THE EPIDEMIC CURVE OF SMALLPOX.

By W. J. MARTIN, B.Sc.

Of the Medical Research Council's Statistical Staff.

From the Division of Epidemiology and Vital Statistics, London School of Hygiene and Tropical Medicine.

(With 3 Graphs in the Text.)

WHEN a disease assumes epidemic proportions, it is now generally recognised that certain conditions govern the rise and fall of the epidemic wave. Farr was probably the first person to attempt to describe these conditions in quantitative terms. His theory was "the real law (i.e. of the epidemic) implies that the ratio of increase goes on rapidly decreasing until the ratio itself is decreasing." In the Appendix to the second Annual Report of the Registrar-General he discusses the progress of the smallpox epidemic which had spread through England and Wales in 1837-9, causing the deaths of over 30,000 persons. "Five die weekly of smallpox in the metropolis when the disease is not epidemic.... Why do the five deaths become 10, 15, 20, 31, 58, 88 weekly and then progressively fall through the same measured steps?" He suggests, "amidst the apparent irregularities of the epidemic of smallpox and its eruptions all over the kingdom, it was governed in its progress by certain general laws." He found that the deaths from smallpox in the quarters of the year during the epidemic increased up to the third quarter very nearly at the ratio of 30 per cent. "The rate of increase is retarded at the end of the third period, and only rises 6 per cent. in the next, where it remains stationary, like a projectile at the summit of the curve which it is destined to describe. The decline of the epidemic was less rapid than its rise." He showed that the fall of mortality took place at a uniformly accelerated rate and calculated a "regular series of numbers" (such that the second differences of the logarithms are constant) for the decline of the epidemic. He compared these with those actually recorded and found "on the whole the agreement is remarkable." Farr did not put his law in the form of an equation nor did he explain the method by which his regular series were obtained, but it has since been shown that his epidemic law is a function of the normal curve. From the fact that the first, third and fifth of the calculated values agree exactly with the observed, for the two regions-Metropolis, Wales and the western counties-it seems probable that some method of differences was employed to find his "constant rate of acceleration." The calculated series found by Farr can be obtained by taking logarithms of the first, third and fifth of the observed values and finding the second difference. This value divided by

11

four gives the constant second difference for the series, and taken with positive sign is the logarithm of the rate of acceleration. The logarithm of the second calculated value is obtained by adding to the logarithms of the first and third observed values the constant second difference and dividing by two. The ratio of the first to the second calculated value gives the first rate of decrease and the subsequent rates of decrease are found by multiplying the preceding rate by the "rate of acceleration." This method does not apply to the series for the whole kingdom; in this series only the third value of the observed and calculated are identical and no simple method of obtaining Farr's smoothed series suggests itself. The observed values, Farr's series and the calculated obtained by the method of least squares, for the Metropolis are:

Quarter	Mean quarterly deaths registered	Farr's series	e ^{-0·1531x²+0·2811x+6·8965*}
1	1103	1103	1124
2	959	967	940
3	611	611	579
4	240	278	263
5	91	91	88
	* 0	rigin at 0.	

Some years later Farr applied his "law" to a prevalent epidemic of cattle plague, which according to a member of the House of Commons would increase from thousands to tens of thousands until all the cattle would probably die of it. He modified his previous mathematical expression by making the third differences of the logarithms constant and predicted the maximum and course of the epidemic. This forecast met with hostile criticism, but later events justified the accuracy of his main contentions. In 1873 Evans tried to extend Farr's method to epidemics of cholera and scarlet fever but without success.

Since Farr's time various studies have been made on the theory of the course of the epidemic curve. Brownlee put forward the hypothesis that the degree of infectivity of the organism decreased, as the epidemic progressed, according to the law of the monomolecular reaction in physical chemistry, *i.e.* in geometrical progression. He maintained that there was no evidence that an epidemic declined because of the lack of susceptibles but he thought the decline was much more likely to be due to the loss of infectivity on the part of the infecting agent.

Since 1919 Greenwood, Topley and their co-workers have been endeavouring to study, under laboratory conditions, the genesis and development of epidemics. These experiments are being carried out under conditions in which many disturbing factors, such as varying environment, nutrition, density, etc., can be standardised.

VARIATION IN TYPE OF SMALLPOX.

The epidemic curve of any disease may be modified by certain factors, chief among these being (a) changes in virulence of the organism and (b) changes in the resistance of the population. The epidemic curve of smallpox may have been influenced by the first factor; as for the second, smallpox is the only disease for which there was any method of preventive treatment by artificial immunisation a hundred years ago. There is no question that the type of smallpox has changed from the classical type of the eighteenth and early nineteenth centuries, both in fatality and age incidence, to the mild form which we experience, in this country, to-day.

