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Hypertension is a major cardiovascular risk factor for 
stroke and CHD in Westernized societies (Thom et al. 
1992). Whilst many factors contribute towards elevated 
blood pressure, such as low physical activity, obesity, 
saturated fat, salt and alcohol intake (Ward, 1993), they 
only explain a proportion of cardiovascular risk. Since 
adult systolic blood pressure (SBP) tracks growth from 
infancy, i.e. SBP increases in proportion to the increase in 
growth from infancy (Law et al. 1993) and is related to the 
rate of increase in SBP in childhood (Lever & Harrap, 
1992), then factors that influence SBP in early life may 
determine future cardiovascular risk. Barker and colleagues 
(Law et al. 1991) have identified a negative relationship 
between birth weight and SBP in childhood. The relation- 
ship remains into adult life and, furthermore, is amplified 
(Barker et al. 1989). Thus, determinants of intrauterine 
growth leading to an asymmetric or a proportionately-small 
baby at term also influence future cardiovascular risk 
(Barker, 1994). 

Cross-fostering and sibling studies have clearly shown 
that the maternal environment, rather than genetic factors, 
largely accounts for variations in birth weight (Walton & 
Hammond, 1938; Milner & Gluckman, 1996). Intrauterine 
growth is primarily substrate driven (Karlberg et al. 1994) 
and, thus, the supply of substrate may influence the 
intrauterine growth process. Indeed, low birth weight in 
man is associated with a reduced maternal intake of protein 
coupled with a high intake of carbohydrate (Godfrey et al. 
1996 and indices of poor maternal nutritional status, such 
as reduced skinfold thickness (Godfrey et al. 1994) and 
reduced maternal Fe stores (Godfrey et al. 1991). 

SBP in childhood and adult life is inversely related to the 
same indices of poor maternal nutritional status, i.e. 
maternal anaemia (Law et al. 1991) and reduced maternal 
skinfold thickness (Godfrey et al. 1994). A low intake of 
protein coupled with a high intake of carbohydrate during 
gestation is associated with an elevated SBP in the 

offspring when measured 40 years later (Campbell et al. 
1996). The propensity towards hypertension and thus 
towards CHD, therefore, is partially determined in utero 
by nutritional factors. The underlying physiological 
processes relating maternal nutrition, intrauterine growth 
patterns and adult hypertension are as yet unknown. 

Research using animal models has provided some insight 
into the mechanism of intrauterine programming of adult 
hypertension. Whilst hypertension can be experimentally 
produced in animal models through reno-vascular manip- 
ulations such as Goldblatts or aortic coarctation (Wilk- 
inson, 1994), or steroid-induced using deoxycorticosterone 
acetate or dexamethasone (Kenyon & Morton, 1994), these 
methodologies do not account for an early origin of adult 
hypertension. Steroid-induced hypertension associated with 
reduced birth weight can be reproduced, however, by either 
dexamethasone (Benediktsson et al. 1993; Levitt et al. 
1996) or carbenoxolone (Lindsay et al. 1996) injections 
during pregnancy in the rat. 

Maternal glucocorticoids (GC) are metabolized by the 
placental enzyme 1 1 P-hydroxysteroid dehydrogenase type 
2 (EC 1.1.1.146; 11-HSD2; Seckl, 1997~).  Placental 11- 
HSD2 is inhibited by carbenoxolone and has weak activity 
towards dexamethasone. Thus, increased fetal exposure to 
excess maternal GC reduces birth weight and renders the 
resultant offspring hypertensive. Importantly, hypertension 
associated with carbenoxolone injections requires a product 
of the maternal adrenal gland, since carbenoxolone 
injections to adrenalectomized dams have no effect on 
birth weight or SBP of the resultant offspring (Lindsay et 
al. 1996). The activity of placental 11-HSD2 is positively 
correlated with birth weight in rats (Benediktsson et al. 
1993) and man (Stewart et al. 1995), and activity at term 
predicts birth weight (Benediktsson et al. 1995). Thus, 
Edwards et al. (1993) contend that placental 1 1-HSD2 has 
an important role in determining birth weight and, through 
maternal GC influence, may mediate the fetal origins of 
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adult cardiovascular disease. Nutritional factors are clearly 
important, however, in determining future cardiovascular 
risk (Barker & Osmond, 1986; Barker et al. 1993). 

