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ON THE MODULI OF CONTINUITY OF HP FUNCTIONS
WITH 0<p<l

by MIROSLAV PAVLOVIC

(Received 26th February 1990)

We prove two inequalities which relate the If modulus of continuity of n-th order, ain(f,)p, of an H" function
/ with the p-th mean values of the n-th derivative / '" ' . Using these inequalities we extend classical results of
Hardy and Littlewood [5], Gwiliam [4], Zygmund [13] and Taibleson [12] as well as a recent result of
Oswald [6].
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1. Introduction

In this paper we consider connections between the LP modulus of continuity of an Hp

function and the p-th mean value of the corresponding derivative. We shall mainly be
concerned with the case where 0 < p < l . As a consequence of our main results we have
the following two inequalities, valid for feHp, 0 < p < 1 (for the case p ^ 1 see [8]):

Mp(D"f,r)^C(l-r)-"(on(f,l-r)p, 0<r<l, (1.1)

con(f,typ^C j (\-r)">-lM>(iyf,r)drt 0<t<\, (1.2)
I - i

where

(Here C denotes a positive real constant depending only on p and n.)
In the case n = \ the inequality (1.1) was provied by Storozenko [11].
In Section 2 we state the main results and apply them to deduce a generalization of a

result of Gwiliam [4]. The proofs are in Sections 3 and 4. Section 5 contains a simple
proof of a result, due to Taibleson [12] and Oswald [6], from the theory of Lipschitz
spaces.

Notation. Throughout the paper n denotes a fixed positive integer and p a positive
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real number. For a complex-valued function h, defined on the real line, let A"h denote
the n-th difference with step t:

If g is a function defined on the unit circle T, then A"g is defined by

), KQ)=g{eie).

For a fixed t, A" is a linear operator which preserves the classical spaces such as U,
0<p< oo. The If modulus of continuity of order n is defined by

con(g,t)p = sup {\\A"sg\\p: \s\£t}, t>O,geLp(T),

where || • ||p stands for the "norm" in LP(T):

I I / P

The p-th mean values of a continuous function / , defined in the unit disc A, are
defined by

where

/ » = /M, weT.

The Hardy space Hp consists of all / analytic in A for which

||/||p: = sup{Mp(/,r):0<r<l}<co.

It is well-known that each feHp has the radial limits almost everywhere on T and
that the If norm of the boundary function equals the Hp norm of / . This fact enables
us to treat H" as a subspace of L"(T). See [1].

2. Main results

Theorem 2.1. Let feH", 0<p<co, 0<q<co and let \p be a non-negative function
such that \JIBL1{0), 1) and

, 0<x<l/2, (2.1)
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where K is a positive constant.'Then

(2.2)
o o

where C depends only on p, q, n and K.

Corollary 1. 7/a> - 1 , then

JMp(D"f,p)(\—pY dp^C J [t~"||A"/||p]''tarft (2.3)
r 0

(0<r< 1), where C is independent of r and f.

Proof. For a fixed r,0<r< 1, we consider the function

c", 0<x<l—r,
), l - r < x < l .

Then \p satisfies (2.1) with K = 2", and K is independent of r. Now (2.3) follows from
(2.2).

Corollary 2. If a> — 1, then

Mp(D"f,r)^C<(l—r)~ll~1 J [t""||A"/||p]''t'*dt> , (2.4)
I o J

where C is independent of r and f.

Proof. By the increasing property of Mp{D"f, p),

Ml(D"f, r) J (1 - pf dp g J Mp(D"/, p)( 1 - pY dp,
r r

which, together with (2.3), gives (2.4).

As a special case we have
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which implies (1.1).
Our second result is the following.

Theorem 2.2. / / / is analytic in A, 0 < p < 1 and

(2.5)

then f belongs to H" and satisfies (1.2).

Remark. That the condition (2.5) (which is independent of n) implies that fsHp was
proved by Flett [2]. For more information see [3].

As an application of our main results we have an extension of Theorem 3 of [8].

Theorem 2.3. Let \j/ be a positive non-decreasing function on the interval [1, oo) such
that for some fl<n the function \p(x)/x^, x ^ l , is decreasing. If 0<p< 1 and f is analytic
in A, then the following are equivalent:

(a) / is in H" and «n(/,t)p=O(l>(l/t)), t->0;
(b) Mp(D7>)

Proof. The implication (a)=>(b) is a direct consequence of the inequality (1.1) and is
independent of the hypothesis on \j/.