Jenner's discovery of vaccination was made public in 1798, and early in the nineteenth century an appreciable proportion of the population had been vaccinated against smallpox. It was not until 1853 that the first vaccination law was passed, and vaccination was made compulsory in 1871. It has been contended that the general decrease in smallpox throughout the nineteenth century was a consequence of the introduction and dissemination of the method of vaccination. For example, Guy, writing in 1882, on the statistics of smallpox for 250 years in London, showed that smallpox was the most formidable epidemic disease in the seventeenth and eighteenth centuries, and yet in the nineteenth century had decreased much more than any of the other important infectious diseases such as measles, scarlet fever, etc. From this he argued, on the assumption that an equal improvement had been wrought by sanitary measures in all epidemic maladies, smallpox included, that the remarkable excess of improvement in smallpox must be attributed to some cause or causes other than sanitary reforms, and that there was only one cause to which it was reasonable to attribute this excess, namely, vaccination. A more recent study by Greenwood is less confident. He concludes from a study of the vaccination problem that vaccination has "saved lives and diminished suffering under conditions which have prevailed in England and may prevail again," but the use of vaccination is "not the sole, perhaps not the most important, factor in modifying the epidemiological history of smallpox during the last hundred vears."

We have numerous and fairly accurate records of the time sequences in epidemics of smallpox both before and since the introduction of vaccination and before the present phase of inordinately mild smallpox. It has seemed worth while to inquire whether the form of the epidemic in pre-vaccination days, that is, its evolution in time, contrasts with its form in days when a proportion at least of the exposed to risk had been protected. Even if we assumed that no *recently* vaccinated persons can take smallpox at all, the susceptible population in post-Jennerian days must differ in some respects from those of the early eighteenth century. Some of them will be persons vaccinated many years before the epidemic and they will be intermingled with persons completely protected. Even if these considerations were ignored it would still be of interest to learn whether the form of an epidemic had changed over the long period of observation.

For descriptive purposes, the family of frequency curves developed by Prof. Karl Pearson has in point of flexibility and ease of computation few rivals and naturally attracted the attention of those who wished to graduate curves of epidemics. Pearsonian curves have been fitted by Brownlee, Greenwood and others to data of epidemics; Brownlee in particular used the method exten-

12

sively. From the standpoint of graduation the results were often satisfactory, but it did not prove possible to classify epidemics on the basis of the types of curves found appropriate.

As is well known, the Pearsonian curves were derived from the integration of the equation

$$\frac{1}{y}\frac{dy}{dx} = \frac{a-x}{c_0 + c_1 x + c_2 x^2},$$

where y is the frequency, x the abscissal value, and a, c_0, c_1 and c_2 are constants. The frequency distribution is taken to be unimodal. Integration leads to twelve types of curves. In order to use the method on the data of smallpox epidemics, the following preliminary adjustments were made:

(1) The small subsidiary rises at the tails of the epidemics of 1716-17, 1770-2 and 1881-2 were omitted from curve fitting, to conform with the fact that the theoretical curve is unimodal.

(2) The abscissa has, in some cases, been arbitrarily shifted to make the observed data tail off at the ends. This was necessary since smallpox had a varying but fairly high endemic level, when the deaths of the eighteenth and early nineteenth centuries were summed in four-week periods. In other words the epidemic has been taken as a phenomenon superimposed on the endemic level.

LONDON BILLS OF MORTALITY, 1700-1800.

When the deaths from smallpox are summed in four-week periods they give an irregular curve. The time between successive maxima varies from one to three years, but there is on the average a two-year period throughout this century. There is no definite seasonal trend such as is shown by most epidemic diseases, half the number of minima occur in spring and early summer and the maxima tend to be scattered over the rest of the year. When only the larger epidemics (where the maxima were 300 or more deaths in a month) are considered, the peaks are, on the average, distributed fairly evenly over threequarters of the year. The distribution is as follows:

Four-week	No. of	No. of	No. of maxima
period	maxima	minima	(over 300)
l-4	3	4	2
5-8		3	
9–12	1	7	
13-16	1	7	
17 - 20		10	
21 - 24	3	3	2
25 - 28	6	2	5
29 - 32	4		3
33-36	6	3	3
37-40	7	2	4
41-44	3	1	1
45 - 48	· 4	1	1
49 - 52	10	4	3
Totals	48	47	24

Epidemic Curve of Smallpox

LONDON, 1840-1931, REGISTRAR-GENERAL'S REPORT.

When the deaths from smallpox are summed in four-week groups, for this period, the suggestion of periodicity shown by the data in the Bills of Mortality for the eighteenth century is absent. The interval between successive maxima varies from $1\frac{1}{2}$ to $6\frac{1}{2}$ years during the period 1840-85. Between 1800 and 1870 the maximum and minimum values are below those of the eighteenth century and the peaks generally are not so definite. London, in common with most European cities, experienced a severe epidemic in 1870-1. This, the worst of the nineteenth century, rose to a maximum of 1048 deaths in the 17th-20th weeks of 1871. A period of low mortality followed this outbreak, only 246 deaths being recorded in the three years 1873-5. Epidemics of smallpox occurred in 1877, 1878, 1881, 1885, the maxima being 381 in the 1st-4th weeks of the year, 241 in the 13th-16th weeks, 330 in the 17th-20th weeks and 239 in the 17th-20th weeks respectively. By the end of 1885 smallpox had practically disappeared as a cause of death, and during 1886-91 only 55 deaths were recorded in London. A slight rise in the number of deaths followed, and from 1892 to 1895 the annual deaths were 41, 206, 89 and 55. For the next five years only 33 deaths were due to smallpox. The last fatal epidemic made its appearance in the summer of 1901, reached a maximum of 289 deaths in the 9th-12th weeks of 1902 and disappeared by the late summer. For the twenty-nine years 1903-31 the deaths from smallpox were 113. The distribution of the maxima and minima for 1840-1902 is:

Weeks of	No. of	No. of
year	maxima	minima
1-4	4	1
5-8		2
9-12	1	1
13-16	1	1
17-20	5	2
21-24	1	1
25 - 28		1
29 - 32	_	2
33-36		
37 - 40		_
41-44		3
45 - 48	1	2
49-52	2	
Totals	15	16

CURVE OF EPIDEMIC FOR LONDON.

