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Abstract

In this article, we generalise Newton's diagram method for finding small solutions
of equations / (£, X) = 0 (f (0,0) = 0) with / analytic (see [ 1,2,4,6]) to the case of a
multi-dimensional function / , unknown variable f and small parameter A.. This method
was briefly described in [1]. The method has many different applications and allows one
to solve some inflexible problems. In particular, the method can be used in very difficult
bifurcation problems, for example, for systems with small imperfections.

1. Introduction

In this paper, we propose a new method for finding all the small solutions2 (SS) of
equations / (£, A.) = 0 (f (0,0) = 0) with / analytic, where the small parameter A is
multi-dimensional: k = (A.t,... , kn). This method has many different applications
and allows one to solve a number of inflexible problems. In particular, it can be very
useful in problems related to dynamic systems (bifurcations of equilibrium states,
boundedness and stability of limit cycles), deformed systems, etc., which can be
reduced to the above defined problem. Some examples of typical problems of static
systems are presented in [5] and in [6, pp. 454-469].

In this article, the method is described in three sections. In Section 2 the method
is explicated for two small parameters (n = 2). In Section 3 we consider the critical
situation when the method does not give the SS but, nevertheless, the problem can
be solved by means of some additional considerations. In Section 4 the method is
generalised for n (n > 2) small parameters.

I Professor Peter Aizengendler, late of Pscov University, Russia, died in November 2000. This paper, his
last mathematical testament, is published with the kind consent of his son, Dr Mark Aizengendler,
I1 Varram Way, West Lakes Shore, SA 5020; e-mail: mark_15jan@yahoo.com.au.
© Australian Mathematical Society 2002, Serial-fee code 1446-1811/02
2The continuous solution £(A.) is defined to be an SS if f (A) -+ 0 as A. -> 0.
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248 Peter Aizengendler [2]

2. Case of two parameters (n = 2)

First, we describe this method for an equation with two small scalar parameters:
Ai and A,2, that is, when A. is two-dimensional:

m+n+*=l

where £ = « , £,), ^ ( f ) = {<C(f) «&($)}, < C « ) is a scalar ho-
mogeneous polynomial relative to £i , . . . , £r, of degree m with real coefficients or
a zero polynomial. Let us assume that (pmoo(£) = 0 at m < m0 and ^mooo(?) ^ 0.
It is also assumed that the series F converges in some neighbourhood of zero. We
are studying the problem about SS f (A.lf A.2) of (1) for (ku k2) near the straight line
A.] = 0 but away from the line k2 = 0. The indicated neighbourhood T must satisfy
the condition that (0,0) e f and lA /̂A.̂  is bounded in T; s e N. The minimal value
of s is found from the method.

Let us denote OMNK to be a Cartesian coordinate system in R3; ii\ and n2 to be
operators of the orthogonal projection of K3 on the coordinate planes OMN and OMK
respectively; Q = {(m, n, k) : <pmnk($) ^ 0} and Qo = {(m, n,k) e Q : m < m0] to
be integer lattices; Ri = ni(Q0) and R2 = n2(Q0). First of all, we construct Newton's
diagram (denoted by £>i) for Ri on the plane OMN.3 We denote its links and slopes
as L 1 , . . . , L" and pm,... ,pM respectively. Moreover, it is assumed that the links
are numbered in order of the increase of their slopes (the count is made from right to
left) so that 0 < pw < ••• < p(x). Further, let us construct Newton's diagram on the
plane OMK for the lattice n2(n^l{V) n Qo), i e ( 1 , . . . , x}. Let us also denote its
links and slopes as [L'-8} and {/?,,<>} (0 = 1 , . . . , o,-) respectively. If it has been done
for all links V of Dx, we get a broken line (a diagram) D2 on the plane OMK.

Two cases can arise. The first one (the standard case), when D2 is the standard
diagram for R2, that is, Newton's diagram for R2 with a unique attenuation—the
slopes corresponding to the adjacent links of D\ can coincide; /?,,„, = Pi+\,i, i €
{ 1 , . . . , x — 1} and the second case (the general case) arises when D2 is not a standard
diagram for R2.