Assuming (b) we have

1

J (l-r)""-1
l/r

Using the inequality
dominated by

il/(l/t)ptPp J

x>l/t, we see that the last integral is

= tnpil/(l/t)p/(n-P)p.

Now the assertion (a) follows from Theorem 2.2.
By taking i/>(x) = x"~°[, where 0<<x^n, we get the following result of Gwiliam [4] and

Oswald [6]. (In fact, Gwiliam considered the case n= 1, and Oswald considered the case

Corollary. Let 0<p<l and 0<a^n. An analytic function f is in HP with con(f,t)p =
0(t'z) if and only if Mp(D

nf, r) = 0(( 1 -r)""").

Remarks. 1. It is easily seen that Theorem 2.3 remains true if we replace "0" by "o".
2. It is well known that the corollary holds for p ^ l . If n = \, this is the famous
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theorem of Hardy and Littlewood [5]. And if n = 2 and <x = l, this result is due to
Zygmund [13] and is the first result concerning the moduli of continuity of higher
orders.

3. Proof of Theorem 2.1

Throughout this and the following section we shall use the notation

fr(d)=Hreie).

Lemma 3.1. Let f be analytic in A, 0 < p < oo, 0 < r < p < 1,1 > 0 and

Then

\\F\\,£CMp(f,p),

where C depends only on X and p.

Proof. By the subharmonicity of |/|p,

^y^k(p-r), then

Since

we get

\pe1' - reie\ ^ ( 1 + X) \pe" - reiie+f)\.

From this and (3.1) it follows that
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Now integration yields the desired inequality with C=(l +A)2/p.

Proof of Theorem 2.1. Without loss of generality we can assume that / is analytic in
\z\<R, for some R> 1. For a fixed r, 0<r< 1, let h(6) = fr(8). By induction,

(AJft)(0)=r/i<")(0+x1+-" + xl,)dx1...dx11, (3.2)
(£

where t£ is the n-dimensional cube [0, t]n. Hence

- J (hM(0 + Xl + • • • + xm) - fcW(fl)) dxx... dxn.
IE

This implies that

\(D"f)(rew)\tn^ \A?fr(0)\ + J sup |D"+ 7(^i(9+y))|(x, + • • • + xH)dx,... dxn
tE 0<y<nl

sup | |

0<y<nl

Hence, by Lemma 3.1,

(" + 1)pMp
p(D"+ lf, (3r+ l)/4)

provided that 0<t<l—r. Combining this with the familiar inequalities
and

Mp(D"+lf,(3r+l)/4)^C(l-r)-lMp(D"Ml+r)/2)

(see [1]), we obtain

\ \ \ \ (3.3)

where 0 < t < 1—r.
Let 0 < q < oo and

It follows from (3.3) and (2.1) that
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for 0<t<l-r. Let m be the smallest integer such that 2mqC2Kg 1/4 and take
t = a(l —r), a = 2~m. Then we have

- r

where $(t) = ||A"/||*. Hence, by integration,

0 0 1/2

and hence

-(1/2) }
1/2

I

^ C3 a"« "x /Cm J r"" <p(t) ip (t) dt.
o

This concludes the proof of Theorem 2.1.

Remark. The last step in the proof is correct because the function A(r) is integrable
over (0,1): the function Mq

p(D"f,r) is bounded near 1 (because /(z) is analytic in
| | , R > \ ) and the function \j/(l—r) is integrable.

4. Proof of Theorem 2.2

If/ satisfies (2.5), then feHp, by Flett's result. In order to prove (1.2) we can assume
that / is analytic in \z\<R, for some R> 1. Then (1.2) is equivalent to

/ .H^C j (l-sr"-lM'p(D"f,s)ds. (4.1)
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In proving this we can also assume that 0<r<l /4 . Then let r=l — 2t, i.e. t = (l —r)/2.
It follows from (3.2) and Lemma 3.1 that

which is dominated by the right hand side of (4.1) because of the increasing property of
the p-th mean values. Since

it remains to estimate \\A'!(f1 -fr)\\
p

P-
Using the identity

one shows that

where

rn$ flog ) D"f(sew)H{B)=r"li[logiJ D"nsei6)ds>
hk{9) = rkDkf(rew).

