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AT INTEGER POINTS AND CLASS NUMBERS
OF CYCLOTOMIC FIELDS
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1. Introduction

Let g be a positive integer, and L(s, x) the Dirichlet L-function correspond-
ing to a Dirichlet character x mod q. We put

v,= X |La, 0l

x(mod ¢)
X#Xo

where x runs over all Dirichlet characters mod ¢ except for the principal charac-
ter Xo-

At first we consider the case ¢ = p is a prime number. Let {(s) be the
Riemann zeta-function. The classical result

V, = L@p + O(logp)?)

of Paley and Selberg (see Ankeny-Chowla [1]) was improved by Slavutskil [7] [8],
who proved

(1.1) V, = {(@2)p — (ogp)* + Ologp).

Further refinements were given by Zhang. He improved the error estimate in (1.1)
to O(loglog p) in [17], and then in [18], he obtained

(12) V,=C@p— ogp* — (14 L@ +24— [ Cwidy) + 03or),

log p
where
& logln +1) 2 y

Received June 10, 1993.
* Partially supported by Grant-in-Aid for Scientific Research (No. 03740051), Ministry
of Education, Science and Culture.

151

https://doi.org/10.1017/50027763000004906 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004906

152 MASANORI KATSURADA AND KOHJI MATSUMOTO

In the present paper, by a method quite different from those of Slavutskii and
Zhang, we will prove the following asymptotic expansion:

THEOREM 1. For any integer N = 1, we have
(1.3) V,=0@p— (ogp® + (ri — 21, — 30(2) — (e — 27, — 2L@)p ™"
+20 -5 {E 00— wea+wp” + 06™),

where the O-constant depends only on N, and the constants 7, and 1, are the Lauvent
expansion coefficients of {(s) at s = 1 defined by

1
(1.4) (s = S—=1 +rtnG—1) + e .

In the vight-hand side of (1.3) (and also throughout this papey), the sum Zﬁ;‘ is to be
considered as the empty sum if N = 1.

Remark. Comparing (1.2) with (1.3), we see
1
(1.5) L+24— [ C@dy=— 7l + 27, +20).
0
We will give a direct proof of this relation in Section 4.

We define the Bernoulli numbers B, by

(1.6) ez-z—1 =§0%zk (2| < 2.
It is well known that

- % ifn=0,
(1.7) C(=n) = (= 1)n'anTHl I nBrll if 7 is odd,

0 ifniseven (n = 2)

(see (2.4.3) of Titchmarsh [10], noting that the definition of Bernoulli numbers is
different in Titchmarsh’s book). Therefore we can rewrite (1.3) to

V, = C@)p — (ogp)* + (2 — 21, — 30(2) — (72 — 271, — 20@)p™"
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Bon
N-1 2m

2

+20—pY {% (2t - = LA +2mp~" + O(p'”)],
<m<

1

so the coefficients of the asymptotic expansion of V, can be written by using the
values of {(s) at odd integers.

We can show the similar type of asymptotic expansions at any other integer
points. For any integer m (# 1) and g (= 2), we put

Uym) = 0@~ = [Lom, 0 [,

x (modg
where ¢(g) is Euler’s function. Let I'(z) be the gamma-function, and define

()= re=a7

for any complex z and any non-negative integer #. Then,

THEOREM 2. For any integers m and N satisfying 2 < m < N, we have

w @2m—2)!
(m— 11)?

-(— logp + img:% — % m — 1)) — P m)® — 28 (m 3 p)),

U,(m) = C(2m) + 2p" " (— 1) £@m—1)

where

S*mi k)= X < —nm> Com— n)lom + mk" " + 0"™™).

0<n<N-1
n#Em-—1

THEOREM 3. For any integer m = 0, we have the following finite expression:

2
U,(—m) = C(—2m) — p™"C(— m)* + (— D" 'p*™” Tz‘% (—2m—1)

Z (m m-n 1 Bonss
+23 (") U=m—ml—m+wp" "+ p 2
n=0 \ 1 (m+ 1)

We will prove Theorem 1 in Section 2, and Theorems 2 and 3 in Section 3.
Also, we can show generalizations of the above theorems to the case of any compo-
site modulus ¢, which will be discussed in the last section.