Let us now show that by the conversion

A., = /z,A.;, A.2 = A.2, (2)

3Newton's diagram D\ for Ri is a convex broken line without vertical links. All tops of Dt belong to Rt

and the links of Dx satisfy the minimal condition, that is, there are no points from R\ situated below the
support lines of links. If the equation of the support line of a link is y = lc(x — xo), then the slope of this
link is equal to —k. All links of D\ (except maybe the right link) have positive slopes. The slope of the
right link can be equal to 0. The Newton's diagram method of construction is presented widely in the
literature, see for example [6, pp. 10-15].
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[3] Newton's diagram method 249

where s is a natural number, the general case reduces to the standard case. Indeed,
making the substitution (2) in (1), we obtain

where ^mn*(£)/^2"+* is the image of the term ^mn*(f )A.jA.*. Therefore (2) induces a
linear conversion of the space of multi-indices (m,n,k) with the matrix

'1
0
0

0
1
s

or
0
i_

A =

Under that conversion the diagram Di remains unchanged but the diagram D2 = {L'e}
transforms into the diagram D2 = [L'e] and the slope pue of the link V-e satisfies the
relation

Pi,e=Pi,e + spa). (3)

From (3) it follows that if we take s as the least non-negative entire number s0 satisfying
the inequalities

then all the links D2 will be arranged in non-decreasing order of their slopes (the count
is made from right to left):

Pl.l < • • • < Pl.o, 5 P2,l < • • • < Px-l.cr,., 5 Px,\ < • • • < Px.a,-

NOTE 1. If instead of s0 we take s0 + 1 , then all links of D2 will be aranged in order
of the increase of their slopes.

Letus suppose that P,(m(, Jt,-)(i = 1 , . . . , a) is the set of all points from fl2 situated
under D2. For each point P, let us put in accordance the point (m,, n\, &•) such that
(/«,-, /!,) € £>i and(w,, itj) e D2. By n, we denote the least ordinate of the points of the
set n2~

x(Pi) n Qo, Aj = n, — n, and A2 = jt| — it,. Let us use the conversion A. Then
the points («/, n,, it,) and (m,-, nj., itj) map to the points (m,-, n,, it,) and (m,, «;, it,')
accordingly, where it, = /t, + srij and itj = k't + sri^ Thus we obtain the relation

A2 = A 2 - * A ; (A2 = *;-*,) . (5)

From (5) it follows that if 5 is replaced by the least natural number s satisfying the
inequalities

5 > A 2 / A j , i = l a, (6)

then all points from R2 = n2(A Qo) will not be situated under the diagram D2.
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250 Peter Aizengendler [4]

NOTE 2. If instead of s we take s + 1, then all points from R2 lying below D2 map
to points situated above D2. If s = max(s0, £), then by the conversion (2) the equation
(1) is standardised, that is, it transforms into that for the standard case.

Let the equation (1) be standard. Let it be represented in the form

, A.,, X2) = J^<pmnkm"X + Y,"<Pmnk{Wtt = 0, d")

where £ ' denotes the sum of all non-zero terms of (1) such that (m,n) € V and
(m,k) e V'6 {V is any link of D\ and U'6 is one of the links of D2 corresponding
to V) and £ " is the sum of the rest of the terms of (1). We denote also by r\/s\ the
slope of V, by r2/s2 the slope of L'e and suppose that (ru Si) = (r2, s2) = 1 ((a, b)
denotes the greates common divisor (GCD) for a and b). If r, = 0, then we assume
5, = 1,1 €{1,2}.

Let us make the substitution

£ = »M*?/*?. A, = / * ? , X2 = M ? . (7)-

Then (1") has been reduced to the form

— U- (*)

From the convexity of D\ and the minimal condition of its links, it follows that
mri + nsi = l{ for all (m, n) e V D R{, where h is a non-negative integer, and for
each (m, n) € ^i(C) \ L' the inequality mrx + nsi > l{ is true. Analogously, for
all (m, k) € L|S D R2 the relation mr2 + fo2 = h holds (Z2 is a non-negative integer)
and for all (m,k) e n2(Q) \ V-9 the inequality mr2 + ks2 > l2 is true. Moreover,
/, + l2 > 0. From this point, (*) is transformed into

