CORRESPONDENCE

ON THE PARTLAL COMMUTATION OF PREMIUM.

To the Editor of the Assurance Magazine.
Sre,-The following problem, besides presenting several points of interest, admits also of some useful practical applications. Perhaps you will be able to make room for it in your pages.

Problem.

A person aged x desires to assure his life for the sum A, the Office premium for which is P_{x}. He proposes to pay only Q (less than P_{x}), and consents to an equivalent abatement in the sum assured during the next t years. Required X, the amount of the abatement.

There are various cases, according to the form taken by the abatement. I shall consider two.

Oase 1. The abatement uniform during the term.
The Office gives up, in premium, $\mathrm{P}_{x}-\mathrm{Q}$, the value of which is,

$$
\frac{\left(\mathbf{P}_{x}-\mathrm{Q}\right) \mathrm{N}_{x-1}}{\mathrm{D}_{x}} ;
$$

and it takes back, in assurance during the next t years, X, the net value of which is,

$$
\frac{\mathbf{X M}_{x \mid t}}{\mathbf{D}_{x}}
$$

The commission or loading, say l per unit, on the whole sum nominally assured, is included in \mathbf{P}_{x}. The portion of the assurance taken back by the Office will therefore be allowed for at the same rate. Hence the Office value of this portion will be,

$$
\frac{(1+l) \mathrm{XM}_{x \mid l}}{\mathrm{D}_{x}}
$$

Equating, we get,

$$
\mathrm{X}=\frac{\left(\mathrm{P}_{x}-\mathrm{Q}\right) \mathrm{N}_{x-1}}{(1+l) \mathrm{M}_{x i t}}
$$

Otherwise:-
The benefit is a whole-life assurance of A, less a temporary assurance of X for t years; and its value is,

$$
\frac{(1+l)\left(\mathrm{AM}_{x}-\mathrm{XM}_{x \mid t}\right)}{\mathrm{D}_{x}}
$$

Also, the premium payable being Q, its value is,

$$
\frac{\mathrm{QN}_{x_{-1}}}{\mathrm{D}_{x}}
$$

Equating,

$$
\begin{gathered}
(1+l)\left(\mathrm{AM}_{x}-\mathrm{XM}_{x \mid t}\right)=\mathrm{QN}_{x-1} \\
\mathbf{X}=\frac{(1+l) \mathrm{AM}_{x}-\mathrm{QN}_{x-1}}{(1+\bar{l}) \mathrm{M}_{x \mid t}}
\end{gathered}
$$

And introducing $\mathbf{P}_{\boldsymbol{x}}$ into this expression, by means of the relation,

$$
\mathbf{P}_{x}=\frac{(1+\eta) \Delta \mathbf{M}_{x}}{\mathbf{N}_{x-1}}
$$

we have finally,

$$
\mathrm{X}=\frac{\left(\mathrm{P}_{x}-Q\right) \mathrm{N}_{x_{-1}}}{(1+l) \mathrm{M}_{x \mid t}}
$$

as before.
It may be noted that X decreases as Q increases, and vanishes if $Q=P_{x} . \quad$ If Q exceed P_{x} we should have X negative, implying that in this case A, instead of undergoing a diminution, would receive an augmentation.

Example. Let $\mathfrak{x}=30, A=£ 1000$; then, using the H^{M} Table, at 3 per-cent, with a loading of 20 per-cent, $(l=\cdot 20)$, we have $\mathrm{P}_{x}=22 \cdot 554$. And if $\mathrm{Q}=21$ and $t=10$, the equation becomes,

\mathbf{N}_{29}	1.554	$=\frac{1 \cdot 654 \mathrm{~N}_{29}}{1 \cdot 20 \mathrm{M}_{30+10}} .$	page 10.
		$\begin{gathered} \log 5 \cdot 887942 \\ \Rightarrow 0.191451 \end{gathered}$	
		6.079893	
M_{30}	14521.0		
\mathbf{M}_{40}	118707		
	26503		
$\times \cdot 2$	$530 \cdot 1$		
	3180-4	, 3:502482	
X	377.495	" 2.576911	

That is, the abatement being 8377. 10s. Od., the sum assured will be \&622. 10 s. 0 d. during the next ten years, and $£ 1000$ during the residue of the life of (x).

The following small table shows the results arising from giving to t the values in the first column in succession:-

t	\boldsymbol{X}	$\mathbf{A}-\mathbf{X}$
10	$\mathbf{3 7 7} \cdot \mathbf{4 9 5}$	$\mathbf{6 2 2 \cdot 5 0 5}$
20	$195 \cdot 054$	$804 \cdot 946$
30	$\mathbf{1 2 8 \cdot 2 7 9}$	$871 \cdot 721$
40	$\mathbf{9 2 \cdot 8 1 1}$	$\mathbf{9 0 7} \cdot 189$
50	$74 \cdot 704$	$\mathbf{9 2 5 \cdot 2 9 6}$
60	$69 \cdot 348$	$\mathbf{9 3 0} \cdot 652$
$*_{\omega}$	$68 \cdot 900$	$\mathbf{9 8 1} \cdot 100$

Case 2. The abatement commencing at \mathbf{X}, and decreasing annually by one th part of X.

