ON THE MODULI OF CONTINUITY OF H^{p} FUNCTIONS WITH $0<p<1$
 by MIROSLAV PAVLOVIĆ
 (Received 26th February 1990)

Abstract

We prove two inequalities which relate the L^{p} modulus of continuity of n-th order, $\omega_{n}(f, \cdot)_{p}$, of an H^{p} function f with the p-th mean values of the n-th derivative $f^{(n)}$. Using these inequalities we extend classical results of Hardy and Littlewood [5], Gwiliam [4], Zygmund [13] and Taibleson [12] as well as a recent result of Oswald [6].

1980 Mathematics subject classification (1985 Revision). 30D55, 30H05, 46E15

1. Introduction

In this paper we consider connections between the L^{p} modulus of continuity of an H^{p} function and the p-th mean value of the corresponding derivative. We shall mainly be concerned with the case where $0<p<1$. As a consequence of our main results we have the following two inequalities, valid for $f \in H^{p}, 0<p<1$ (for the case $p \geqq 1$ see [8]):

$$
\begin{gather*}
M_{p}\left(D^{n} f, r\right) \leqq C(1-r)^{-n} \omega_{n}(f, 1-r)_{p}, \quad 0<r<1, \tag{1.1}\\
\omega_{n}(f, t)_{p}^{p} \leqq C \int_{1-1}^{1}(1-r)^{n p-1} M_{p}^{p}\left(D^{n} f, r\right) d r, \quad 0<t<1, \tag{1.2}
\end{gather*}
$$

where

$$
\left(D^{n} f\right)\left(r e^{i \theta}\right)=\frac{\partial^{n} f}{\partial \theta^{n}}\left(r e^{i \theta}\right) \quad(n=1,2, \ldots)
$$

(Here C denotes a positive real constant depending only on p and n.)
In the case $n=1$ the inequality (1.1) was provied by Storoženko [11].
In Section 2 we state the main results and apply them to deduce a generalization of a result of Gwiliam [4]. The proofs are in Sections 3 and 4. Section 5 contains a simple proof of a result, due to Taibleson [12] and Oswald [6], from the theory of Lipschitz spaces.

Notation. Throughout the paper n denotes a fixed positive integer and p a positive
real number. For a complex-valued function h, defined on the real line, let $\Delta_{t}^{n} h$ denote the n-th difference with step t :

$$
\begin{gathered}
\left(\Delta_{t}^{1} h\right)(\theta)=\Delta_{t}^{1} h(\theta)=h(\theta+t)-h(\theta), \\
\Delta_{t}^{n} h=\Delta_{t}^{1} \Delta_{t}^{n-1} h \quad(n \geqq 2) .
\end{gathered}
$$

If g is a function defined on the unit circle T, then $\Delta_{t}^{n} g$ is defined by

$$
\Delta_{t}^{n} g\left(e^{i \theta}\right)=\Delta_{t}^{n} h(\theta), \quad h(\theta)=g\left(e^{i \theta}\right) .
$$

For a fixed t, Δ_{t}^{n} is a linear operator which preserves the classical spaces such as L^{p}, $0<p<\infty$. The L^{p} modulus of continuity of order n is defined by

$$
\omega_{n}(g, t)_{p}=\sup \left\{\left\|\Delta_{s}^{n} g\right\|_{p}:|s| \leqq t\right\}, t>0, g \in L^{p}(T),
$$

where $\|\cdot\|_{p}$ stands for the "norm" in $L^{p}(T)$:

$$
\|g\|_{p}=\left\{\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|g\left(e^{i \theta}\right)\right|^{p} d \theta\right\}^{1 / p}
$$

The p-th mean values of a continuous function f, defined in the unit disc Δ, are defined by

$$
M_{p}(f, r)=\left\|f_{r}\right\|_{p}, \quad 0<r<1
$$

where

$$
f_{r}(w)=f(r w), \quad w \in T .
$$

The Hardy space H^{p} consists of all f analytic in Δ for which

$$
\|f\|_{p}:=\sup \left\{M_{p}(f, r): 0<r<1\right\}<\infty
$$

It is well-known that each $f \in H^{p}$ has the radial limits almost everywhere on T and that the L^{p} norm of the boundary function equals the H^{p} norm of f. This fact enables us to treat H^{p} as a subspace of $L^{p}(T)$. See [1].