The epidemics have been smoothed by fitting Pearson's Type Curves to the deaths summed in four-week periods. The important constants and equations are given in Table I. While these curves give a good description of the epidemics, they do not "fit" in a statistical sense. Type II, a symmetrical curve, graduates the epidemics for the years 1751-3, 1870-1, 1876-7, 1877-8 and 1880-1. Type I, an asymmetrical curve, describes the outbreaks for 1716-17, 1780-2 and 1862-3; the epidemic of 1780-2 declined faster than it rose, whilst

Origin (4-week periods from	Start)	9-921	5.578	9.752	6.335	6-979	-3701765 + 90 5·957	-5069295 + 50 13-347	-2248048 + 50 7·017	$^{-1} \frac{x}{18.3469448}$ 17.714	9.799	r Thus the series used for
Rometion	TIOTARN	$-\frac{x^2}{197\cdot7948421}$ $5.5162912 + 50$	$-\frac{x^2}{65\cdot 5694651} ight)^{4\cdot 9387302}+200$	$\left(-\frac{x^2}{361\cdot 2574425}\right)^{17\cdot 2477423}$	$-rac{x^2}{46\cdot 8083069} ight)^{1.9304626}$	$-\frac{x^2}{83\cdot4785612} ight)^{5\cdot9111940}+50$	$+\frac{x}{3\cdot 95927114}\right)^{0.9035024}\left(1-\frac{x}{10\cdot 3979481}\right)^{2\cdot}$	$+\frac{x}{23\cdot 5349765}\Big)^{6.5899295}\Big(1-\frac{x}{5\cdot 4237548}\Big)^{1}$	$+\frac{x}{8\cdot8029066}\Big)_{4\cdot5849158}\left(1-\frac{x}{13\cdot8402712}\right)^{7}$	$\left(1+\frac{x^2}{336\cdot 6103835} ight)^{-34\cdot 6849177}e^{-32\cdot 0352183}$ tan	$+\frac{x^3}{116\cdot 1360055} ight)^{-9\cdot7178801}$	a to conform with the Deersonian theory
5 1		$y = 331.2118 \left(1 \right)$	$y = 847 \cdot 949 \left(1 - 1\right)$	$y = 376.9233 \left(1\right)$	$y = 209 \cdot 5966 \left(1\right)$	$y = 265 \cdot 2878 \left(1\right)$	$y = 314.4602 \left(1\right)$	$y = 335.8209 \left(1\right)$	$y = 183 \cdot 5409 \left(1\right)$	$y = 0.1960109 \left($	$y = 1487 \cdot 172 \left(1 \right)$	anted distribution
c	<mark>к</mark> 2	2.626	2.597	2.848	2.323	2.643	2.485	3.105	2.693	3.163	3.416	an af tha ab
	р <mark>г</mark>	0-000206	0-03857	0-00003	0-00406	0.00420	0.1594	0.4080	0-0356	0.0458	0-01600	acted from con
	µ2	14-095	5-093	9-635	6-822	5-632	7-579	14.218	8.336	6-216	7-066	a urono en hen
Mean (4-week periods from	start)	9-921	5-578	9-752	6-335	6.979	7.178	11.544	7.381	8-993	9-799	التعزم مرامعك
ŧ	Y ear	1751-3	1870-1	1876–7	1877-8	1880-1	1716–17	1780–2	1862–3	1901-2	1901–2 (cases)	Rofora and

each term.