The Office here gives up, as before, of premium, $\mathbf{P}_{\boldsymbol{x}}-\mathbf{Q}$, the value of which is,

$$
\frac{\left(\mathrm{P}_{x}-\mathrm{Q}\right) \mathrm{N}_{x_{-1}}}{\mathrm{D}_{x}} ;
$$

and it takes back an assurance commencing at X, and decreasing annually by $\frac{X}{t}$ till extinction, the value of which is (Journal, vol. xii, p. 343),

$$
\frac{\mathbf{X}\left\{\mathbf{M}_{x}-\frac{1}{i}\left(\mathbf{R}_{x+1}-\mathbf{R}_{x+t+1}\right)\right\}}{\mathbf{D}_{x}} .
$$

Multiplying by $1+l$ and equating,

$$
\mathrm{X}=\frac{\left(\mathrm{P}_{x}-\mathrm{Q}\right) \mathrm{N}_{x-1}}{(1+l)\left\{\mathrm{M}_{x}-\frac{1}{2}\left(\mathrm{R}_{x+1}-\mathrm{R}_{x+t+1}\right)\right.} .
$$

Example. Let $z=30, A=£ 1000, t=10$, all as before. And P_{30} being 22.554 , let also $\mathrm{Q}=21$, as before.

The numerator here is the same as in last example; and its logarithm therefore is 6079393 .

The denominator is,

$$
1 \cdot 20\left\{\mathrm{M}_{20}-\frac{1}{10}\left(\mathrm{R}_{\mathrm{n}}-\mathrm{R}_{41}\right)\right\} ;
$$

and it is computed as follows:-

\mathbf{R}_{3}	$392498 \cdot 7$	
\mathbf{R}_{41}	$262043 \cdot 4$	
	$130455 \cdot 3$	
$\begin{gathered} \frac{\mathbf{1}}{\mathbf{y}_{10}} \\ \mathbf{M}_{30} \end{gathered}$	130455	
	$14521 \cdot 0$	
$\times \cdot 20$	$1475 \cdot 5$	
	2951	
	17706	$\log 3248120$
Numerator		\% 6079398
X	678.067	, 2.831273

* The liniting value of the table.

Hence the sum assured during the first year is $1000-678.067=$ 321.933; and the amount for each succeeding year is found by adding $678 \cdot 067 \div 10=67.807$ to that for the year preceding. The sum assured during the eleventh year is thus $£ 1000$; and it remains at this amount during the rest of life.

The deduction at the outset seems here somewhat heavy; but it rapidly diminishes, and vanishes at the end of ten years. Were the term extended to twenty years the deduction at the outset would be only 365.053 , and the assurance would consequently commence at 634947.

I must defer till another opportunity the development of the schemes here shadowed forth. I will now merely mention, that they find their practical applications in cases in which it is arranged that a party who has been "rated up," instead of paying additional premium, shall be subjected to a temporary abatement of assurance.

> I am, Sir,
> \quad Your most obedient servant,

London, 21 Oct. 1872.
P. GRAY.

ON the relation between the value of a policy and the rate of interest.

To the Editor of the Journal of the Institute of Actuaries.
Sire,-In the paper on "Extra Premium" by Mr. J. R. Macfadyen, in the current volume of the Journal, that gentleman has given, in a footnote on p. 89, a demonstration intended to show that "in any given case it is practically certain that the value of a policy by a higher rate of interest must always be less than by a lower." Having, sometime ago, myself arrived at a similar result to Mr. Macfadyon's by a rather different process, I venture to send it you, with the hope that it may be of interest to some of your readers.

We have, by a well-known formula,

$$
{ }_{2} V_{x}=1-\left(1-V_{x}\right)\left(1-V_{z+1}\right) \ldots \ldots\left(1-V_{x+n-1}\right) ;
$$

consequently, it will be sufficient to consider how the value of a policy one year old is affected by increasing or diminishing the rate of interest at which it is calculated.

Now,

$$
\begin{aligned}
\mathbf{V}_{x} & =1-\frac{1+a_{x+1}}{1+a_{x}} \\
& =1-\frac{a_{x}}{v p_{x}\left(1+a_{x}\right)}
\end{aligned}
$$

or, omitting the subscript x,

$$
\mathrm{V}=1-\frac{a}{v p(1+a)}
$$

Differentiating this with respect to v, we have