Let

https://doi.org/10.1017/50027763000004906 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000004906

154 MASANORI KATSURADA AND KOHJI MATSUMOTO

xz

ze
}
e —1

(1.8) flx, 2) =

and define the Bernoulli polynomials B,(x) as the Taylor expansion coefficients of

flx, 2):

(1.9) fa, 2 =3 B’;l(f) 2 (z| <2n).

n=0

Then it is known that, for any positive integer ¢ and any Dirichlet character
x mod g, the relation

m

(1.10) L(— m, X) = - mq+ 1 %X(a)BmH(%)

holds for any non-negative integer m (see, e.g., Theorem 4.2 of Washington [13]).
It should be noted that Theorem 3 can also be deduced from this formula (see Sec-
tion 4).

Now let p be an odd prime, and 4, the class number of the cyclotomic exten-
sion Q(*™?) of the rational number field Q. Then it is classically known that

(111) hpR’ = pr/z(zn_)—(ﬂ——l)/ZAp’
where R, is the regulator of Q(em/”) and

A,= T |LQ, 0|
x(modp)
xX#x0

By using the inequality 4, < (V,/(p — 2)?7?” and (1.1), Slavutskit [7] [8]
proved

T (p-2)/2
ﬁf’)

hy <20

Recently, Wang [12] improved this result to
T (p=-2)/2
(1.12) h<10(15p) .

Wang'’s basic idea is to divide A, = A}Aj7, where

A= IOILA, 0 A= T 1LA, 0,

x (modp) % (mo
x:odd x:even
XF Xo

and treat each product separately.
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Combining our Theorem 1 with Walum'’s [11] result

-1 0@—2) 7

L, 0lf= :
2(modp) 124,01 12172
x:odd

we get the asymptotic formula

S LA, 0 =5 (@~ logp)’ + (¢ — 27, — L@)
x (modp)
x:even
XF Xo

- (yj —2n + % c(z)) P+ C@p
N-1 N
+20 =57 [T (- 072a - wea+ap” + 0™,

which itself is of some interest. Applying this formula to A}, we can show an im-
provement of (1.12).

However, we do not state the result here, because we can prove a better esti-
mate, by refining Wang's argument. In the Appendix we will prove that for any
small ¢ > 0,

(1.13) h, = 0((5%17)@—2)/2 exp(— 1;25 (logp)z»,

where the O-constant depends only on &.

The present paper is a continuation of the authors’ previous paper [5], which
is inspired by Motohashi's article [6]. Therefore, we can say that the origin of our
method lies in the classical paper of Atkinson [2].

The authors would like to thank Professors Shigeki Egami and Yuji Kida for
valuable suggestions, and Professor Tauno Metsankyla for informing them of the
existence of Wang's paper [12].

2. The mean square of L(1, x)

In this and the next section p denotes an arbitrary prime number. First we
quote the formula [5, (4.7) and (1.11)}:

2.1) G—1"" X Lu, x)L(v, %)

x(modp)

=Lu+v) —p L@@ + T T+ v — D+ v —1)
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ra-—u= Ia-o
( O ) )

+ 555w mtww + (7w = e+ )
+ 07V Ry(u, v p) + p7 N Ry(v, u; p)

for any N = 1, where

. 3 1 0 yﬂ+N—l 0 1 (1 _ T)N_l
(2.2) Ry, vi0) = Ty Q) fo 1 f f (V=D
B (x4 ey drdzdy

with

e 1

-1 %

hz) =

(The factor y”w+1 in [b, (1.11)] should be read as y"+N_1.) In [5] we remark that
the integral in the right-hand side of (2.2) is convergent absolutely for
0<Rwu) <N+1,Rw) >— N+1. Hence (2.1) is valid in the region
{(u, ) |0 <Rw) <N+1,0<R@ <N+ 1} as an identity of meromorphic
functions. In particular, for any N = 1, (2.1) is valid near ¥ = v = 1. We put
# = v =1+ 0 with a small positive 0 in (2.1) to obtain

23) -1 I |[LA+4, 0

x(modp)
X#Xo

=—(p-DTA —p7"OHCA+ 6+ L2+ 20 —p7CA +6)°
+2p7FrQA + 20)I(— 6)I'A + 0)7'c@ + 26) +2p77°c( + 6)°

+2p7 % (T 1n_ d A+ 5= M+ 6+ w)

n=1

+ PR+ 6,1+ 35 ).