£ + " " ' V r + " ! " ' ! = 0, (8)
where P(T?) = EV™t( i ) ' 4

Let us suppose that ^0 is a simple non-zero root of P(r}). Then F(rj0,0,0) = 0,
det F ^ o , 0,0) ^ 0 and according to the implicit function theorem, (8) has a single
solution in a neighbourhood of the point (TJO» 0,0):

(9)

All coefficients [r)ik) are denned using the indefinite coefficients (IC) method. More-
over, if jjo e Kr and all coefficients of (1) are real, then all r\ik e W. Substituting (9)

4We name the polynomial P(r)) (respectively, the equation P(IJ) = 0) and the defining polynomial (DP)
(respectively, the defining equation (DE)) for the link L'-e.
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[5] Newton's diagram method 251

into the first relation of (7) and using the second and third parts of (7), we arrive at
theSS(orrealSS)of(l):

(When we write al/s (s e N), we are taking into account only the arithmetic value of
s/a.) Thus every simple non-zero root of the DP provides a single SS of (1) and this
solution is represented in the form of the convergent series (10).

Let »jo be a multiple root of P(j]). Then assuming t) = rj0 + u in (8), we obtain
a new equation F(u, fiu ix2) — 0 and the problem is reduced to obtaining the SS
of the last equation. Standardising this equation (if required) and then repeating the
same deduction as for (1'), we obtain a unique SS for every non-zero simple root of
its DP. For every multiple root the procedure is repeated. If after a finite number of
steps the process of obtaining multiple roots is stopped, then every SS of the problem,
corresponding to r)0, is represented as a convergent series for integer or fractional
non-negative powers of the parameters k2 and t, where A.i = tk2 (p > 0). If the
process of obtaining the multiple roots is nonfinite, that is, when the SS is a multiple
solution, then for a scalar equation all SS also have the structure described above.
This is established in just the same way as for a scalar equation with a single small
parameter (see [1]).

From Weierstrass' preparation theorem ([6, p. 39]) it follows that for the scalar
equation (1), the total number of non-zero SS is finite and equal to m0 — Io (each
solution is counted as many times as its multiplicity).5 Using all links of D\ and D2
and all DP, the described method gives all non-zero SS because the total number of
all non-zero roots of all DP is equal to mo — Io (each root is counted according to its
multiplicity).

EXAMPLE 1. As an illustration of this method, we consider the problem for the
scalar equation

, A,, k2) = k\ + 2k2k*l- + k\k\f - k2
2!;* + 4k2$

9 + | "

LmHk$
mkte = 0. (11)

SOLUTION. The diagram D{ is represented in Figure 1 (a). It consists of 3 links:
AiA3 with slope 1, A3A4 with slope 1/2 and A4A6 with slope 0. Two points A2 and
A5 from Rt are also shown in Figure 1 (a); they belong to D{. The other part of /?i is
not situated below the straight line (U) passing through points (11; 0) and (0; 11). The
diagram D2 is represented in Figure 1 (b). It consists of 4 links: BiB3 with slope — 1,

5The number /0 is equal to the multiplicity of the zero root of the DP for the left link of D2.
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(0,)

(D,)

B.

2 3 4 5 6 7 8 9 10 II 2 3 4 5 6 7 8 9 10 II

(a) (b)

0 1 2 3 4 5 6 7 8 9 10 11

(c)

FIGURE 1. The diagram for (11) (see Example 1).

B3BA with slope 0, BAB5 with slope 1 and B5B6 with slope 1/2. The diagram D2 is
not standard. For standardising we use (4). For the point fl4 and B5, the right side
of (4) is equal to 2; we have s0 — 2. Using (6), Figures 1 (a) and (b), we define s = 1.
Thus s = max(2; 1) and by the substitution A.i = ixik\, (11) is standardised. Further,
we construct the diagram D2 (see Figure 1 (c)). It consists of 4 links: B1B3 (the slope
is equal to 1, the DP is TJ2 + 2r\ + 1, its roots are —1, —1 (double root)); B3B4 (the
slope is 1, the DP is — 77s + rj2, its non-zero roots a£4) (it = 1 , . . . , 6) are the system
of all roots $1, each root is simple); B4B5 (the slope is 1, the DP is 4/j9 — r}s; the
unique non-zero root of the DP is b0 = 1/4 (simple)); B5B6 (the slope is 1/2, the
DP is >}" + 4t]9, the non-zero roots of this polynomial are simple, they are c ^ = 2i,
cf> = - 2 0 .