Nutritional programming of adult hypertension has been 
demonstrated in the rat. Reductions in either food intake 
(Woodall et al. 1996) or maternal Fe stores (Crowe er al. 
1995) throughout pregnancy render the resultant adult 
offspring hypertensive. Similarly, a maternal low-protein 
isoenergetic (MLP) diet both reduces birth weight and 
elevates the SBP of the resultant offspring (Langley & 
Jackson, 1994; Isherwood-Peel et al. 1997). The greater 
SBP exhibited by the offspring of MLP dams is of early 
onset and apparently lifelong (for review, see Langley- 
Evans et al. 1997). 

Pharmacological blockade of GC synthesis throughout 
the first 2 weeks of rat pregnancy prevents the development 
of MLP-induced hypertension (Langley-Evans, 1997a). In 
addition, MLP-induced hypertension is associated with a 
reduction in both the activity (Langley-Evans er al. 1996~; 
DS Gardner, unpublished results) and expression (CB 
Whonvood and SC Langley-Evans, upublished results) of 
placental 11-HSD2 from mid to late gestation. Thus, 
exposure to excess maternal GC during gestation in the rat 
may represent a common factor between MLP-induced 
hypertension and steroid-induced hypertension (Seckl, 
1997b). Indeed, injections of carbenoxolone to protein- 
replete rat dams reduces the birth weight and elevates the 
SBP of the resultant offspring as effectively as maternal 
protein restriction (Langley-Evans, I997b). 

Exposure to MLP diet during gestation leads to patterns 
of disproportionate fetal growth that appear to favour 
maintenance of brain growth (Langley-Evans et al. 1996a). 
Thus, whilst growth of the fetal brain over late gestation 
was maintained in proportion to body weight, the growth of 
the liver, lungs and trunk was retarded (Fig. 1). 

In association with deficits in organ growth, the offspring 
from MLP dams exhibit long-term programming of the 
hypothalamic-pituitary-adrenal axis. Specific elevations in 
the activities of central and peripheral GC-inducible 
enzymes, despite similar circulating corticosterone con- 
centrations, indicate a hypersensitivity to GC action in 
adult life (Langley-Evans et al. 1996b). Disproportionate 
fetal growth patterns and hypersensitivity to GC action may 
represent a manifestation of a common phenomenon. Thus, 
the fetuses from MLP dams enter the third week of 
gestation on an accelerated growth curve (Langley-Evans et 
al. 1996a). Undernutrition has a greater impact on rapidly- 
growing fetuses (Harding et al. 1992). In response to a 
nutritional challenge, blood supply is preferentially 
diverted to organs necessary for continued survival under 
conditions of stress, such as the brain, heart and adrenal 
glands (Rudolph, 1984). Consequently, somatic (trunk) and 
peripheral (liver, lung) organ growth is reduced such that, 
at term, the control pups either exceed or match the birth 
weight of MLP pups (Langley & Jackson 1994). 

Changes in circulatory dynamics and organ growth rates 
are likely to be mediated by hormones, and particularly GC. 
GC influence cellular differentiation and growth (McEwen 
et al. 1986), the fetal cardiovascular system (Tangalakis et 
al. 1992) and additionally serve to mobilize fuel molecules, 
maintaining the glucose supply to the brain (Dallman et al. 
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Fig. 1. The percentage increase in mass and length between day 20 
and full term in rat fetuses exposed to either a control (0) or low- 
protein (MLP; H) maternal diet. Values are expressed as a 
percentage of the fetal mass or length as determined at day 20 
gestation. A total of twenty rat dams were fed on either 180 g caseid 
kg (control; n 10) or 9Og caseinlkg (MLP; n 10) for 2 weeks before 
mating and throughout gestation. At day 20 gestation, five dams from 
each dietaly group were killed and fetal body and organ masses 
recorded. The remaining pregnancies proceeded to term. Offspring 
were killed within 12 h of the dam giving birth and organ weights 
determined. (Redrawn from Langley-Evans et al. 1996a.) 