From (1.4) we see

CA+0)"=0671+ 27,0 + G2+ 2700 + 0)),

SO
24 {(—G—DTA—p N —p P +2p7% A + 0)°
= 57071+ 2G, — log )3 + (rj + 27, + g%f (logp)’ — 47, log p) &
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+ 0.
It is well known that I"(1) = — 7,. Let ¢(y) = (I""/I) (y). Then the formulas
~ =1 1
(2.5) i (M (m - m)
and
(2.6) =35 —1—
‘ n=0 (y + n)z

are also well known. Putting ¥ = 1 in (2.6), we can see (1) = y2 + £(2). Hence
1
ra+0 =1- 716+ +{@)5 + 0,

and by using this formula and (1.4) we can deduce
2.7 2p77rQ + 200r(— Hra + 97'¢a + 20
lam 1
=2p"0 2{— 5 1 (=1, +1ogp)d + 2y,logp — 27, — ((2) — (ogp))”

+0("}.

Substituting (2.4) and (2.7) into the right-hand side of (2.3), and letting d — 0, we
obtain

@8 G-17V,=0@ +p [y — 25, —20@) — 5 £ - (log )’

+ 2p'2[N§ (= D" = WEA +mp' ™ + P Ry, 1;p)].

Since Ry(1, 1;p) is bounded with respect to p, as has been shown in [5, Sect. 1],
the assertion of Theorem 1 immediately follows from (2.8).

3. The mean square at other integer points

Let n be a small positive constant, and define the contour € which consists of
the half-line on the positive real axis from infinity to 1, a circle of radius 7 coun-
terclockwise round the origin, and the other half-line on the positive real axis
from 7 to infinity. In [5, (5.1)] we have shown
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1 _ T)N—l

1 f (
F(u)F(v) (eZm‘u _ 1)( 2niv 1) (N — 1)'

(3.1) Ry(u,v; k) =

v+N—-1

f U f Y (2 + k~'zy) 2 drdydr.

Since the above integral is convergent absolutely if R(#) < N + 1, the identity
(2.1) is valid if R(w) < N+ 1 and R(w) < N + 1, as an identity of meromorphic
functions. Hence the formula [5, (1.7)], which is obtained by putting # = ¢ + it
and v = ¢ — ¢t in (2.1), is valid in the region ¢ < N + 1, except for the points at
which some factor in the right-hand side of [5, (1.7)] has a singularity.

Let m (= 2) be an integer. If N = m, then (2.1) holds near the point # = v
= m. At the point ¥ = v = m some factors in the right-hand side of (2.1) have
singularities, so we need additional calculations to obtain the asymptotic expan-
sion of U,(m). Putting # = v = m + § in (2.1), we obtain
32 G—D7 = |Lm+4, 0L

x(modp)

={@m+206) — p " Cim + 6)°

+ 2" r@m — 1+ 2001 —m — O I'm+ 0 L@m — 1 + 20)

+ 2p1—2m—6(_ l)m 1 %C(l + 5)C(2m —1+90)

+ 2p—2m—2as*(m +5 ;P),
where

S = 2 (7 5) = mlsHmpT 5 Ryls, 5590,

0<n<N-1
n#Em—1

We can see

=p""(—= D"TCm — DIm)*@2m — 1)~

14 (= 21080 + 20C@m ~ 1) — 260m) + 25 @m — 1))5 + 06
C

and

mlm LD A+ Htem—1+0)

=p"7"(= D"'T@m — DIm) ~*¢@m — 1)

pl—Zm—é (- 1)
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f1+ (= togp+ ¢@m—1) — gtm) + 1, + > @m— D)o+ 0],
C

Also we note

¢(n+1)=1+%+---+%—70

for any positive integer #. Substituting these relations into (3.2), and letting 0 —
0, we obtain the assertion of Theorem 2.
Next we proceed to the proof of Theorem 3. First we prove the following

LemMMA 1. For any integer m = 0, we have

RN(_ m, _m; k)

¢ Bm—n+1Bm+n+1 N-n BZm+2 N-m-1 .
%( RTETEs rETEy T mr " FI=N=m,
) L«Lzz FN=m+1,
2m+1)
0 ifN=zm+2.