We obtain for (A3A4, B3B4), six SS: $<*> = <#V!/2*2 + Em+n>i * W
/: = 1 , . . . ,6; for (A4A6,
(A4A6, B5B6), two SS: f<">

), one SS: £ = -I- £ * ™ M " ^ + I ; f o r

= 1.2, where
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[7] Newton's diagram method 253

For obtaining the SS corresponding to (AyAi, BXB3), we use the substitution £ =
(v — l)fi\k2. We get the equation

v2 - n\ + • • • = 0, (12)

where the left-hand side does not include the terms of the form a\\ and bk\v (k is a
natural number). Equation (12) is standard. The diagram Dx for (12) consists of a
unique link joined to the points (0;3) and (2;0) (the slope is 3/2); the diagram D2

also consists of one link denoted as CXC2 (Ci(0;0) and C2(2;0)). Both roots of the
DP for Cx C2 are simple and equal to 1 and —1. Equation (12) has two SS; they are of
the form

v —JO Ml + ^ /mn^l A 2 < V 0 — 1 ' / o — — l , K — l , 4 ) .
m+n>l

Finally, the pair of links (A1A3, BXB3) provides two SS: £ w = -/LtiA.2(l - v(k)),
where k = 1,2, and A.! =

3. Critical situation

If (1) is vectorial (r > 1), then the described method may not always obtain all the
SS. For example, the two-dimensional equation

= 0, (13)

where £ = (£,, fc), ^oo(?) = {3£,2 - £2
2;0}, ^3oo(?) = {0; ($, - ?2)

3}, ^oio = <Pooi =
{1; 8}, has six SS. However, if we use Newton's diagram method, we get the following.
The diagram Dx for (13) consists of one link with ends (0;0) and (2;0) (p(1) = 0);
the diagram D2 consists of a unique link AB (A(0; 1), B(2;0)) with slope 1/2. The
substitution kx = fx.xX2 reduces (13) to the standard case:

<?2oo(t) + ¥>3oo(£) + <PonMi*2 + (Poo\ki = 0, (13')

where ^on = ^oio- The view of D2 is the same as D2, but D2 is a standard diagram.
The DP for AB of D2 is [ir)\ - r)\ + 1; 8}. This polynomial is not solvable in C2 and
therefore Newton's diagram method gives nothing.

In order that the total number of SS be finite for the vectorial equation (1) and all
the SS be obtainable by using Newton's diagram method, the following condition is
sufficient: all the fields, corresponding to the right ends of the links of D2 (for all
stages of using this method), are non-degenerate in Cr. The above condition is a
corollary from the following theorem [2].
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THEOREM. Let

Q i ( x i , . . . , x n ) + £ l i ( x l , . . . , x n ) = 0, i = l , . . . , n , (14)

be an algebraic system with complex coefficients, where (?, is a homogeneous poly-
nomial of degree n, (n, > 1) and fi, is a zero polynomial or a polynomial of degree
n\i < nt. Then the following is true: if the field {(?i>..., Qn] is non-degenerate in
C , then (14) is regular in C , that is, (14) is solvable in C and the total number of
its solutions is finite.

The non-degenerating condition for polynomial fields in C is also described in [2].
For (13) the sufficient condition for using Newton's diagram method is infringed,
because the field (p200 is degenerate (the point (2, 0,0) € Qo provides the right end of
the link AB e D2). Moreover, the DE for AB is not solvable in C2. The point of Q
providing the right end link of D2 is called a bad point of Q if the DE for this link is
not regular in C . In the case when Qo has bad points, we can offer two methods. The
first one is the combination of Newton's diagram method and a new method called
the method of removal of the bad corner points. The main idea is the following: if
(m,n,k) 6 Q is a bad point, we remove it from Q and construct for the rest of Q the
diagrams D\ and D2.

6 In this situation we use the diagram only to define the possible
exponents for the small parameters. For obtaining the coefficients of the expansion of
the SS, we use a substitution in the form

where r) = (r)U ..., r)r), x = (x i , . . . , xr) and x(/Ui, A2) -*• 0 as (fiu k2) -*• (0,0).
To illustrate this method we choose (13). The lattice for (13) is

Q = {(2,0,0), (3,0,0), (0,1,0), (0,0, 1)}.

