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Injective Tauberian Operators on L1 and
Operators with Dense Range on `∞
William Johnson, Amir Bahman Nasseri, Gideon Schechtman,
and Tomasz Tkocz

Abstract. There exist injective Tauberian operators on L1(0, 1) that have dense, nonclosed range. This
gives injective nonsurjective operators on `∞ that have dense range. Consequently, there are two
quasi-complementary noncomplementary subspaces of `∞ that are isometric to `∞.

1 Introduction

A (bounded, linear) operator T from a Banach space X into a Banach space Y is called
Tauberian provided T∗∗−1Y = X. The structure of Tauberian operators when the
domain is an L1 space is well understood and is exposed in Gonzáles and Martı́nez-
Abejón’s book [5, Chapter 4]. (For convenience they only consider L1(µ) when µ is
finite and purely nonatomic, but their proofs for the results we mention work for
general L1 spaces.) In particular, [5, Theorem 4.1.3] implies that when X is an L1

space, an operator T : X → Y is Tauberian if and only if whenever (xn) is a sequence
of disjoint unit vectors, there is an N such that the restriction of T to [xn]∞n=N is an
isomorphism (and, moreover, the norm of the inverse of the restricted operator is
bounded independently of the disjoint sequence). Here and elsewhere in this paper,
by an isomorphism T : E → F we always mean an operator that is an isomorphism
from E onto its range, T(E). From this it follows that an injective operator T : X → Y
is Tauberian if and only if it isomorphically preserves isometric copies of `1 in the
sense that the restriction of T to any subspace of X that is isometrically isomorphic
to `1 is an isomorphism. (Recall that a subspace of an L1 space is isometrically iso-
morphic to `1 if and only if it is the closed linear span of a sequence of nonzero
disjoint vectors [11, Chapter 14.5].) Since Tu is Tauberian if T is Tauberian and u is
an isomorphism, one deduces that an injective Tauberian operator from an L1 space
isomorphically preserves isomorphic copies of `1 in the sense that the restriction of
T to any subspace of X that is isomorphic to `1 is an isomorphism. Thus, injective
Tauberian operators from an L1 space are opposite to `1-singular operators; i.e., op-
erators whose restriction to every subspace isomorphic to `1 is not an isomorphism.
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The main result in this paper is a negative answer to the following question [5,
Problem 1]. Suppose T is a Tauberian operator on an L1 space. Must T be upper
semi-Fredholm; i.e., must the range R(T) of T be closed and the null space N(T)
of T be finite dimensional? The basic example is a Tauberian operator on L1(0, 1)
that has infinite dimensional null space. This is rather striking because the Tauberian
condition is equivalent to the statement that there is c > 0 such that the restriction of
the operator to L1(A) is an isomorphism whenever the subset A of [0, 1] has Lebesgue
measure at most c.

In fact, we show that there is an injective, dense range, nonsurjective Tauberian
operator on L1(0, 1). Since T is Tauberian, T∗∗ is also injective, so R(T∗) is dense
and proper, and T∗ is injective because R(T) is dense.1

2 The Examples

We begin with a lemma that is an easy consequence of characterizations of Tauberian
operators on L1 spaces.

Lemma 2.1 Let X be an L1 space and let T be an operator from X to a Banach space
Y . The operator T is Tauberian if and only if there is r > 0 and a natural number N
such that if (xn)N

n=1 are disjoint unit vectors in X, then max1≤n≤N ‖Txn‖ ≥ r.

Proof The condition in the lemma clearly implies that if (xn) is a disjoint sequence
of unit vectors in X, then lim infn ‖Txn‖ > 0, which is one of the equivalent con-
ditions for T to be Tauberian [5, Theorem 4.1.3]. On the other hand, suppose that
there are disjoint collections (xn

k )n
k=1, n = 1, 2, . . . , with max1≤k≤n ‖Txn

k‖ → 0 as
n → ∞. Then the closed sublattice generated by

⋃∞
n=1(xn

k )n
k=1 is a separable abstract

L1 space (meaning that it is a Banach lattice such that ‖x + y‖ = ‖x‖+ ‖y‖ whenever
|x| ∨ |y| = 0) and hence is order isometric to L1(µ) for some probability measure
µ by Kakutani’s theorem (see e.g., [7, Theorem 1.b.2]). Choose 1 ≤ k(n) ≤ n such
that the support of xn

k(n) in L1(µ) has measure at most 1/n. Since T is Tauberian, by
[5, Proposition 4.1.8], necessarily lim infn ‖Txn

k(n)‖ > 0, which is a contradiction.