2. Main results

Theorem 2.1. Let $f \in H^{p}, 0<p<\infty, 0<q<\infty$ and let ψ be a non-negative function such that $\psi \in L^{1}(0,1)$ and

$$
\begin{equation*}
\psi(2 x) \leqq K \psi(x), \quad 0<x<1 / 2 \tag{2.1}
\end{equation*}
$$

where K is a positive constant. Then

$$
\begin{equation*}
\int_{0}^{1} M_{p}^{q}\left(D^{n} f, r\right) \psi(1-r) d r \leqq C \int_{0}^{1}\left[t^{-n}\left\|\Delta_{t}^{n} f\right\|_{p}\right]^{q} \psi(t) d t \tag{2.2}
\end{equation*}
$$

where C depends only on p, q, n and K.

Corollary 1. If $\alpha>-1$, then

$$
\begin{equation*}
\int_{r}^{1} M_{p}^{q}\left(D^{n} f, \rho\right)(1-\rho)^{\alpha} d \rho \leqq C \int_{0}^{1-r}\left[t^{-n}\left\|\Delta_{t}^{n f}\right\|_{p}\right]^{q} t^{a} d t \tag{2.3}
\end{equation*}
$$

$(0<r<1)$, where C is independent of r and f.
Proof. For a fixed $r, 0<r<1$, we consider the function

$$
\psi(x)= \begin{cases}x^{\alpha}, & 0<x<1-r \\ 0, & 1-r<x<1 .\end{cases}
$$

Then ψ satisfies (2.1) with $K=2^{\alpha}$, and K is independent of r. Now (2.3) follows from (2.2).

Corollary 2. If $\alpha>-1$, then

$$
\begin{equation*}
M_{p}\left(D^{n} f, r\right) \leqq C\left\{(1-r)^{-\alpha-1} \int_{0}^{1-r}\left[t^{-n}\left\|\Delta_{t}^{n} f\right\|_{p} p^{9} t^{\alpha} d t\right\}^{1 / q},\right. \tag{2.4}
\end{equation*}
$$

where C is independent of r and f.

Proof. By the increasing property of $M_{p}\left(D^{n} f, \rho\right)$,

$$
M_{p}^{q}\left(D^{n} f, r\right) \int_{r}^{1}(1-\rho)^{\alpha} d \rho \leqq \int_{r}^{1} M_{p}^{q}\left(D^{n} f, \rho\right)(1-\rho)^{\alpha} d \rho
$$

which, together with (2.3), gives (2.4).
As a special case we have

$$
M_{p}\left(D^{n} f, r\right) \leqq C(1-r)^{-n-1} \int_{0}^{1-r}\left\|\Delta_{t}^{n} f\right\|_{p} d t
$$

which implies (1.1).
Our second result is the following.
Theorem 2.2. If f is analytic in $\Delta, 0<p<1$ and

$$
\begin{equation*}
\int_{0}^{1}(1-r)^{n p-1} M_{p}^{p}\left(D^{n} f, r\right) d r<\infty \tag{2.5}
\end{equation*}
$$

then f belongs to H^{p} and satisfies (1.2).
Remark. That the condition (2.5) (which is independent of n) implies that $f \in H^{p}$ was proved by Flett [2]. For more information see [3].