We have

Hence

\\\\p
 nf, 1 - t ) .

Finally, we have to prove that \\H\\P
P is dominated by the right hand side of (4.1). We

have
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where

g(s,d) = sup{\D"f(pew)\:O<p<s}.

Since g(s, 6) increases with s,

(See Lemma 4.1 below.) Integrating this inequality from 0 to 2n and using the
Hardy-Littlewood complex maximal theorem, we get

^ C j (1 - s)np -1 M"p(D"f, (1 + s)/2) ds
r

1

= C2np | {l-s)np-iMp
p(D"f,s)ds,

I -i

and this completes the proof.

Lemma 4.1. If q> is an increasing non-negative function on [0,1) and 0 < p < 1, then

(\-s)"-l(p(s)ds\ ^

where C = (np)l~".

Proof. Let

i
$(l-s)np-l<p(s)pds=l
r

for a fixed r. Since (p is increasing we have
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whence

Thus

-s)-" ( 1 ~p)ds

This proves the lemma.

5. Further applications to Lipschitz spaces

Let 0 be a positive increasing function on (0,1]. We define Lipn(<j),p,q) (0<p,q<co)
to be the class of functions feL"(T) for which the function F(t) = ||A^/||p/^(t), 0<f ^ 1,
belongs to the Lebesgue space L"(dt/t). If <j>(t) = t" (0<a<n), then these spaces, denoted
by Lipn(a,p, q), coincide with the classical Lipschitz spaces as defined by Taibleson [12].
Taibleson generalized the theorems of Hardy and Littlewood and of Zygmund to the
case of Lipn(ix,p,q) with p ^ l by showing that the function F(t) in the above definition
can be replaced by t"-*Mp{DnP\_f], l-t), where i>[/] is the Poisson integral of/. In
[6], Oswald extended Taibleson's result to Hp n Lipn(a, p, q) with p<\. In this section
we apply Theorems 2.1 and 2.2 to prove a generalized version of Oswald's result.

Let HAn((f>,p,q) denote the space of functions / analytic in the unit disc for which the
function

belongs L9(dr/(\—r)). These spaces are generalizations of the spaces HA(<x,p,q) intro-
duced by Flett [3]. It follows from Theorem 2.1 that if

(5.1)

then H" n Lipn(4>, p, q) c HAn (4>, p, q).

Theorem 5.1. The inclusion HAn(4>,p,q)czHpn Lipn(<p,p,q) holds if the function <f>
satisfies the following condition:
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(L) There exists a constant a>0 such that <t>(i)lt" is increasing for 0<£< 1.

Corollary. / / <f> satisfies (5.1) and (L), then HAn(<j),p,q) = H''n Lipn(0,p,q).

Proof. Let feHAn{4>,p,q) (0<p<l), where (f> satisfies (L). Since then
we have HAn(<j),p,q)<=:HA(a.,p,q)czH'' (see [3] for various relations between H" and
HA(a,p,q)). Thus feHp, and we have to prove that fehipn(<p,p,q).

Let q^p. It follows from 1.2 and an obvious modification of Lemma 4.1 that

a>J,typ^C \ (l-ry-'cpirydr,
i - f

where (p(r) = Mp(D"f,r). Multiplying both sides of this inequality by <j)(t)~''t~1, then
integrating the resulting inequality and using Fubini's theorem, we obtain

1 k(/,t)p/cP(t)Ydt/t̂ c\(\-rr-lcp(r)"dr \ W r 1 dt.
0 0 l - r

Now the result follows from the inequality

which is a consequence of the condition (L).
Assuming that q>p we have, by Jensen's inequality,

1 ) «/P *
r*" I (l-r)("-a)''(r)p(l-rr-1drl ^apr0"7 j (1-r)("-a)Xr)«(l-r)"""1 dr.

J

From this and (1.2) it follows that

u>H{f,tyi£Cf I ( l -
i - i

where <p(r) = Mp(D"f,r) and e = ct(q-p). Hence

1

t'~l 4>(ty>dt.
l - r

Using the inequality f/<p(t)^(l—r)"/<l>(l—r), l—r^t, one shows that the inner integral
is dominated by (1 — r)7#(l — r)q, which completes the proof.
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