The reason that Lemma 2.1 is useful for us is that the condition in the lemma is
stable under ultraproducts. Call an operator that satisfies the condition in Lemma 2.1
(r,N)-Tauberian. For background on ultraproducts of Banach spaces and of opera-
tors, see [4, Chapter 8]. We use the fact that the ultraproduct of L1 spaces is an
abstract L1 space and hence is order isometric to L1(µ) for some measure µ.

Lemma 2.2 Let (Xk) be a sequence of L1 spaces, and for each k let Tk be a norm
one linear operator from Xk into a Banach space Yk. Assume that there is r > 0 and
a natural number N such that each operator Tk is (r,N)-Tauberian. Let U be a free
ultrafilter on the natural numbers. Then (Tk)U : (Xk)U → (Yk)U is (r,N)-Tauberian.

1This solves a problem [10] the second author raised on MathOverFlow.net that led to the collabora-
tion of the authors.
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Here, (Tk)U is the usual ultraproduct of the sequence (Tk) defined by

(Tk)U(xk) = (Tkxk).

Proof The vectors (xk) and (yk) are disjoint in the abstract L1 space (Xk)U if and
only if limU ‖|xk| ∧ |yk|‖ = 0, so it is only a matter of proving that if T is (r,N)-
Tauberian from some L1 space X, then for each ε > 0 there is δ > 0 such that if
x1, . . . , xN are unit vectors in X and ‖|xn| ∧ |xm|‖ < δ for 1 ≤ n < m ≤ N, then
max1≤n≤N ‖Txn‖ > r − ε. But if x1, . . . , xN are unit vectors that are ε-disjoint as
above and y1, . . . , yn are defined by

yn :=
[
|xn| −

(
|xn| ∧ (∨{|xm| : m 6= n}

)]
sign(xn),

then the yn are disjoint and all have norm at least 1 − Nδ. Normalize the yn and
apply the (r,N)-Tauberian condition to this normalized disjoint sequence to see that
max1≤n≤N ‖Txn‖ > r − ε if δ = δ(ε,N) is sufficiently small.

An example that answers [5, Problem 1] is the restriction of an ultraproduct of
operators on finite dimensional L1 spaces constructed in [3].

Theorem 2.3 There is a Tauberian operator T on L1(0, 1) that has an infinite dimen-
sional null space. Consequently, T is not upper semi-Fredholm.

Proof An immediate consequence of [3, Proposition 6 & Theorem 1] is that there
are r > 0 and a natural number N such that for all sufficiently large n there is a norm
one (r,N)-Tauberian operator Tn from `n

1 into itself with dimN(Tn) > rn. The ul-
traproduct T̃ := (Tn)U is then a norm one (r,N)-Tauberian operator on the gigantic
L1 space X1 := (`n

1)U, and the null space of T̃ is infinite dimensional. Take any sepa-
rable infinite dimensional subspace X0 of N(T̃) and let X be the closed sublattice of
X1 generated by X0. Let Y be the sublattice of X1 generated by T̃X and let T be the
restriction of T̃ to X, considered as an operator into Y . So X and Y are separable L1

spaces and by Lemmas 2.1 and 2.2 the operator T is Tauberian. Of course, by con-
struction N(T) is infinite dimensional and reflexive (because T is Tauberian). Thus
X is not isomorphic to `1 and hence is isomorphic to L1(0, 1). So is Y , but that does
not matter: Y , being a separable L1 space, embeds isometrically into L1(0, 1).

We want to “soup up” the operator T in Theorem 2.3 to get an injective, non
surjective, dense range Tauberian operator on L1(0, 1). We could quote a general
result [6, Theorem 3.4] of González and Onieva to shorten the presentation, but we
prefer to give a short direct proof.

We recall a simple known lemma.

Lemma 2.4 Let X and Y be separable infinite dimensional Banach spaces and let
ε > 0. Let Y0 be a countable dimensional dense subspace of Y .Then there is a nuclear
operator u : X → Y so that u is injective and ‖u‖∧ < ε and uX ⊃ Y0.