Proof.  Since I'w) ("™ — 1) tends to the value (— 1) "27i/m! as u tends
to — m, from (3.1) we have

e =mio = (G5 [ otor [

: f Y (@ + kK ez " drdydr.
€

We can replace the integrals along % by the integrals along % (%), the circle of
radius 7 round the origin. Hence by a residue calculus, we see that the inner

integral is equal to 27ih™ ™™ (k™ ty)/m!, so
1— -m+N-1 ” B
(3.3) Ry(—m, —m; k) = me ( T) f Lo ™ (™ oy dyds.
cm ¢ — 1
Since
mN-1 o = B, . w pWEmED gy
yey——l_h(z\u )(k IT) §_T J +N-— ZE)—T(l(k lfy)
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= = BRY Q) N

’

the inner integral in the right-hand side of (3.3) is equal to

.m—N+1 B h(Zm—]+l) (0) mN—jt1
211 JE) '(m N'—']_{'_l)’ (k ) .
Also we see
% iftn=20
(n)
h"(0) B
2L ifp>1
n+1
because
z 1 18, , 1
hiz) == e——1+1_;_;n2=:0-'z +1 Z
_ 1 < Bn+1 n
BRI CE I
Hence we have
— oy mb mH BiBjy-ji2
Ry=m, =mib = =101 & jim-N=—j+Di@m—j T2
'k—m+N+] N 1 m—N—J+1d
fo r
m—N+1 B.B. i .
— 1 i 2m—j+2 ~m+N+j—-1
" E, Tm—jF+DIem=7+2) * ’

from which the desired result follows.

O

Now we can deduce Theorem 3 easily by using Lemma 1. We fix the value of
N arbitrarily. If we choose the value of N < m + 1, then putting u = v = — m
+ 0 in (2.1), and letting 6 — 0, we obtain Theorem 3 (by noticing (1.7)). If we

start with the larger value of N = m + 2, the following expression is suitable:

G—D" X |L=m+d, 0

x(mod p)

= {(— 2m + 20) — p"°C(— m + 9)*

+ 2p1+2m—251-.(__ om—1 +25)F(1 tom— 6)11(_ m+ 5)‘1C(— 2m— 1+ 20)

+2("77)
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where
s*ip = T ()= wls+mp T+ 5 Ry, s ).
0<n<N-1 n
nEm+1

Letting 6 — 0 in the above and using Lemma 1, we obtain the same conclusion of
Theorem 3.

4. Supplementary proofs

In this section we describe two supplementary arguments. We first show a
direct elementary proof of (1.5). Since

i 1 1
C’():Z——: ’()——
Y n=1 (n-l—y)z ¢ Y

(see (2.6)) and C(1) = 1, we have

Cw) = 9w +4 + 70

Hence, with (2.5) it follows that

cw=1-% (735 —571)
SO

folc(y>2dy=1—2ifol( L L

1/ o 1 1 2
st y+n_n+1>dy+./;(,E(y+n_n+1>>d‘
Using the formula
N 1 1
(4.1) Z%=logN+ro+O(N ),
k=1
we have

é‘gl(?—%ﬁ_ﬁ>dy=}}g(log(N+l)~§)ln+1>=1_m
hence
1 ) 1w 1 1 ,
(4.2) j;C(y) dy=—1+270+£ (;l(wn_m)) dy,
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N—oo

where

2,(NV)

_ 2 Yody 1
_mz,,:g,{ (y+m)(y+n) m+1jo‘y+n+(m+1)(n+1)}

1 n(l + m)
N+1+mz,,:§,,n m 108 Em@ +n)

m#n

=1-

log(N + 1) " ( 5 1 )2.

> v t1

mey m+1

Applying (4.1) to the last two terms of the above, we obtain

(43) (V) =1+ 1A~ 1)+ 2Z,(N) — (log(N + 1))* + O(longN> ,
where
B n(l + m)
B0~ B
B 1 t+tmNm1
= ngN log 1 + Z + mgN log = k

Z3(N) + 24(1\[), say.

We see, by using (4.1),

2N = 2 % > {logn —log(1 + »)}

k<N-1 k+1<n<N

+
= 3 W—log(N-l— DY %
k<N-1 k<N-1
_ log(k +1) 2 log N
= = EETE — (og M) — 1y log N + 0(-°5)

k<N
and

2N = 2 % > {log(1 + m) — log m}

k<N-1 =~ m=N—k

= % log N 1 ( k—l)

+ = Jlog(1 -5
I I N
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= os 0" niog N 2 pios (1 )+ o).

SO

_ log(k + 1) 1 _k log N
@y DW= 3 EETE 4 3 (1~ ) + o).