As an application of our main results we have an extension of Theorem 3 of [8].
Theorem 2.3. Let ψ be a positive non-decreasing function on the interval $[1, \infty)$ such that for some $\beta<n$ the function $\psi(x) / x^{\beta}, x \geqq 1$, is decreasing. If $0<p<1$ and f is analytic in Δ, then the following are equivalent:
(a) f is in H^{p} and $\omega_{n}(f, t)_{p}=0\left(t^{n} \psi(1 / t)\right), t \rightarrow 0$;
(b) $M_{p}\left(D^{n} f, r\right)=0(\psi(1 /(1-r))), \quad r \rightarrow 1^{-}$.

Proof. The implication $(\mathrm{a}) \Rightarrow(\mathrm{b})$ is a direct consequence of the inequality (1.1) and is independent of the hypothesis on ψ.

Assuming (b) we have

$$
\int_{1-1}^{1}(1-r)^{n p-1} M_{p}^{p}\left(D^{n} f, r\right) d r \leqq \int_{1 / t}^{\infty} x^{-n p-1} \psi(x)^{p} d x, \quad 0<t \leqq 1 .
$$

Using the inequality $\psi(x) x^{-\beta} \leqq \psi(1 / t)(1 / t)^{-\beta}, \quad x>1 / t$, we see that the last integral is dominated by

$$
\psi(1 / t)^{p} t^{\beta p} \int_{1 / t}^{\infty} x^{(\beta-n) p-1} d x=t^{n p} \psi(1 / t)^{p} /(n-\beta) p
$$

Now the assertion (a) follows from Theorem 2.2.
By taking $\psi(x)=x^{n-\alpha}$, where $0<\alpha \leqq n$, we get the following result of Gwiliam [4] and Oswald [6]. (In fact, Gwiliam considered the case $n=1$, and Oswald considered the case $\alpha<n$.)

Corollary. Let $0<p<1$ and $0<\alpha \leqq n$. An analytic function f is in H^{p} with $\omega_{n}(f, t)_{p}=$ $0\left(t^{\alpha}\right)$ if and only if $M_{p}\left(D^{n} f, r\right)=0\left((1-r)^{\alpha-n}\right)$.

Remarks. 1. It is easily seen that Theorem 2.3 remains true if we replace " 0 " by " 0 ". 2. It is well known that the corollary holds for $p \geqq 1$. If $n=1$, this is the famous
theorem of Hardy and Littlewood [5]. And if $n=2$ and $\alpha=1$, this result is due to Zygmund [13] and is the first result concerning the moduli of continuity of higher orders.

3. Proof of Theorem 2.1

Throughout this and the following section we shall use the notation

$$
f_{r}(\theta)=f\left(r e^{i \theta}\right) .
$$

Lemma 3.1. Let f be analytic in $\Delta, 0<p<\infty, 0<r<\rho<1, \lambda>0$ and

$$
F(\theta)=\sup \left\{\left|f_{r}(\theta+y)\right|: 0 \leqq y \leqq \lambda(\rho-r)\right\}, \quad 0 \leqq \theta \leqq 2 \pi .
$$

Then

$$
\|F\|_{p} \leqq C M_{p}(f, \rho),
$$

where C depends only on λ and p.
Proof. By the subharmonicity of $|f|^{p}$,

$$
\begin{equation*}
\left|f_{r}(\theta+y)\right|^{p} \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f_{\rho}(t)\right|^{p} \frac{\rho^{2}-r^{2}}{\left|\rho e^{i t}-r e^{i \theta+i y}\right|^{2}} d t . \tag{3.1}
\end{equation*}
$$

If $0 \leqq y \leqq \lambda(\rho-r)$, then

$$
\left|\rho e^{i t}-r e^{i \theta}\right| \leqq\left|\rho e^{i t}-r e^{i(\theta+y)}\right|+\left|r e^{i(\theta+y)}-r e^{i \theta}\right| .
$$

Since

$$
\begin{aligned}
\left|r e^{i(\theta+y)}-r e^{i \theta}\right| & =r\left|e^{i y}-1\right| \\
& \leqq r y \leqq \lambda(\rho-r) \\
& \leqq \lambda\left|\rho e^{i t}-r e^{i(\theta+y)}\right|,
\end{aligned}
$$

we get

$$
\left|\rho e^{i t}-r e^{i \theta}\right| \leqq(1+\lambda)\left|\rho e^{i t}-r e^{i(\theta+y)}\right| .
$$