Proof Recall that an M-basis for a Banach space X is a biorthogonal system
(xα, x∗α) ⊂ X×X∗ such that the linear span of (xα) is dense in X and∩αN(x∗α) = {0}.
Every separable Banach space X has an M-basis [8]; moreover, the vectors (xα) in the
M-basis can span any given countable dimensional dense subspace of X.
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Take M-bases (xn, x∗n ) and (yn, y∗n ) for X and Y , respectively, normalized so that
‖x∗n‖ = 1 = ‖yn‖ and such that the linear span of (yn) is Y0. Choose λn > 0 such
that

∑
n λn < ε and set u(x) =

∑
n λn〈x∗n , x〉yn.

Theorem 2.5 There is an injective, nonsurjective, dense range Tauberian operator on
L1(0, 1).

Proof By Theorem 2.3 there is a Tauberian operator T on L1(0, 1) that has an infi-
nite dimensional null space. By Lemma 2.4 there is a nuclear operator ṽ : N(T) →
L1(0, 1) that is injective and has dense range, and we can extend ṽ to a nuclear op-
erator v on L1(0, 1). We can choose ṽ such that ṽ(N(T)) ∩ TL1(0, 1) is infinite di-
mensional by the last statement in Lemma 2.4. This guarantees that the Tauberian
operator T1 := T + v has an infinite dimensional null space (this allows us to avoid
breaking the following argument into cases).

Now N(T1) ∩N(T) = {0}, so again by Lemma 2.4 and the extension property of
nuclear operators, there is a nuclear operator u : L1(0, 1)/N(T) → `1 such that the
restriction of u to QN(T)N(T1) is injective and has dense range (here for a subspace
E of X, the operator QE is the quotient mapping from X onto X/E). Finally, define
T2 : L1(0, 1) → L1(0, 1) ⊕1 `1 by T2x := T1x ⊕ uQN(T)x. Then T2 is an injective
Tauberian operator with dense range. T2 is not surjective because P`1 T2 is nuclear
by construction, where P`1 is the projection of L1(0, 1) ⊕1 `1 onto {0} ⊕1 `1. Since
L1(0, 1)⊕1 `1 is isomorphic to L1(0, 1), this completes the proof.

Corollary 2.6 There is an injective, dense range, nonsurjective operator on `∞. Con-
sequently, there is a quasi-complementary, noncomplementary decomposition of `∞ into
two subspaces each of which is isometrically isomorphic to `∞.

Proof Let T be an injective, dense range, nonsurjective Tauberian operator on
L1(0, 1) (Theorem 2.5). Since T is Tauberian, T∗∗ is also injective, so T∗ has dense
range but is not surjective because its range is not closed, and T∗ is injective because
T has dense range. The operator T∗ translates to an operator on `∞ that has the
same properties because L∞ is isomorphic to `∞ by an old result due to Pełczyński
(see, e.g., [1, Theorem 4.3.10]) (notice however that, unlike T∗, the operator on `∞
cannot be weak∗ continuous).

For the “consequently” statement, let S be any norm one injective, dense range,
nonsurjective operator on `∞. In the space `∞ ⊕∞ `∞, which is isometric to `∞,
define X := `∞⊕{0} and Y := {(x, Sx) : x ∈ `∞}. Obviously X and Y are isometric
to `∞ and X + Y = `∞ ⊕ S`∞, which is a dense proper subspace of `∞ ⊕∞ `∞.
Finally, X ∩ Y = {0}, since S is injective, so X and Y are quasi-complementary, non
complementary subspaces of `∞ ⊕∞ `∞.

Theorem 2.5 and the MathOverFlow question [10] suggest the following problem.
Suppose X is a separable Banach space (so that X∗ is isometric to a weak∗ closed
subspace of `∞) and X∗ is nonseparable. Is there a dense range operator on X∗ that
is not surjective? The answer is no. Argyros, Arvanitakis, and Tolias [2] constructed
a separable space X such that X∗ is nonseparable, hereditarily indecomposable (HI),
and every strictly singular operator on X∗ is weakly compact. Since X∗ is HI, every
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operator on X∗ is of the form λI + S with S strictly singular. If λ 6= 0, then λI + S is
Fredholm of index zero by Kato’s classical perturbation theory. On the other hand,
since every weakly compact subset of the dual to a separable space is norm separable,
every strictly singular operator on X∗ has separable range.2

Any operator T on `∞ that has dense range but is not surjective has the property
that 0 is an interior point of σ(T). This follows from [9, Theorem 2.6], where it is
shown that ∂σ(T) ⊂ σp(T∗) for any operator T acting on a C(K) space that has the
Grothendieck property.

Acknowledgment T. Tkocz thanks his PhD supervisor, Keith Ball, for his invaluable
constant advice and encouragement.
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