Epidemic Curve of Smallpox

the reverse is the case for 1716-17 and 1862-3. The outbreak in 1901-2 conforms to a Type IV and is the only distribution that approaches a statistical fit. Most of the epidemics which have been smoothed are irregular, but some of the epidemics experienced in London give such a ragged distribution that no unimodal curve will smooth them, neither does a parabolic curve of the 4th order describe the distribution (see Table III). In this class fall the outbreaks of 1722-4, 1795-7 and 1884-5; the last exhibits three distinct peaks. A possible explanation of this seemed to be that the disease had made its appearance in hitherto unaffected districts, so that the total was really a summation of several epidemics with different time intervals. To examine this, the deaths were taken out in the five broad groups-West, North, Central, East and South, as defined by the Registrar-General, for the nineteenth-century epidemics. The surmise proved to be incorrect since there is no apparent difference in the commencement of the outbreak in the various divisions, but the interesting discovery was made that the course of the epidemic varied from district to district. The time of the maxima differs, the most outstanding case is in 1871 when the largest number of deaths in the East district occurred in February and in the North in June. The order in which the London districts reach their maximum varies, but for the years examined the North tends to occupy the last position. In 1863 the maximum for London as a whole, the North and South was in the 19th-22nd weeks of the year, whilst the largest number of deaths in the West, Central and East occurred in the preceding four-week period. The outbreak in 1870-2 attained a maximum for London as a whole and the South in the 17th-20th weeks of 1871, whilst that for the West, Central and East was in the 5th-8th weeks. The climax of the epidemic in the North district was reached in the 21st-24th weeks. During the epidemic of 1876-8, which was bimodal, the first maximum for London as a whole and the South was reached in the first four-week period of 1877, in the East in February and in the North in March. The Central and West districts did not have a definite maximum. The second peak for London as a whole, North and East appeared in the 13th-16th weeks of 1878 and that for the South and West in the preceding and succeeding months respectively. In 1881 the peaks of the distribution for London as a whole, West and Central districts were simultaneous, 17th-20th weeks, that for the East, South and North in the 13th-16th, 21st-24th and 25th-28th weeks respectively. The distribution of deaths for the epidemic of 1884-5 was trimodal, and although the maxima of the five districts were not so clearly defined as in the preceding outbreaks, they show the same time irregularities as did the previous epidemics. The majority of the deaths in the 1901-2 outbreak occurred in M.A.B. ships and hospitals at Dartford, so that a similar analysis in districts for this epidemic is of little value. It is not possible to analyse the eighteenth-century data in subdivisions. The notifications for the years 1901-2 and 1928-31 were also examined in the five districts. These two distributions show varying maxima and irregularities similar to those displayed by the deaths for the nineteenth century. The

maximum number of cases of smallpox for London as a whole, North and South, for the epidemic of 1901–2, was reached in the 9th–12th weeks of 1902, the maximum of the Central, West and East districts had occurred earlier in the 49th–52nd weeks of 1901, 1st–4th and 5th–8th weeks of 1902 respectively. The distribution of cases of smallpox during 1928–31 is irregular. The largest number of cases for London as a whole, North and Central occurred during the 13th–16th weeks, the East in the 9th–12th weeks of 1930, whilst in the South district the peak of the epidemic was in the 45th–48th weeks of 1929. The West district had very few cases. A Type VII, a symmetrical curve, smoothes the 1901–2 notifications. The observed and smoothed values and the proportion of the total deaths occurring in each four-weekly period, for each of the London epidemics, are given in Tables II, III and IV.

This analysis makes it clear that no precise formal distinction differentiates the London epidemics of the eighteenth century from those of the late nineteenth and early twentieth centuries. There is perhaps a tendency for the modern epidemics to be more concentrated in time. This can be most easily seen by an examination of the proportional distribution as given in Table IV. If we now take the three four-weekly periods of which that containing the maximum is central, then in the three eighteenth-century epidemics these three periods include 34.4, 29.3 and 30.6 per cent. of the total epidemic deaths; the six nineteenth- and twentieth-century epidemics have respectively 34.7, 39.5, 34.9, 41.4, 40.4 and 48.1 per cent. of their totals within the defined limits. There is a suggestion that as we approach more nearly the modern epoch this concentration increases. Graphs I and II illustrate the comparison. This phenomenon could be explained in many ways, but, for the reasons already pointed out, e.g. the non-uniformity of distribution throughout the area of London, we have no adequate means of verifying any speculations. All that can fairly be said is that, in respect of evolution in time, no sharp distinction between epidemic smallpox in pre- and post-vaccination times can be established.

Towns other than London.

It is of some interest to compare the forms of the London epidemics with those of other cities. Glasgow is the only British city for which suitable data were available and a Type II curve graduated the 1863–4 experience.

The 1870 epidemic was common to most European countries and makes comparison possible between different cities. The distributions are given by Prinzing in his *Epidemics resulting from Wars*. A normal curve describes the Hamburg epidemic of 1870-2; Leipzig 1871 yields a Type IV, the fall being more rapid than the rise; Breslau (cases) 1871-2 gives a Type I with steeper decline than rise. The distributions for Danzig and suburbs and Berlin are two-peaked, and a fourth order parabola fails to describe them. The curve for Paris 1869-71 can be regarded as two curves, the first a Type I, with a slower rise than fall, and the second a Type II. The epidemic was apparently declining when it received