From this and (3.1) it follows that

$$
F(\theta)^{p} \leqq(1+\lambda)^{2} \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f_{\rho}(t)\right|^{p} \frac{\rho^{2}-r^{2}}{\left|\rho e^{i t}-r e^{i \theta}\right|^{2}} d t .
$$

Now integration yields the desired inequality with $C=(1+\lambda)^{2 / p}$.
Proof of Theorem 2.1. Without loss of generality we can assume that f is analytic in $|z|<R$, for some $R>1$. For a fixed $r, 0<r<1$, let $h(\theta)=f_{r}(\theta)$. By induction,

$$
\begin{equation*}
\left(\Delta_{t}^{n} h\right)(\theta)=\int_{i E} h^{(n)}\left(\theta+x_{1}+\cdots+x_{n}\right) d x_{1} \ldots d x_{n}, \tag{3.2}
\end{equation*}
$$

where $t E$ is the n-dimensional cube $[0, t]^{n}$. Hence

$$
\begin{aligned}
\left(D^{n} f\right)\left(r e^{i \theta}\right) t^{n} & =h^{(n)}(\theta) t^{n} \\
& =\left(\Delta_{t}^{n} h\right)(\theta)-\int_{i E}\left(h^{(n)}\left(\theta+x_{1}+\cdots+x_{n}\right)-h^{(n)}(\theta)\right) d x_{1} \ldots d x_{n} .
\end{aligned}
$$

This implies that

$$
\begin{aligned}
&\left|\left(D^{n} f\right)\left(r e^{i \theta}\right)\right| t^{n} \leqq\left|\Delta_{t}^{n} f_{r}(\theta)\right|+\int_{i E} \sup _{0<y<n t}\left|D^{n+1} f\left(r e^{i(\theta+y)}\right)\right|\left(x_{1}+\cdots+x_{n}\right) d x_{1} \ldots d x_{n} \\
&=\left|\Delta_{t}^{n} f_{r}(\theta)\right|+(n / 2) \sup _{0<y<n t}\left|D^{n+1} f\left(r e^{i(\theta+y)}\right)\right| t^{n+1}
\end{aligned}
$$

Hence, by Lemma 3.1,

$$
M_{p}^{p}\left(D^{n} f, r\right) t^{n p} \leqq\left\|\Delta_{t}^{n} f_{r}\right\|_{p}^{p}+C t^{(n+1) p} M_{p}^{p}\left(D^{n+1} f,(3 r+1) / 4\right)
$$

provided that $0<t<1-r$. Combining this with the familiar inequalities $\left\|\Delta_{t}^{n} f_{r}\right\|_{p} \leqq\left\|\Delta_{t}^{n} f\right\|_{p}$ and

$$
M_{p}\left(D^{n+1} f,(3 r+1) / 4\right) \leqq C(1-r)^{-1} M_{p}\left(D^{n} f,(1+r) / 2\right)
$$

(see [1]), we obtain

$$
\begin{equation*}
M_{p}^{p}\left(D^{n} f, r\right) \leqq t^{-n p}\left\|\Delta_{t}^{n} f\right\|_{p}^{p}+C t^{p}(1-r)^{-p} M_{p}^{p}\left(D^{n} f,(1+r) / 2\right) \tag{3.3}
\end{equation*}
$$

where $0<t<1-r$.
Let $0<q<\infty$ and

$$
A(r)=M_{p}^{q}\left(D^{n} f, r\right) \psi(1-r), \quad 0<r<1 .
$$

It follows from (3.3) and (2.1) that

$$
A(r) \leqq C_{1} t^{-n q}\left\|\Delta_{t}^{n} f\right\|_{p}^{q} \psi(1-r)+C_{2} K t^{q}(1-r)^{-q} A((1+r) / 2)
$$