1989). Reduced placental 11-HSD2 function in mid-late 
gestation, as a consequence of maternal undernutrition, 
may allow an increased flux of maternal GC into the fetal 
environment and facilitate fetal adaptation to undernutri- 
tion. The fetal hypothalamic-pituitary-adrenal axis as- 
sumes independence from maternal GC at about day 16 in 
the rat (Chatelain er al. 1980), and increased GC action 
during this period, whilst facilitating metabolic changes, 
may promote inappropriate expression of GC-inducible 
genes that in adult life increase the propensity towards 
hypertension. If maternal GC concentrations are reduced 
during gestation, either by pharmacological (Langley- 
Evans, 1997a) or surgical adrenalectomy (Fig. 2), then 
MLP-induced hypertension is prevented. Furthermore, 
replacement of corticosterone to either pharmacologically 
(Langley-Evans, 1997a)- or surgically (DS Gardner, 
unpublished results)-adrenalectomized rat dams restores 
the hypertensive state of MLP offspring. Exposure to 
maternal GC, therefore, appears essential for programming 
of hypertension in MLP rats. 

Virtually all recognized effects of GC are mediated by 
GC receptors (McEwen et al. 1986) and GC receptor 
expression is demonstrable in the developing fetal rat brain 
from as early as embryonic day 15 (Kitraki et al. 1996). 
MLP-induced hypertension, therefore, may be mediated by 
alterations to GC receptor densities in central and 
peripheral regions, as has been observed in the present 
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Fig. 2. Systolic blood pressures (SBP) of 6-week-old offspring from 
matemally adrenalectomized (MADX) rats fed on either a control or 
low-protein (MLP) diet during pregnancy. Twelve rats were bilaterally 
adrenalectomized 2 months before mating. On conception rats 
received either a control (1809 caseinlkg; n 6) or MLP (909 casein/ 
kg; n 6) diet throughout pregnancy. At birth the diet was substituted 
for standard chow and litters culled to eight pups (four male and four 
female). Offspring were weaned onto chow at 4 weeks of age. SBP 
was determined at 6 weeks of age on male (0) and female (I) pups 
using the indirect tail-cuff method and compared with age-matched 
offspring from adrenal-intact control dams. Values are means with 
their standard errors represented by vertical bars. Two-way ANOVA 
indicated a significant effect of diet (F= 11.99, P=0.002) and sex 
(Fz16.21, P=O.OOOl) on the SBP of the offspring. a,b,c, Values 
with unlike superscript letters were significantly different (post hoc 
analyses by Student's t test; P< 0.01). 

animal model (Langley-Evans et al. 19966) and in others 
(Mulay et al. 1982; Meaney et al. 1988). In central regions, 
increased GC action may 'imprint' the immature fetal 
hypothalamus, resulting in altered function in adult life. 
Elevated central activities of GC-inducible enzymes and an 
acyclic secretion pattern of adrenocorticotrophic hormone 

suggest programming at the central level (Langley-Evans 
et al. 1996b). Altered central metabolism of glutamate, 
indicated by increased glutamine synthetase (EC 6.3.1.2) 
activity in MLP (Langley-Evans et al. 1996b), may 
influence blood pressure control, since glutamate is 
excitatory in the nucleus tractus solitarus (the cardiovas- 
cular control centre in the medulla; Talman et al. 1984). 
Interestingly, transplantation of hypothalamic tissue grafts 
from day 16 spontaneously-hypertensive rat embryos to 
normotensive adult Wistar-Kyoto rats significantly elevates 
the SBP of the Wistar-Kyoto rats (Eilam et al. 1991), 
indicating that hypothalamic factors underlie hypertension 
in spontaneously-hypertensive rats. Later menarche in 
women is associated with reduced birth weight (Cooper 
et al. 1996), and growth hormone secretion in adulthood is 
related to growth in infancy (C Fall, P Hindmarsh, E 
Dennison, S Kellingray, D Barker and C Cooper, 
unpublished results). Both are suggestive of centrally- 
orientated programming in early life. 