Journ. of Hyg. XXXIV

	h-I L-I	Smoothed	60	84	127	187	249	297	314	295	247	184	125	83	60	2312					
	ondon 188(Deat	Observed {	56	77	154	205	202	289	330	315	262	149	123	80	72	2314					
	Г	4-week periods	45-48	49-52	14	5-8	9–12	13-16	17-20	21 - 24	25 - 28	29-32	33–36	37 - 40	41-44	Totals					
	8 ths	Smoothed	35	78	124	165	194	208	205	186	152	109	63	23	1542						
	ondon 1877 Dea:	Observed 5 values	45	67	116	146	179	183	241	219	149	87	62	28	1552						
	Ic	4-week (41-44	45-48	49 - 52	1 4	5-8	9-12	13–16	17-20	21 - 24	25 - 28	29-32	33-36	Totals						
<u> </u>	i–7 ths	Smoothed	9	17	37	73	124	190	261	324	366	374	349	295	226	156	67	53	26	2974	
Table I	ondon 1876 Dea	Observed	20	25	28	53	74	210	297	381	369	356	292	291	243	143	104	60	47	2993	
	ľ	4-week periods	25-28	29-32	33–36	37-40	41-44	45-48	49-52	1 4	5-8	9-12	13 - 16	17 - 20	21 - 24	25 - 28	29-32	33–36	37-40	Totals	
)1 tths	Smoothed values	330	492	700	897	1022	1032	923	733	523	351	248	208	7459						
	ndon 1870 Dee	Observed values	297	559	852	797	947	1048	971	764	440	321	269	236	7501						
	Ic	4-week periods	49-52	14	5-8	9–12	13 - 16	17-20	21 - 24	25 - 28	29-32	33-36	37-40	41-44	Totals						
	[-3 ths	Smoothed	70	91	122	163	211	262	309	348	373	380	370	343	302	254	203	156	117	87	R7
	ndon 1751 Dea	Observed values	72	109	109	192	216	251	303	290	336	387	478	380	295	208	167	150	118	108	01
	\mathbf{Lo}	4-week periods	33-36	37 - 40	41-44	45-48	49-52	1 4	5-8	9 - 12	13 - 16	17 - 20	21 - 24	25 - 28	29 - 32	33 - 36	37 - 40	41-44	45-48	49– 52	A.I.

Epidemic Curve of Smallpox

*,	ses	Smoothed values	11	26	59	128	260	480	790	1135	1402	1472	1313	666	657	380	198	94	42	18	8	3	9475
lon 1901–2	ן נ	Observed values	13	17	116	173	303	413	654	096	1511	1663	1241	893	906	352	139	73	18	14	14	11	9484
Lond		4-week periods	25-28	29-32	33-36	37 - 40	41-44	45-48	49-52	1-4	5-8	9–12	13-16	17 - 20	21 - 24	25-28	29-32	33-36	37 - 40	41-44	45-48	49-52	Totals
81	ths	Smoothed values	s	7	17	35	66	111	167	219	247	236	190	126	68	30	11	ი	1536				
-1001 nobu		Observed { values	5	16	20	26	73	91	162	221	289	230	166	130	67	30	12	5	1540				
Lor		4-week periods	29–32	33-36	37 - 40	41-44	45-48	49–52	1-4	5-8	9-12	13-16	17 - 20	21 - 24	25 - 28	29–32	33–36	37 - 40	Totals				
ę	ths	smoothed values	63	86	121	161	198	224	233	225	202	171	138	108	84	67	57	2138					
ndon 1862	Lea	Observed S values	58	121	105	132	173	261	269	212	183	176	124	111	84	76	58	2143					
Lo		4-week (periods	47-50	51 - 2	36	7-10	11-14	15-18	19 - 22	23-26	27 - 30	31 - 34	35-38	39 - 42	43-46	47-50	51-2	Totals					
5	at DS	Smoothed values	66	75	88	106	128	156	188	225	265	304	340	369	384	380	351	294	209	109	52	4089	
idon 1780)bserved values	76	101	101	131	126	125	143	166	261	313	386	425	468	366	257	281	176	141	64	4107	
Lor		4-week (periods	37-40	41-44	45-48	49 - 52	53-3	4-7	8-11	12-15	16 - 19	20 - 23	24-27	28 - 31	32 - 35	36-39	40-43	44-47	48-51	52-3	4-7	Totals	
-17	ths	Smoothed . values	06	115	252	344	391	406	392	362	321	275	227	183	145	116	3619						
1716- 1716-		Observed values	95	135	207	325	414	449	383	372	307	231	227	202	161	116	3624						
Lor		4-week (21 - 24	25 - 28	29 - 32	33-36	37 - 40	41-44	45-48	49-52	1-4	5-8	9-12	1316	17-20	21-24	Totals						

2-2

* Metropolitan Asylum Board's Report.

Table II (continued),

1725	2-4	1798	5-7	1884	l5
4-week periods	No. of deaths	4-week periods	No. of deaths	4-week periods	No. of deaths
13-16	61	37-40	89	1-4	15
17-20	93	41-44	138	5-8	11
21 - 24	123	45-48	210	9-12	23
25 - 28	132	49 - 52	218	13-16	46
29-32	153	1-4	169	17 - 20	85
33-36	219	5-8	192	21-24	155
37-40	254	9–12	166	25 - 28	185
41-44	308	13-16	172	29-32	97
45 - 48	397	17-20	216	33-36	61
49-52	414	21 - 24	346	37-40	51
l-4	425	25 - 28	374	41-44	97
5-8	344	29-32	400	45 - 48	164
9-12	198	33-36	325	49-52	208
1316	191	37-40	406	53-3	226
17-20	186	4144	265	4-7	219
21 - 24	258	45 - 48	207	8-11	122
25 - 28	243	49 - 52	202	12 - 15	152
2932	269	1-4	83	16-19	240
3336	242	5-8	42	20-23	206
37-40	231			24-27	127
41-44	205			28-31	63
45-48	148			32 - 35	35
49-52	112			36-39	35
1-4	81			40-43	12
5-8	60				

Table III. Unclassified distributions. London.

Table IV. London epidemics. Proportion of deaths in each month.