for $0<t<1-r$. Let m be the smallest integer such that $2^{m q} C_{2} K \leqq 1 / 4$ and take $t=a(1-r), a=2^{-m}$. Then we have

$$
A(r) \leqq C_{3}(1-r)^{-n q} \phi(a(1-r)) \psi(1-r)+(1 / 4) A((1+r) / 2),
$$

where $\phi(t)=\left\|\Delta_{t}^{n} f\right\|_{p}^{q}$. Hence, by integration,

$$
\int_{0}^{1} A(r) d r \leqq C_{3} \int_{0}^{1} t^{-n q} \phi(a t) \psi(t) d t+(1 / 2) \int_{1 / 2}^{1} A(r) d r,
$$

and hence

$$
\begin{aligned}
(1 / 2) \int_{0}^{1} A(r) d r & \leqq \int_{0}^{1} A(r) d r-(1 / 2) \int_{1 / 2}^{1} A(r) d r \\
& \leqq C_{3} \int_{0}^{1} t^{-n q} \phi(a t) \psi(t) d t \\
& =C_{3} a^{n q-1} \int_{0}^{a} t^{-n q} \phi(t) \psi\left(2^{m} t\right) d t \\
& \leqq C_{3} a^{n q-1} K^{m} \int_{0}^{1} t^{-n q} \phi(t) \psi(t) d t
\end{aligned}
$$

This concludes the proof of Theorem 2.1.

Remark. The last step in the proof is correct because the function $A(r)$ is integrable over (0,1): the function $M_{p}^{q}\left(D^{n} f, r\right)$ is bounded near 1 (because $f(z)$ is analytic in $|z|<R, R>1)$ and the function $\psi(1-r)$ is integrable.

4. Proof of Theorem $\mathbf{2 . 2}$

If f satisfies (2.5), then $f \in H^{P}$, by Flett's result. In order to prove (1.2) we can assume that f is analytic in $|z|<R$, for some $R>1$. Then (1.2) is equivalent to

$$
\begin{equation*}
\left\|\Delta_{t}^{n} f_{1}\right\|_{p}^{p} \leqq C \int_{1-t}^{1}(1-s)^{n p-1} M_{p}^{p}\left(D^{n} f, s\right) d s \tag{4.1}
\end{equation*}
$$

In proving this we can also assume that $0<t<1 / 4$. Then let $r=1-2 t$, i.e. $t=(1-r) / 2$. It follows from (3.2) and Lemma 3.1 that

$$
\left\|\Delta_{t}^{n} f_{r}\right\|_{p}^{p} \leqq C t^{n p} M_{p}^{p}\left(D^{n} f,(1+r) / 2\right),
$$

which is dominated by the right hand side of (4.1) because of the increasing property of the p-th mean values. Since

$$
\left\|\Delta_{t}^{n} f_{1}\right\|_{p}^{p} \leqq\left\|\Delta_{t}^{n} f_{r}\right\|_{p}^{p}+\left\|\Delta_{t}^{n}\left(f_{1}-f_{r}\right)\right\|_{p}^{p}
$$

it remains to estimate $\left\|\Delta_{t}^{n}\left(f_{1}-f_{r}\right)\right\|_{p}^{p}$.
Using the identity

$$
1-r^{j}=r^{r^{n}} \sum_{k=1}^{n-1} \frac{j^{k}}{k!}\left(\log \frac{1}{r}\right)^{k}+\frac{j^{n}}{(n-1)!} \int_{r}^{1}\left(\log \frac{1}{s}\right)^{n-1} s^{j-1} d s
$$

one shows that

$$
f_{1}(\theta)-f_{r}(\theta)=\frac{H(\theta)}{(n-1)!}+\sum_{k=1}^{n-1} \frac{1}{k!}\left(\log \frac{1}{r}\right)^{k} h_{k}(\theta)
$$

where

$$
\begin{gathered}
H(\theta)=i^{-n} \int_{r}^{1} \frac{1}{s}\left(\log \frac{1}{s}\right)^{n-1} D^{n} f\left(s e^{i \theta}\right) d s \\
h_{k}(\theta)=i^{-k} D^{k} f\left(r e^{i \theta}\right)
\end{gathered}
$$