In the periphery, redistribution of blood flow causing 
shifts in haemodynamic loads are known permanently to 
alter the structural properties of vascular smooth muscle 
(Berry 1978). In fetal vascular tissues, elevated GC 
receptor densities may facilitate increased SBP and the 
redistribution of blood flow in MLP, since GC have many 
hypertensionogenic actions in the vasculature (Walker & 
Williams, 1992; Whitworth et al. 1995). In postnatal life an 
increased sensitivity to GC action in MLP may predispose 
towards elevated SBP. Adrenalectomy of 6-week-old male 
rats from MLP dams significantly reduced SBP to yield 
pressures similar to controls (Gardner et al. 1997). No 
effect of adrenalectomy on SBP of control rats were 
observed. Furthermore, the hypotensive effect of adrena- 
lectomy in MLP rats was prevented by corticosterone 
replacement (Table 1). Thus, maintenance of MLP-induced 
hypertension in adult life is dependent on an intact adrenal 
gland and, in particular, corticosterone. 

However, maintenance of hypertension in MLP rats does 
not appear to be entirely through GC receptors, since 
blockade of GC receptors using RU486, an antiGC, has no 

Table 1. The effect of postnatal adrenalectomy on the systolic blood pressure of animals exposed to either a maternal control or low-protein 
(MLP) diet" (From Gardner et al. 1997) 

(Mean values with their standard errors for five to six observations (control) and four to five (MLP) rats in each treatment group) 

Systolic blood pressure (mmHg) 

Dietary group-f. . . Control MLP 

Initial 7 d  14d initial 7 d  14d 

Treatment group Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE 

sv 
AV 
sc 
AC 

147 4 149 5 137 7 161' 7 168' 10 153 11 

146 8 166t 6 146 7 175' 9 165 4 171 5 
143 7 174t 3 168t 4 165' 6 202 t$ 8 185tS 9 

142 5 149 2 137 10 162' 12 143. 9 1319 6 

* The effect of diet was significant (ANOVA; F=29.85, P< 0.0001). 
t The effect of corticosterone replacement was significant (ANOVA; F= 50.67. Pc 0.0001). 

The interaction between diet and corticosterone replacement was significant (ANOVA; F=3.47, P 4 0.06). 
Mean value was significantly different from the initial value for MLP-AV rats (BonferroniDunn test; Pi 0.05). ' A total of twenty-four male offspring from control (180g caseinkg) or MLP (909 caseinlkg, n 20) dams were either bilaterally adrenalectomized (A) or sham- 
operated (S) under pentobarbiione anaesthesia at 47 f 1 d of age. Corticosterone (C) replacement (20 m@g in 0.1 ml arachis oil) or vehicle replacement (V; 0.1 ml 
arachis oil) began the following day (subcutaneously twice daily for 14 d). The systolic blood pressure of rats was determined by the indirect tail-cuff method before 
surgery (initial) and subsequently at days 7 and 14 following either adrenalectomy or sham operation (day 0). 
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Fig. 3. A curve illustrating the maximal pressor response to 
angiotensin I I  of female rats exposed to either a maternal control 
(U) or low-protein (I) diet. At 10 weeks of age, offspring from control 
or low-protein dams (five rats per dietary group at each dose of 
angiotensin 11) were administered sodium pentobarbitone anaes- 
thetic (72 mg/kg body weight) intraperitoneally. Angiotensin II was 
delivered intravenously, through a femoral catheter, dissolved in a 
total volume of 0.1 ml, 9 g NaCI/I maintained at 37". Increasing doses 
(0, 1 ,5, 10,20,40 ng) of angiotensin II were administered, allowing a 
period of at least 5min between each injection. Systolic blood 
pressure (SBP) was recorded directly through a carotid cannula. 
Values are means with their standard errors represented by vertical 
bars. Two-way ANOVA indicated a significant effect of diet ( F  = 5.54, 
P =0.02) and angiotensin II dose (F= 195.4, P =O.OOOl). Mean 
values for MLP rats were significantly different from those for control 
rats: *PC 0.05. 