Month	1716-17	1751_9	1780-2	1862-3	1870-1	1876_7	1877_8	1880-1	1901-2
	1110-11	1701 0	1100-2	1002-0	1010-1	1010-1	1077-0	1000 1	1001 -2
Ist	0.026	0.017	0.019	0.027	0.040	0.002	0.029	0.024	0.001
2nd	0.037	0.026	0.025	0.056	0.075	0.008	0.063	0.033	0.010
3rd	0.057	0.026	0.025	0.049	0.114	0.009	0.075	0.067	0.013
4th	0.090	0.045	0.032	0.062	0.106	0.018	0.094	0.089	0.017
5th	0.114	0.051	0.031	0.081	0.126	0.025	0.112	0.087	0.047
6th	0.124	0.059	0.030	0.122	0.140	0.070	0.118	0.125	0.059
7th	0.106	0.071	0.035	0.126	0.129	0.099	0.155	0.143	0.102
8 th	0.103	0.068	0.040	0.099	0.102	0.122	0.141	0.136	0.144
9 th	0.085	0.079	0.064	0.085	0.059	0.123	0.096	0.113	0.188
10th	0.064	0.091	0.076	0.082	0.043	0.119	0.056	0.064	0.149
llth	0.063	0.113	0.094	0.058	0.036	0.098	0.040	0.053	0.108
12th	0.056	0.089	0.103	0.052	0.031	0.097	0.018	0.032	0.084
13th	0.044	0.069	0.114	0.039		0.081		0.031	0.044
14th	0.032	0.049	0.089	0.032		0.048			0.019
15th		0.039	0.063	0.027		0.035			0.008
16th		0.035	0.068			0.020			0.003
17th		0.028	0.043			0.016			
18th		0.025	0.034						
19th		0.018	0.016						

Graph II.

Graph III.

Epidemic Curve of Smallpox

a stimulus from the arrival, in Paris, during September 1870 of newly organised troops, consisting of young men who had not been vaccinated or revaccinated. The constants, equations, observed and smoothed values for these cities are given in Tables V, VI and VII.

INDIA.

Finally the deaths from smallpox in British India have been analysed, and curves fitted to the data of Bombay and Calcutta. The data as a whole for the 49 years 1882–1930 give a remarkably smooth curve, with a steady increase to a maximum in the spring and a steady decrease to a minimum in the autumn. The peaks of the curve occur as follows:

	Maxima	Minima
	10 in March 22 in April 16 in May 1 in June	3 in September 40 in October 6 in November
Totals	<u>49</u>	<u>49</u>

There is a suggestion of periodicity in the severity of the epidemics in the Indian data, the maxima following a wave-like trend. The more severe epidemics (and to a less extent the minor epidemics) tend to occur in pairs, in following years. The actual maximum and minimum values for this period are given in Table VIII.

Curves have been fitted to the deaths, summed in four-week periods, for the epidemics in Calcutta, during the years 1905–6 and 1908–9, and for Bombay for 1899–1900 and 1904–5. In each case a Type IV curve gives a good description. In these Indian cities, the concentration around the period of maximum is far greater than in the London experience. Thus in Bombay, 1899–1900, 75.8 per cent. of the deaths fall to the three four-weekly periods in which the maximum is central (see Graph III). In 1904–5, the percentage was 70.5. In the two Calcutta epidemics the proportions were 60.8 and 78.9 per cent. The constants, equations, observed and smoothed values are given in Tables IX and X.

CONCLUSIONS.

It is not possible, on the basis taken, to differentiate between the course of the epidemic before and after the introduction of vaccination. The shape of the distribution of monthly totals of the outbreaks of 1870 for various European cities are dissimilar. The majority of the fitted curves are symmetrical or almost so; the most skew distributions, of London, examined are those of 1716-17 and 1780-2. It does not seem practicable, from these data, to make the London epidemics a function of time only. The shorter period for which the epidemic rages in India, the greater severity, the striking seasonal variation —the spring maxima and autumn minima—probably account for the four Indian curves being of the same type and giving a better description of the observed distribution than most of the other curves.