We have

$$
\begin{aligned}
\left\|\Delta_{t}^{n} h_{k}\right\|_{p}^{p} & \leqq 2^{k}\left\|\Delta_{t}^{n-k} h_{k}\right\|_{p}^{p} \\
& \leqq C t^{(n-k) p} M_{p}^{p}\left(D^{n-k} D^{k} f,(1+r) / 2\right)=C t^{(n-k) p} M_{p}^{p}\left(D^{n} f, 1-t\right) .
\end{aligned}
$$

Hence

$$
\begin{aligned}
&\left\|\Delta_{t}^{n}\left(f_{1}-f_{r}\right)\right\|_{p}^{p} \leqq C_{1}\left\|\Delta_{t}^{n} H\right\|_{p}^{p}+C_{2} \sum_{k=1}^{n-1}(1-r)^{k p}\left\|\Delta_{t}^{n} h_{k}\right\|_{p}^{p} \\
& \leqq C_{1} 2^{n}\|H\|_{p}^{p}+C t^{n p} M_{p}^{p}\left(D^{n} f, 1-t\right)
\end{aligned}
$$

Finally, we have to prove that $\|H\|_{p}^{p}$ is dominated by the right hand side of (4.1). We have

$$
|H(\theta)| \leqq C \int_{r}^{1}(1-s)^{n-1} g(s, \theta) d s
$$

where

$$
g(s, \theta)=\sup \left\{\left|D^{n} f\left(\rho e^{i \theta}\right)\right|: 0<\rho<s\right\} .
$$

Since $g(s, \theta)$ increases with s,

$$
|H(\theta)|^{p} \leqq C \int_{r}^{1}(1-s)^{n p-1} g(s, \theta)^{p} d s
$$

(See Lemma 4.1 below.) Integrating this inequality from 0 to 2π and using the Hardy-Littlewood complex maximal theorem, we get

$$
\begin{aligned}
\|H\|_{p}^{p} & \leqq C \int_{r}^{1}(1-s)^{n p-1} M_{p}^{p}\left(D^{n} f, s\right) d s \\
& \leqq C \int_{r}^{1}(1-s)^{n p-1} M_{p}^{p}\left(D^{n} f,(1+s) / 2\right) d s \\
& =C 2^{n p} \int_{1-t}^{1}(1-s)^{n p-1} M_{p}^{p}\left(D^{n} f, s\right) d s
\end{aligned}
$$

and this completes the proof.
Lemma 4.1. If φ is an increasing non-negative function on $[0,1)$ and $0<p<1$, then

$$
\left(\int_{r}^{1}(1-s)^{n-1} \varphi(s) d s\right)^{p} \leqq C \int_{r}^{1}(1-s)^{n p-1} \varphi(s)^{p} d s, \quad 0 \leqq r<1
$$

where $C=(n p)^{1-p}$.
Proof. Let

$$
\int_{r}^{1}(1-s)^{n p-1} \varphi(s)^{p} d s=1
$$

for a fixed r. Since φ is increasing we have

$$
\varphi(\rho)^{p} \int_{\rho}^{1}(1-s)^{n p-1} d s \leqq 1(r<\rho<1)
$$

whence

$$
\varphi(\rho) \leqq(n p)^{1 / p}(1-\rho)^{-n}
$$

Thus

$$
\begin{aligned}
\int_{r}^{1}(1-s)^{n-1} \varphi(s) d s & =\int_{r}^{1}(1-s)^{n-1} \varphi(s)^{p} \varphi(s)^{1-p} d s \\
& \leqq(n p)^{(1-p) / p} \int_{r}^{1}(1-s)^{n-1} \varphi(s)^{p}(1-s)^{-n(1-p)} d s \\
& =(n p)^{(1-p) / p} .
\end{aligned}
$$

This proves the lemma.