Also we have

Ms

4= logtk +1) . loglk +1) log(k + 1)}

lm‘kﬂ{ki k 2 kI

k

It

hence, combining with (4.2), (4.3) and (4.4), we obtain

1
1+ 24— fo Cy)’dy

2 2 logk 1 _k
= 7+ 1m {Gogv + 1)? — 2 T e 3 og log(1 - )}
Since
= Jim |+ 2y logk
n=lim (3 Gogv+ 1) = 5 PEE]

(see e.g., Theorem 1.3 in Ivié¢ [4]), we have

I o 1 k
1+ 24 ’/;C(y) dy=— 712+ 27, 232,‘5_1,{1%(1—1\,)

log(l — x)
=—r§+2n—2f0 o

u

=—r§+271—2f du

o 1—¢"
= — 724+ 27, + 2002,

which is the desired result.
Next we show how we can deduce Theorem 3 from (1.10). Define

(@.5) PG w =3 £(5. 2) (5. w)

for | z| < 27, |w]| < 27. Using the expression (1.8), we have

Fz, w) = zw(exp(HTw> - 1>—1 + zw(e® — 1)~ <exp<—z%”—) - 1>_1
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+ zw(e” — 1) (exp(z ; w) — 1)_1 —aw(e® — 17" - 17,

and, using the relation (1.6) in the right-hand side of the above, we obtain

4.6) F(e'z, ¢ 2
—, (2 CZS 6)“1 é% (2 cos 6 z)j

P
—ien-1(2cos O\NTM & By i xS B, (2cos 6\
e (FS) St S (P )
io-1 (2cos O\ & By ik & By (2cos 6\t
e (F50) S et S (R0
= B = B,  _
— 2= ()" DI 2"
k=0 h=0 .
ez i1 2cos 0\ ;
- A G=orC5) ¢
= ;4 BB, . 2.cos O\*'  iioame
+J§)zh=0h——(j—h)!h! [2cos((7 h 1)0)( » ) e ]
On the other hand, from (1.9) and (4.5), we have
1 6 —ip _a s 2 z
4.7 27[_](; F(e"z, ¢ "2)db = EO <a=1 Bk(a/p)> G

+2

Therefore, ((m+ 1)) =27 B,,.1(@/p)? coincides with the coefficient of 2

in the left-hand side of (4.7), which is, by using the expression (4.6), equal to

BZm+1 2m, —2m -1 o 2m
Gm+ D2 P @2 j; cos " 0do

e Bom+z-nBy -1 [oh1-n [F _ =1
+ E) Cm+ 2 — Wi @2n) {21) j(: cos((@m + 1 — h)O)cos”  6db

m i(2m+2-2h)6
tZm -
- [T 6.
0

If « + B > 1, then the formula

n/2
—B)6) cos* ™2 046 = -
j; cos((a — B)0) cos @+ B— 12" "'Bla, B

holds, where B(,) denotes the beta-function (Whittaker-Watson [14], Chapter
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XII, Miscellaneous Examples 39, p.263). Hence
(h—=1(h—m)

h—1
2" m!

1 or ot
Z?f cos((2m + 1 — h)6)cos"™ 6d6 =
0

for any # = 1. Therefore we now obtain

4.8) (m+1DN7* ,,21 B, . (a/p)*

By oom

B m)?@m + 1)

s Bm+1—kBm+l+k (k+1---(k+m p—m_k

+2,§0(m+1—k)!(m+1+k)!' m!

w Buw B
PO @ T T s )

From (1.10) it follows that

Uy(—m) = p™m+ 125 B, (/D)%
a=1

Substituting (4.8) into the right-hand side of the above, and using (1.7), we arrive
at the assertion of Theorem 3.

5. The composite case

In this section g denotes an arbitrary positive number (= 2), and by p(n) we
mean the Mébius function. In [5], the following formula is implicitly included.

LEMMA 2. Forany N = 1, we have

5.1) o@™" X Lu, x)L@, %)

x(modq)
X#FXo

= — (@ 'Llu, x)Lw, 3 + Ca+) T QA —p"™)

ple

r'i—-—v)  Iad—w
) )

+q" ’%u(q/k) (SCu, v; k) + S, u; k),

F @I+ v — D+ v —1) (

where K yuns over all positive divisors of q, p runs over all prime divisors of q, and
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S(u, v; k) = NZOI < —nv) Cu— )+ mk" ™ + K"V Ry(u, v; k).