We showed before that (2,0,0) is a bad point of Q. According to this method,
we remove (2, 0,0) from Q and construct the diagrams Di and D2 for the lattice
{(3,0,0), (0,1, 0), (0,0, 1)}: the diagram Dx consists of a unique link with slope 0;
the diagram D2 also consists of a unique link joining (0; 1) and (3;0) with slope 1/3.
Using the substitution A.i = fixk2, we get the standard diagram D2. The view of D2 is
the same as D2. Thus the possible exponents are 0 and 1/3.

Now, for obtaining the SS of (13), we use (15), where p, = 0 and /?„,, = 1/3. We
get the system

-x\ + -ii)\ -r)2
2 + 6r)lXl - 2r)2x2

lir)x - m) + (*i - x2)f + 8 + 8/ii = 0.

'When we say "Newton's diagram" for TTI (Q) or 7T2( Q), we have in view only their decreasing branches.
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[9] Newton's diagram method 255

Passing to the limit as (jilt k2) -*• (0,0) in (16), we obtain the DE for 77:

3V
2 - r)\ = 0, (i,, - mf + 8 = 0. (17)

The system (17) is regular and has exactly six simple roots rj' = (r]\'\ TJ^), i =
1, . . . , 6 (only two of them are real). For obtaining x(fj,i, k2), we substitute k2 = fi\
into (16) and for each root rj' obtain the system

6TI\\ - 2r)?x2 + 3x1 ~ A + M1M2 + M2 = 0,

3f}2(x{ - x2) + 3fj,{Xl - x2)
2 + (x, - x2)3 + 8^. = 0: '

where fjt = 17J0 — r)2\ Again using the method for each (18,), we obtain the first
term of the expressions for x. However, the roots rj' are simple and we can use the
IC method.

Consequently, the problem for (13) has exactly six SS and they have the view

l 2 lA k2 = t4> « = 1, • • • , 6).
k+v=l

Two SS among them belong to R2.
The second method, called the NDE method, is a combination of Newton's diagram

method for scalar equations and the method of elimination. In the case of a single
scalar small parameter it was described in [4,6]. For several small parameters the
way to obtain the SS is analogous. According to the NDE method, we get the scalar
equations for each component of the unknown variables and use Newton's diagram
for each equation. The main difference is in the following: in the case of a single
parameter we use the classical Newton's diagram method, in the case of several
parameters we use the method described in this article.

Note here that the necessary and sufficient condition for the general system with
a single small parameter to be regular is presented in [4,6]. In the case of several
parameters the condition is the same.

4. Case of n (n > 2) parameters

In this section, Newton's diagram method is extended to the general case, when the
equation includes more than two small parameters. We investigate the equation

•••tf=o, (19)
m+*i+•••+*„ = !
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where ku ..., kn are small parameters (n > 2), <pm...(%) is a vectorial homogeneous
polynomial of power m or a zero polynomial. Let us assume that <pm0...o(£) = 0 at
m < m0 and ^moo...o(£) ^ 0. We are studying the problem about the SS t-(kx,..., kn)
of (19) for (A-i,..., kn) near ( 0 , . . . , 0) and near the hyperplane A.i = 0 without

\2 = . . . = A, = 0. Let us denote (? = K>«.*i *•) : *»«*....*!.(5) ¥= 0],
Co = {(w, ^i kn) e g : "» < % } , ^i = Ti(Qo), » = 1 , . . . . 6, where 7r,- is the
orthogonal projection of R"+1 on the coordinate plane 0MKt. On the plane OMKU

we construct Newton's diagram D : = (L" | I'I = 1, ...,ax] for R\. After that
we construct, on the plane 0MK2, Newton's diagram for each lattice n2(n^l(L'') n

Go), i\ = 1 oi . We get a diagram D2 = [L'"i* | i2 = 1 a(
2
lh, h =

1 , . . . , c*i}. If D2 is Newton's diagram for the lattice R2 and it has no points from
R2 \ U^ 3T2(7r1~

1(i'1) D go), then,7 using D2 by analogy with Du we construct the
diagram D3 on the plane OMK3. If D2 does not satisfy these conditions we first reduce
D2 to D2 (to Newton's diagram without additional points), substituting k\ = fiik2 (s^
is chosen according to (4) and (6), and Notes 1 and 2) and only after that we use D2

and construct D3. This procedure is continued until the diagram Dn comes onto the
plane 0MKn. If £>„ is not a standard diagram, we use the substitution Xn_i = /An_i A.*"-1

and reduce Dn to the standard form. For the last diagram it is assumed that the slopes
of its links make up only a non-decreasing sequence and these links can include points
of Rn with prototypes not belonging to Dn_j.