5. Further applications to Lipschitz spaces

Let ϕ be a positive increasing function on $(0,1]$. We define $\operatorname{Lip}_{n}(\phi, p, q)(0<p, q<\infty)$ to be the class of functions $f \in L^{p}(T)$ for which the function $F(t)=\left\|\Delta_{t}^{n} f\right\|_{p} / \phi(t), 0<t \leqq 1$, belongs to the Lebesgue space $L^{q}(d t / t)$. If $\phi(t)=t^{\alpha}(0<\alpha<n)$, then these spaces, denoted by $\operatorname{Lip}_{n}(\alpha, p, q)$, coincide with the classical Lipschitz spaces as defined by Taibleson [12]. Taibleson generalized the theorems of Hardy and Littlewood and of Zygmund to the case of $\operatorname{Lip}_{n}(\alpha, p, q)$ with $p \geqq 1$ by showing that the function $F(t)$ in the above definition can be replaced by $t^{n-\alpha} M_{p}\left(D^{n} P[f], 1-t\right)$, where $P[f]$ is the Poisson integral of f. In [6], Oswald extended Taibleson's result to $H^{p} \cap \operatorname{Lip}_{n}(\alpha, p, q)$ with $p<1$. In this section we apply Theorems 2.1 and 2.2 to prove a generalized version of Oswald's result.

Let $H \Lambda_{n}(\phi, p, q)$ denote the space of functions f analytic in the unit disc for which the function

$$
r \mapsto(1-r)^{n} M_{p}\left(D^{n} f, r\right) / \phi(1-r), \quad 0<r<1,
$$

belongs $L^{q}(d r /(1-r))$. These spaces are generalizations of the spaces $H \Lambda(\alpha, p, q)$ introduced by Flett [3]. It follows from Theorem 2.1 that if

$$
\begin{equation*}
\int_{0}^{1}\left(t^{n} / \phi(t)\right)^{q} d t / t<\infty, \tag{5.1}
\end{equation*}
$$

then $H^{p} \cap \operatorname{Lip}_{n}(\phi, p, q) \subset H \Lambda_{n}(\phi, p, q)$.
Theorem 5.1. The inclusion $H \Lambda_{n}(\phi, p, q) \subset H^{p} \cap \operatorname{Lip}_{n}(\phi, p, q)$ holds if the function ϕ satisfies the following condition:
(L) There exists a constant $\alpha>0$ such that $\phi(t) / t^{\alpha}$ is increasing for $0<t<1$.

Corollary. If ϕ satisfies (5.1) and (L), then $H \Lambda_{n}(\phi, p, q)=H^{p} \cap \operatorname{Lip}_{n}(\phi, p, q)$.
Proof. Let $f \in H \Lambda_{n}(\phi, p, q)(0<p<1)$, where ϕ satisfies (L). Since then $\phi(t) \leqq \phi(1) t^{\alpha}$, we have $H \Lambda_{n}(\phi, p, q) \subset H \Lambda(\alpha, p, q) \subset H^{p}$ (see [3] for various relations between H^{p} and $H \Lambda(\alpha, p, q))$. Thus $f \in H^{p}$, and we have to prove that $f \in \operatorname{Lip}_{n}(\phi, p, q)$.

Let $q \leqq p$. It follows from 1.2 and an obvious modification of Lemma 4.1 that

$$
\left.\omega_{n} f, t\right)_{p}^{q} \leqq C \int_{1-t}^{1}(1-r)^{n q-1} \varphi(r)^{q} d r,
$$

where $\varphi(r)=M_{p}\left(D^{n} f, r\right)$. Multiplying both sides of this inequality by $\phi(t)^{-q} t^{-1}$, then integrating the resulting inequality and using Fubini's theorem, we obtain

$$
\int_{0}^{1}\left[\omega_{n}(f, t)_{p} / \phi(t)\right]^{q} d t / t \leqq C \int_{0}^{1}(1-r)^{n q-1} \varphi(r)^{q} d r \int_{1-r}^{1} \phi(t)^{-q} t^{-1} d t .
$$