In fact, applying the same method as that developed in [5, Sect. 4] to the each
term in the second sum of the right-hand side of [5, (2.7)], and combining with [5,
(2.2)], we obtain Lemma 2. We have used Lemma 2 in the proof of [5, (1.3) and
(1.4)], the details being omitted in [5]. (Here we mention the existence of the re-
lated articles of Balasubramanian [3] and Zhang [15] [16], which we have missed
in the references of [5].)

Let P(s) = II,,,(1 — p™°). Then, noting ¢(g) = ¢P(1) and

EI wlg/kE = ¢ P(s),

from Lemma 2 we have

(62) @ X |LA+4 0l

x(modgq)
= — ¢ 'POTPA+ O*CA+ 6" + {2 + 200 P2 + 20)
+2¢” T P(OIA + 20) TI%(% (A +20) +2¢7PA+ A+ )
+2¢770 S g/ (=( ln_ Nea+o-mea+a+me
klg n=1

+ RV R+ 6,14 63 1)

We take the limit d — 0 as in Section 2. Since

¢ 'PQOT'PA + 8CA + 0)°
= ¢ 'PQOHPMD ™+ @PQ)y, + 2PQOP' 1))}

+ PG+ 27) +4PQ)P Dy, + PPQ)* + PQ)P7(1) + 05)},
2¢""PPQIA + 20)I(— O)I(A + 8)7'CA + 20)

=2¢"PQ1) {— %5‘2 + (=7, +log@d™ — 2y, — C2) + 27,logq
~ (log 9" + 0}

and
2¢77°PA + 0)CA + 8)°
= 2¢7{P)3™ + (P @7, — log @) + P'(1)5”
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1
+ PQQ) <r§ + 2y, — 27,log g + > (log q)2>
1
+ P25, — log @ + 5 P + 0],

letting 0 — 0 in (5.2) we have

C ol

= PO {12 — 27, — (log* —20® — 25 W 1ogq — (5 )]

QPO +207 Zu@/B [T (- D'CA w7 TR, 1),
klg n=1

Hence, noting

P’ _ « logp

we now obtain

THEOREM 4. For any integer N = 1, we have

(6.3)

0@V, = ¢ LA~ ™) [~ 27, — (log@* — 20(2) — 2(log @ X 222
ple pia P 1

— (o logpy e
(£p~1)]+C(2)RI(1 P
+2q—2’§kﬂ(q/k) [NZ}: (= D" — A+ k™ + O(k‘N)}.

This is a refinement of Zhang’s formula [18], which asserts

q)(q)'qu = — q_zgo(q) {1 + 24 — »/0‘1 Cz(y)dy + (logq + ;E ;0511)2}

1 1
+@ 1 (1- ?) + 0<_<p(q)1og q)
(see the Remark in Section 1). We should note that (5.3) is not the “asymptotic ex-
pansion” in the strict sense. In particular, the sum with respect to k in the
right-hand side of (5.3) includes the term corresponding to k = 1, with the error
O(1). But this term can be calculated explicitly, and the errors corresponding to k
> 1 are decreasing as N — co. Hence, for instance in case ¢ = p* is a prime pow-
er, we can deduce the asymptotic expansion of V, with respect to p.
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Lemma 2 is valid, as an identity of meromorphic functions, in the region
{(u, v) | R(w) <N+ 1, R(w) < N+ 1}, by (3.1). Hence the formula [5, (1.3)] is
valid in the region ¢ < N + 1, except for the points at which some factor in the
right-hand side of [5, (1.3)] has a singularity. As for the exceptional points, we
can show generalizations of Theorems 2 and 3 to the case of general modulus. We
conclude this paper with the statements of these results. The proofs are simple
generalizations of the argument in Section 3, and are omitted. (Theorem 6 can also
be deduced from (1.10).)

THEOREM 5. For any integers m and N satisfying 2 < m < N, we have

w Cm—2)!