For example, we consider the equation

^0201 (S)^A-3

with three parameters A.,1, A*2, A.*3. We get the following.
The diagram Di (Figure 2 (a)) consists of two links: AiA3 with slope l /2andA 3 A 6

with slope 0. The points A2, A4 and A5 from Ri also belong to D\. The other points
of R\ are situated on the right of the line connecting the points (0; 10) and (10; 0).

The diagram D2 is presented in Figure 2 (b). Using the substitution ki = i±\k\,
the diagram D2 is reduced to Newton's diagram D2 without additional points. The
diagram D2 (Figure 2 (c)) consists of three links: B1B3 with slope 1, B355 with
slope 1/2 and B5B6 with slope 0. The other points of R2 are situated on the right of
the line connecting the points (0; 30) and (10; 0).

The diagram Z)3 is represented in Figure 2 (d). The substitution k2 = ix2k\ reduces
£>3 to the standard diagram D3 (Figure 3).

Let us suppose that D\ for (19) is Newton's diagram; D2,... , Dn_i are Newton's
diagrams without additional points and Dn is a standard diagram, that is, we have the

7We name this diagram Newton's diagram without additional points.
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(O,)

0 1 2 3 4 5 6 7 8 9 10 11 2 3 4 5 6 7 8 9 10

(a) (b)

2 4 6

(c)

FIGURE 2. The diagrams D ^ £>2. D2 and £>3 for (*).

standard case.8 We write (19) in the form

• + EV*-~*.<*>X*' •••**• = ° - (190

where £ ' denotes the sum of all non-zero terms which satisfy the condition:

(m, *,) € L \ (m, fe) 6 L"'2 (m, ^ ) € L" '".

Here L'1 is any link of Du L"'2 is any link of D2 corresponding to L" and etc.; at last,

Lh '• is any link of Dn corresponding to the link L" '"-'. The sum Yl" denotes the
sum of all other terms of (19). We assume also that rk/sk ((rt, sk) = 1) is the slope of
Z," " , * = 1 , . . . ,n.

Let us make the substitutions f = r}^1 • • • fxr
n\• k{ = fx\', ... , kn = ^ in (19').

Then the equation is reduced to the form

where V],.. . , vn are non-negative numbers, i>iH \-vn>0and P(r])=J2' <Pmk, •••*„('?)
is the DP for the link L" '". The further operations, reasons and conclusions are
analogous to the case of two small parameters.

Finally we can make some additional remarks.

8If not, we, at first, reduce (19) to the standard case.
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0 2 4 6 8 10

FIGURE 3. The diagram D3 for (•).

REMARK 1. The stated method allows us to find SS defined in a neighbour-
hood of a hypersurface A.n = g(ku ..., A.n_i), where g is an analytical function
relative to k\/pi,..., kljp['\ (pi,... ,pn-i are natural numbers) and g -*• 0 as
(A.,,... , *„_,) - • ( 0 , . . . , 0 ) .

Indeed, letting kx = fiPl, . . . , A.n_i = /AJJ-', kn = g + /*i in (19), we reduce this
problem to the problem about the SS for (fi\,..., fin) defined in a neighbourhood of
the hyperplane Hi = 0.

REMARK 2. If (19) is represented by the standard case and all roots of all the
DP are simple, then all the SS of (19) are defined in some full neighbourhood of
A., = • • • = kn = 0.

If the diagrams Dt (i = 1 , . . . , k; k < n) are Newton's diagrams without additional
points and all root of the DP are simple, then the SS are defined in a neighbourhood
of the hyperplane k\ = • • • = kk = 0. In this situation the number k is called the
coefficient of standardisation. This coefficient is important in some applications.
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