Now the result follows from the inequality

$$
\int_{x}^{1} \phi(t)^{-q} t^{-1} d t \leqq C \phi(x)^{-q}, \quad 0<x<1
$$

which is a consequence of the condition (L).
Assuming that $q>p$ we have, by Jensen's inequality,

$$
\left\{\alpha p t^{-\alpha p} \int_{1-t}^{1}(1-r)^{(n-\alpha) p}(r)^{p}(1-r)^{\alpha p-1} d r\right\}^{q / p} \leqq \alpha p t^{-\alpha p} \int_{1-t}^{1}(1-r)^{(n-\alpha) q} \varphi(r)^{q}(1-r)^{\alpha p-1} d r .
$$

From this and (1.2) it follows that

$$
\omega_{n}(f, t)_{p}^{q} \leqq C t^{e} \int_{1-t}^{1}(1-r)^{n q-\varepsilon-1} \varphi(r)^{q} d r
$$

where $\varphi(r)=M_{p}\left(D^{n} f, r\right)$ and $\varepsilon=\alpha(q-p)$. Hence

$$
\int_{0}^{1}\left[\omega_{n}(f, t)_{p} / \phi(t)\right]^{q} d t / t \leqq C \int_{0}^{1}(1-r)^{n q-\varepsilon-1} \varphi(r)^{q} d r \int_{1-r}^{1} t^{\varepsilon-1} \phi(t)^{-q} d t
$$

Using the inequality $t^{\alpha} / \phi(t) \leqq(1-r)^{\alpha} / \phi(1-r), 1-r \leqq t$, one shows that the inner integral is dominated by $(1-r)^{2} / \phi(1-r)^{q}$, which completes the proof.

REFERENCES

1. P. L. Duren, Theory of H^{p} spaces (Academic Press, New York, 1970).
2. T. M. Flett, Mean values of power series, Pacific J. Math. 25 (1968), 463-494.
3. T. M. Flett, Lipschitz spaces of functions on the circle and the disc, J. Math. Anal. Appl. 39 (1972), 125-168.
4. A. E. Gwiliam, On Lipschitz conditions, Proc. London Math. Soc. 40 (1935), 353-364.
5. G. H. Hardy and J. E. Littlewood, Some properties of fractional integrals, II, Math. Z. 34 (1931), 403-439.
6. P. Oswald, On Besov-Hardy-Sobolev spaces of analytic functions in the unit disc, Czechslovak Math. J. 33 (108) (1983), 408-427.
7. M. Pavlović, Mixed norm spaces of analytic and harmonic function, I, II, Publ. Inst. Math. (Belgrade), 40 (54) (1986) 117-141; 41 (55) (1987), 97-110.
8. M. Pavlović, Lipschitz spaces and spaces of harmonic functions in the unit disc, Michigan Math. J. 35 (1988), 301-311.
9. A. L. Shields and D. L. Williams, Bounded projections, duality and multipliers in spaces of harmonic functions, J. Reine Angew. Math. 299/300 (1978), 265-279.
10. A. L. Shields and D. L. Williams, Bounded projections and the mean growth of harmonic conjugates in the unit disc, Michigan Math. J. 29 (1982), 3-25.
11. E. A. Storozzenko, On a problem of Hardy and Littlewood, Mat. Sbornik 119 (161) (1982), 564-583 (Russian).
12. M. H. Talbleson, On the theory of Lipschitz spaces of distributions on Euclidean n-space I, II, J. Math. Mech. 13 (1964), 407-479; 14 (1965), 821-839.
13. A. Zygmund, Smooth functions, Duke Math. J. 12 (1945), 47-76.

Matematićci Fakultet
Studentski Trg 16
11000 Beograd
Yugoslavia