effect on the SBP of MLP rats (DS Gardner, unpublished 
results). This is unsurprising, since hypertension is 
classically multifactorial. A more likely mechanism is 
through a permissive effect of GC on vasoconstrictors such 
as angiotensin 11. GC modulate the pressor responsiveness 
of vascular tissue to angiotensin I1 (Whitworth et al. 1995) 
and in SHR rats, upregulate the expression of angiotensin I1 
(AT1) receptors (Provencher et ul. 1995). Indeed, inhibition 
of angiotensin-converting enzyme normalizes SBP in MLP 
rats (Langley-Evans & Jackson, 1995), and vascular tissue 
of MLP-female rats is more responsive to the pressor action 
of angiotensin 11 in physiological doses (Fig. 3). At doses of 
angiotensin I1 between 1 and 40ng the pressor response 
curve to angiotensin I1 was shifted to the left, indicating an 
increased physiological sensitivity to angiotensin I1 action. 
The dose of angiotensin I1 which produced the maximal 
pressor response was established to be significantly lower 
in MLP rats than controls (MLP 37 (SE 1) ng angiotensin 11, 
n 5; controls, 44 (SE 2) ng angiotensin 11, n 5; P=O.Ol). 

In adult life, MLP-induced hypertension is, therefore, a 
consequence of a steeper rise in SBP due to centrally- 
programmed factors and a synergistic interplay between 
peripheral hypothalamic-pituitary-adrenal activity, the 
renin-angiotensin system and the kidney. With regard to 

the kidney, the MLP diet consistently impairs renal growth 
as a whole (Langley-Evans et al. 19966) and more 
specifically, the formation of nephrons (SJM Welham, 
unpublished results). A reduced nephron complement at 
birth is associated with an increased susceptibility to 
hypertension (Mackenzie & Brenner, 1995). In the 
periphery, the combination of altered blood-flow profiles 
in utero, increased vascular sensitivity to pressors and 
increased pressor action, which perhaps are mediated by 
GC, may comprise the initial stimulus leading to primary 
hypertension. Postnatally, these exaggerated responses 
persist, facilitating structural cardiovascular adaptations 
that predispose to higher blood pressure and secondary 
hypertension (Folkow, 1978). Structural adaptation within 
baroreceptor sites may reset the 'barostat' function of 
baroreceptors at a higher level, further contributing to the 
hypersensitive state (Sleight et al. 1975). 

In conclusion, increased maternal glucocorticoid expo- 
sure, therefore, may primarily facilitate fetal peripheral 
adaptation to an MLP diet. A consequence of the increased 
GC exposure is programming or imprinting of the 
immature fetal hypothalamus. Fetal physiology is thus 
programmed in utero towards an increased propensity for 
SBP to rise. Postnatally, summation of the central and 
peripheral programmed alterations result in a greater rate of 
increase of SBP in early life, leading towards hypertension 
in later life. If the mechanisms, e.g. angiotensin 11, 
facilitating secondary structural adaptation in postnatal life 
are prevented, then hypertension does not develop (Sher- 
man et al. 1997). Furthermore, the early rise in SBP is 
exacerbated by conditions of nutritional excess. The effects 
of early exposure to a low-protein diet on SBP followed by 
exposure to a cafeteria diet in later life are cumulative 
(Petry et al. 1997). 
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