		\mathbf{Table}	J. Con	stants and	l equation	ns of epid	emics oth	er than	London.	Deaths.			
		Mean (months										οg	rigin onths
City	Year	start)	с1 Ц	β1	β_2			Э.	luation			H 20	rom tart)
Glasgow	1863-4	8-284	11.308	0.0152	2.532	y = 65.66478	$8\left(1-\frac{122\cdot 3}{122\cdot 3}\right)$	$\left(\frac{x^2}{2110433}\right)^3$	-9038676			~	3-284
Hamburg	1870–2	10-494	10-190	0.00027	3.025	$y = 501 \cdot 1475$	$e^{-\frac{(x-0.4935}{20.38013})}$	162) ²				Я	-494
Leipzig	1871	5.295	2.615	0.0368	3.370	$y = 219 \cdot 4734$	$4\left(1+\frac{53\cdot 1}{53\cdot 1}\right)$	$\left(\frac{x^2}{165343}\right)^{-1}$	12.1269795 e4.7	1995130 tan-1	x •2881091		8-724
Paris	1869–71	I	V-reader	l	I	y = 994-677!	$5\left(1+\frac{(x-1)}{12}\right)$	0.2491650 9975940) 3.4999516	$1 - \frac{(x - 0.2)}{1.528}$	$\frac{491650}{57410}$	4116646	
					·			+	842·3488 ($1 - \frac{(x - 4.65)}{9.726}$	$\frac{263674)^2}{4523}$)I)-249
Breslau (cases)	1871–2	11-244	8·726	1.059	3-991	y = 1161.568	$8 1 + \frac{24 \cdot 30}{24 \cdot 30}$	$\left(\frac{x}{558614}\right)^7$.	1160334 (1 -	$\frac{x}{1.9252639}$	0.5636600	I	3-556
						Table VI							
Glasgow 1.	863-4 Deathe	Hε	amburg 187	0-2 sethe		Leipzig 187	l he	ų	aris 1869–7 Deet	.] +he	Bres	lau 1871-5 Cas	0
l						Treat							
Observ Month value	red Smootl s value	hed 35 Month	Observed v values	l Smoothed values	l Month	Observed { values	Smoothed values	Month	Observed a values	Smoothed	Month	Observed values	Smoothed
May 12	-	Oct.	10	x	Jan.	16	6	Oct.	39	29	Jan.	33	21
June 14 Julv 18	14 24	Nov. Der	24 37	15 33	Feb. March	42 103	40 194	Nov. Der	93 110	64 118	Feb. March	89 9 08	36 58
Aug. 34	35	Jan.	69	34	April	255	257	Jan.	174	197	April	89	91 01
Sept. 43 Oct 69	46	Feb. March	107	115 187	May	367	343 200	Feb. March	293 406	301 431	May	134 935	138 902
Nov. 74	62	April	226	276	July	161	180	April	561	±01 581	July	287	287
Dec. 76	65 2	May	364	369	Aug.	68 2	80	May	786	742	Aug.	271 221	395 295
Jan. 01 Feb. 59	4 S	June.	003 554	448 493	Sept.	02 91	87	June Julv	91 4 1072	891 983	Sept.	301 699	027 680
March 44	51	Aug.	578	493	Totals	1374	1368	Aug.	713	688	Nov.	1026	848
April 35 Mar 97	41	Sept.	373	447 960				Sept.	1961	585 1996	Dec.	1229	1011
June 23	88	Nov.	229	274 274				Nov.	1301	1752	Feb.	1161	1127
July 16 Ang. 8	11	Dec.	170 158	186 114				Dec. .Ian	1837 1503	1800 1469	March Anril	462 242	669 U
Totals 596	590	Feb.	42	38				Feb.	763	760	Totals	7306	7252
		April	1 #/	55 24				Totals	13286	34 19952			
		Totals	4010	4010									

25

\mathbf{Berlin}	1870-2	Danzig and su	burbs 1870–2
Month	Deaths	Month	Cases
Nov.	9	Oct.	4
Dec.	22	Nov.	13
Jan.	48	Dec.	34
Feb.	80	Jan.	123
March	176	Feb.	129
April	349	March	201
May	430	April	365
June	648	May	459
July	532	June	442
Aug.	528	July	182
Sept.	490	Aug.	130
Oct.	600	Sept.	111
Nov.	660	Oct.	124
Dec.	671	Nov.	136
Jan.	445	Dec.	135
Feb.	256	Jan.	245
March	151	Feb.	222
April	117	March	153
May	76	April	89
June	33	May	34
July	18	June	19
Aug.	10	July	13
0		Aug.	8

Table VII. Unclassified epidemics.

Table VIII. India.

	Monthly	deaths		Monthly deaths			
Year	Maxima	Minima	Year	Maxima	Minima		
1882	11.612	3.013	1907	13.918	3,327		
1883	38.023	4,284	1908	28,773	2,879		
1884	67.516	5.139	1909	19,347	2,274		
1885	12.620	2,218	1910	7,317	1,931		
1886	7.043	1,913	1911	7,895	2,474		
1887	8,789	2,829	1912	11,726	3,102		
1888	13,277	3,035	1913	15,239	2,164		
1889	20,803	2,631	1914	10,958	2,256		
1890	18,409	3,407	1915	13,837	1,963		
1891	12,676	4,139	1916	8,876	2,112		
1892	14,418	3,537	1917	7,284	3,453		
1893	9,305	2,168	1918	12,966	3,338		
1894	6,305	1,468	1919	20,728	3,440		
1895	6,691	1,603	1920	16,625	1,849		
1896	22,673	3,599	1921	6,542	992		
1897	32,521	2,754	1922	4,783	2,497		
1898	9,493	1,822	1923	5,320	1,918		
1899	6,270	2,798	1924	7,568	1,918		
1900	12,024	3,927	1925	13,439	2,632		
1901	12,238	3,889	1926	17,648	2,680		
1902	18,348	2,934	1927	18,986	2,306		
1903	13,354	2,457	1928	16,109	2,544		
1904	7,859	1,852	1929	11,927	1,683		
1905	8,540	3,260	1930	11,775	1,238		
1906	14,916	3,488					

