(r)?dr | 7! ¢(t) ?at.
0 1-r

0

Using the inequality */¢(t) <(1—r)*/¢(1 —r), 1 —r £t, one shows that the inner integral
is dominated by (1 —r)*/¢(1 —r)%, which completes the proof.

https://doi.org/10.1017/50013091500005344 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500005344

100 M. PAVLOVIC

REFERENCES

1. P. L. Duren, Theory of H? spaces (Academic Press, New York, 1970).
2. T. M. Fierr, Mean values of power series, Pacific J. Math. 25 (1968), 463—494.

3. T. M. Frerr, Lipschitz spaces of functions on the circle and the disc, J. Math. Anal. Appl. 39
(1972), 125-168.

4. A. E. GwiLiaM, On Lipschitz conditions, Proc. London Math. Soc. 40 (1935), 353-364.

S. G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals, I, Math. Z. 34
(1931), 403-439.

6. P. OswaLp, On Besov-Hardy-Sobolev spaces of analytic functions in the unit disc,
Czechslovak Math. J. 33 (108) (1983), 408-427.

7. M. PavLovi¢, Mixed norm spaces of analytic and harmonic function, I, II, Publ. Inst. Math.
(Belgrade), 40 (54) (1986) 117-141; 41(55) (1987), 97-110.

8. M. Paviovic, Lipschitz spaces and spaces of harmonic functions in the unit disc, Michigan
Math. J. 35 (1988), 301-311.

9. A. L. SuieLps and D. L. WiLLiams, Bounded projections, duality and multipliers in spaces of
harmonic functions, J. Reine Angew. Math. 299/300 (1978), 265-279.

10. A. L. SsieLps and D. L. WiLLiams, Bounded projections and the mean growth of harmonic
conjugates in the unit disc, Michigan Math. J. 29 (1982), 3-25.

11. E. A. Storozenko, On a problem of Hardy and Littlewood, Mat. Sbornik 119 (161) (1982),
564-583 (Russian).

12. M. H. TaiBLeEsoN, On the theory of Lipschitz spaces of distributions on Euclidean n-space I,
I1, J. Math. Mech. 13 (1964), 407-479; 14 (1965), 821-839.

13. A. Zyomunp, Smooth functions, Duke Math. J. 12 (1945), 47-76.

MATEMATICKI FAKULTET
StupenTskt TrG 16
11000 BeoGraD

Y uUGOSLAVIA

https://doi.org/10.1017/50013091500005344 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500005344