2m — 1
(n — it cEm D

U,(m) = {2m) }(1 A—=p" +2¢7"0@(— 1)

logp 2m—2 1 C'
-{—-logq—ﬁzlqp_1 + ’En—h——ro+f(2m—l)}

+2¢7" X g/ k) S m; k).

klg

THEOREM 6. For any integer m = 0, we have the following finite expression of
U(=m):

1 2
U(—m) = (— D" "'¢"¢(g) % C(—2m—1)

r2g" Suta/p B (M) e m =l m otk

+ q—l BZm+2 . 1 _ p2m+1)-
(m+ 1) e
Appendix
Here we give the proof of (1.13). Satz 3 of Zimmert [19] asserts, in our case,
that
(A1) R, = 2c(a)p(gla)) ™"

for any @ > 0, where

cla) = % 1+ a)A + 20)exp(—3—2a™)
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and

g@ = DA + a)r(% + a)exp|— (1 + ) (gb(l ; 9+ o(1+5))

Using (2.5) and (2.6), we see that

Bdalogg(a)
i 1 1
= _<1-|2~a>2n§0 <1~ga+n>2(l+a+n) ! <1+%+n>2<%+a+n> ’

which is negative for & = 0, hence g(a) is monotonically decreasing in the same
range of a. Since g(0) = ¢°™, we have

(A.2) R, > 2K(e)p(ezr° —0) =172

for any € > 0, with the constant K(¢) depending only on .
Combining (1.11) with (3), (4), (5) and (13) in Wang [12], we get

a3 hR, <2t

b

p—1 )'”Z—l <4(p— 1)S—2(logp)2>%~Li
Sp(z))__ 1)4/)) p—‘g
where v is the order of 2 mod p, and

(6=2)/2 7\ 2
S= 2 <log tan£> .
r=1 p
Wang proved an asymptotic formula of S (|12, formula (11)}). However, to obtain
an upperbound of 4, it is enough to use the inequality
2
T 1 1 2v3
(A.4) S£~8~p—§(logp)2+ <§+-\3C> log p.
To prove his asymptotic formula, Wang divided S= S; + S, + S, + 5, + S;. As
2
2V3

for S, and S;, we use Wang's result S; = %p and S; < Tlogp. Wang also
proved
1 7 \*
S, + S, = —§<logcot§) + R,

with a certain remainder integral K. Instead of Wang's estimates of S, and R, we
use the simple facts S, < 0 and R < 0. Then we obtain (A.4). Hence the proof of
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(A.4) is simpler than that of Wang’s asymptotic formula, and actually it gives bet-
ter results. Applying (A.2) and (A.4) to (A.3), we obtain

270 - 1 7o -2 2 =2
e =
where

©p—-1 = p
and

a-»ha-x,
(2u _ 1)4/v(1 _ 31’—1) °

»

Since v tends to infinity as p tends to infinity, and

lim 2" — )" = 18,

Y—r00

it follows that for any & > 0, there exists a sufficiently large p, = p,(¢), for which
the inequalities

@ -1 >160 — o),
1—-X@p)=>1—c¢,

and

p—2
4

-2 1
logy, < —(p—Z)logz—pTlogXp-i-Z‘l-e
1—¢

2

< =@ —2log2— (logp)2+%+25

hold for any p = p,. Substituting these inequalities into (A.5), we obtain

1 (=) el +e) )% ((ezr" — o7l 1—e¢

h = Ko ( 641 16 p)— exp(— i (logl’)2>

(here, €'s are not necessarily the same in each occurrence). Since 16¢" =
50.7549- - - > 50, taking a sufficiently small value of @, we obtain (1.13).

Remark. The inequality (A.2) can be generalized to arbitrary number fields.
Let F be an algebraic number field, Ry the regulator of F', wy the number of the
roots of unity included in F, #, (resp. 2#,) the number of real (resp. complex)
embeddings of F into the complex number field. Zimmert’s theorem can be stated
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as
(A.6) R, /wp = c(a) f(@)g(a)™,

where

@ =5 1+ esp(~ 1 + (1 57))

and c(@), g(a) are as above. By choosing @« =1 in (A.6), we have Rp/wp =
0.08 exp(0.467, + 0.17,). This is stated by Zimmert himself, and used by both
Slavutskii [7] [8] and Wang [12]. Slavutskii [9] considered the case &« = 1/2, and
proved Ry/wp = 0.00136 exp(0.817, + 0.577,). We have already proved in the
above that g(a) is monotonically decreasing. It is also true for f(a), because

2 logf(@ =—(1J2r“)2§)<1+a !

2 .
T+n) 1 +a+n

Therefore, noting log f(0) = log 2 — 7,, for any € > 0 we obtain
Rp/wp = K(e)exp(log2 + 7, — &)r, + @y, — o)7,).

We note log 2 + 7, = 1.2703- - - and 27, = 1.1544 - - - Though K(e) (= c(a))
tends to 0 as ¢ = 0, the coefficients of #, and #, are more important when we con-
sider the situation at least one of #, and 7, is large.
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