	Origin (4-week periods from	start)	4.072	4.828	4.808	6-080	
quations for the epidemics of Bombay and alcutta. Deaths.		Equation	$y = 677.8585 \left(1 + \frac{x^2}{11.3035611}\right)^{-4.6085008} e^{2.7340992 \tan^{-1} \frac{x}{5.3820769}}$	$y = 471.8572 \left(1 + \frac{x^2}{44.1613797} ight)^{-11.7455494} e^{3.6741099} \tan^{-1} \overline{6.6454020}$	$y = 516.7851 \left(1 + \frac{x^2}{43.0567153} \right)^{-10.9906122} e^{4.3200895} \tan^{-1} \frac{x}{6.5617616}$	$y = 1503.733 \left(1 + \frac{x^2}{10.7552967} ight)^{-0.1705345} e^{-0.4831710 \ ext{tan} -1} \frac{x}{3.2735236}$	
ts and e		β_2	5.274	3-363	3.421	3.825	
Constan		β_1	0-4587	0.0245	0.0422	0-0047	
Table IX.		μ_2	2.079	2.218	2.377	1.545	
	Mean (4-week periods from	start)	5.345	5-964	6.230	5-926	
		\mathbf{Year}	1899-1900	1904-5	1905-6	1908-9	
		City	Bombay	Bombay	Calcutta	Calcutta	

J	3ombay 1899-	1900	Bombay 1904–5			
Deaths			Deaths			
4-week period	Observed values	Smoothed values	4-week period	Observed values	Smoothed values	
$\begin{array}{c} 41-44\\ 45-48\\ 49-52\\ 1-4\\ 5-8\\ 9-12\\ 13-16\\ 17-20\\ 21-24\\ 25-28\\ 29-32\\ 33-36\\ 37-40\\ \end{array}$	$ \begin{array}{c} 16\\ 48\\ 151\\ 654\\ 984\\ 792\\ 356\\ 120\\ 44\\ 19\\ 14\\ 4\\ 3\end{array} $	6 39 201 636 979 754 365 141 51 19 7 3 1	$\begin{array}{c} 41-44\\ 45-48\\ 49-52\\ 1-4\\ 5-8\\ 9-12\\ 13-16\\ 17-20\\ 21-24\\ 25-28\\ 29-32\\ \hline \\ Totals \end{array}$	$\begin{array}{c} 6\\ 16\\ 78\\ 238\\ 519\\ 649\\ 426\\ 210\\ 81\\ 33\\ 4\\ 2260\\ \end{array}$	$ \begin{array}{r} 3\\17\\80\\254\\508\\613\\454\\222\\78\\22\\5\\2256\end{array} $	
Totals	Totals 3205 3202 Calcutta 1905-6 Deaths		Calcutta 1908–9 Deaths			
4-week period	Observed values	Smoothed values	4-week period	Observed values	Smoothed values	

3

16

 $\mathbf{78}$

265

576

772

646

360

146

47

13

4

2926

4

12

 $\hat{82}$

273

575

707

741

331

131

41

 $\tilde{26}$

3

2926

42–45 46–49

50-53

l–4

5-8

9–12

13-16

17-20

21 - 24

25–28 29–32

Totals

1

8

50

267

931

1449

835 210

34

 $\mathbf{5}$

1

3791

 $\frac{5}{24}$

83

329

851

780

278

62

17

3791

2

1360

Table X.

A theoretical objection to taking Type I, which occurs four times, as an
epidemic curve is the fact that its range is limited in both directions. The same
objection can be raised against Type II, which describes the majority of London
outbreaks, since it is a special case of Type I, a symmetrical form. The normal
curve and Types VII and IV fulfil the theoretical condition of unlimited range
in both directions, <i>i.e.</i> the epidemic never absolutely disappears although it
becomes negligible. Type VII is a particular case of Type IV arising from a
symmetrical form. The normal curve is the transition point between a Type II
and Type VII. Type IV, which has been found to fit the majority of other
epidemics, is leptokurtic, <i>i.e.</i> a narrow top curve, whilst most of the observed
distributions are platykurtic, hence this curve is unsuitable for describing the
majority of the smallpox epidemics.

41-44

45-48

49 - 52

1–4

5-8

13-1617-20

21-24

25 - 28

29-32

33-36

Totals

9-12

REFERENCES.

- BROWNLEE, J. (1915, 1916). On the curve of the epidemic. Brit. Med. J. 8. v. 15 and 29. vii. 16.
- (1915). Historical note on Farr's theory of epidemics. Ibid. 14. viii. 15.
- EVANS, G. H. (1866-76). Some arithmetical considerations of the progress of epidemics. Trans. Epidem. Soc. of London, 3, 551.
- FARR, W. (1840). Second Annual Report, Registrar-General. Dr Farr's Appendix, p. 91.
- GREENWOOD, M. (1913). The factors that determine the rise and spread and degree of severity of epidemic diseases. The 17th International Congress of Medicine (Hygiene and Preventive Medicine), Section XVIII, London, pp. 49–80.
 - (1930). The vaccination problem. J. Roy. Stat. Soc. 93, Part п, pp. 233-57.
- GUY, W. A. (1882). On two hundred and fifty years of smallpox in London. *Ibid.* 45, pp. 399-437.

(MS. received for publication 19. x. 1933.-Ed.)