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In  their work on the partition of nitrogen in the urine of newborn breast-fed infants 
Barlow & McCance (1948) found that the total nitrogen excreted during the first 48 h 
of life was of the order of 30 mg/kg body-weight/zq h. During this time the breast-fed 
infant obtains very little food and fluid and is in a state of physiological hydropenia and 
of almost complete starvation. Barlow & McCance pointed out that Cathcart’s (1907) 
and Benedict’s (1915) work had shown that the starving adult, with an unrestricted 
water intake, excreted about 140 mg N/kg body-weightjzq h. Although this was a 
large difference they did not claim that it represented a difference in the nitrogen 
katabolized because it was known from previous work (McCance & Widdowson, 1947) 
that there was usually some retention of nitrogen over the first 2 days of life, and this 
had not been measured. 

A re-examination of this evidence in 1949 suggested that the nitrogen katabolized 
by infants per kg body-weight in the first 48 h of life really was smaller than that 
katabolized by fasting adults. This was felt to be curious since Benedict & Talbot 
(1915) had found that the calorie output of resting infants was 48 Cal./kg/zq h, 
whereas that of adults was only 23 Cal./kg/zq h. Little help in the resolution of this 
difficulty could be obtained from the literature. Schlossmann & Murschhauser (1914) 
appeared to have been two of the few, if not the only, investigators to have measured 
the nitrogen katabolism and the calorie expenditure of the same starving baby. In 
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22 R. A. MCCANCE AND W. M. B. STRANGEWAYS I954 
a child about 6 months old they found the nitrogen katabolism to be 0-33 g/kg during 
the second 24 h of starvation and the metabolic rate-probably not basal-59.5 Cal./kg. 
The nitrogen katabolism seemed very high, but the child’s age and other circumstances 
made it unwise to compare the results with those obtained directly after birth. 

The only other pertinent findings are those of Ashworth & Cowgill (1938). Terroine 
and his collaborators (Terroine, Boy, Champagne & Mourot, 1933) (see also Smuts, 
1935; Brody, 1945) had established the fact that in a large series of animals, including 
man, the output of ‘endogenous’ nitrogen in the urine was about 2 mg per basal Calorie 
consumed. Terrorne et al. (1933), who had studied two growing pigs, believed that the 
relationship held for every age, The significance of the conception of ‘endogenous’ 
nitrogen has greatly changed (Beard, 1943) since it was introduced by Folin (1905), 
but if it be defined as the quantity of nitrogen excreted in the urine on a full calorie 
diet containing little or no protein, there can be no objection to the use of the term. 
Ashworth & Cowgill (1938) found that this figure of 2 mg N/basal Cal. held only for 
young adult rats, that in growing animals weighing 40 g the figure was about I mg and 
that it rose to 2-7 in animals weighing 350 g or more. Brody (1945) did not accept 
these findings as having the significance attached to them by Ashworth & Cowgill, 
and thought that the figure 2 could be taken to apply to all mammals by the time they 
had been weaned. Nevertheless, Ashworth & Cowgill’s work seemed to have been 
carefully done, and their results were at least suggestive in the light of the possibility 
that the starving newborn infant might have an unexpectedly small nitrogen break- 
down. It was decided, therefore, to begin by studying the oxygen consumption, calorie 
output and nitrogen katabolism in each one of a series of newborn babies and to 
compare the results with those obtained from a series of normal young adults, main- 
tained under essentially the same conditions. In  order to achieve this it was planned 
to give the infants no food and only 50 ml. of water for the first 48 h of their lives and 
to allow the adults 350 ml. of water/q h but no food. 

In some respects elderly men tend to stand up badly to undernutrition (McCance, 
1951). In searching for an explanation it was considered that in starvation a greater 
proportion of their calorie output might be derived from the katabolism of protein 
than in young adults; that they were in fact in this respect the antithesis of the new- 
born infant. Here again, the literature provided no assistance and it was decided, 
therefore, to make the study of adults include a group of old men and to compare their 
katabolism of nitrogen with their calorie output under basal conditions, and both with 
the same measurements in infants and young adults. It was agreed to allow the old 
men 500 ml. water/q h during their period of starvation. 

EXPERIMENTAL 

Subjects and methods 
Table I gives the age, height, weight, surface area, and certain other details about the 
subjects. The men all offered their services voluntarily after the nature and objects of 
the experiment had been explained to them. Permission to make these experiments 
was obtained from the parents of the infants and this was done before delivery to 
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Table I .  Description of subjects 

23 

Subject 
A 

B 

C 

D 

E 

F 

I 
J 
K 
L 
M 
N 
U 
V 
W 
X 
Y* 
ZXt 

Age 
(years) 

0 

0 

0 

0 

0 

0 

21 

26 
30 
22 
21 
21 

74 
74 
81 
84 
79 
77 

Height 
(m) 
- 

- 

- 

- 

- 

- 

1'74 
1-69 
1.76 
1.66 
1-77 
1-65 
1-54 
1.62 
1.66 
1.68 
I '64 
1.83 

Weight 
(kg) 
3'34 

3-11 

2.70 

3.22 

4' 20 

3.81 

82'3 
68.6 
72'0 
66.1 
69.5 
607 
63.8 
58.6 
68.8 
85.6 
69.0 
56.3 

Surface area 
(ss.m) 
0.230 

0.219 

0'200 

0225 

0.268 

0.25 I 

Remarks 
First baby. Normal pregnancy 
and delivery 

First baby. Normal pregnancy 
and delivery 

First baby. Normal pregnancy 
and rapid delivery. Signs of 
cerebral irritation on day 2 

and delivery 

and very easy delivery 

and delivery 

Second baby. Normal pregnancy 

Third baby. Normal pregnancy 

Fourth baby. Normal pregnancy 

These men were healthy sailors 
who were taking part in other 
experiments (Hervey & 
McCance, 1952) 

Healthy men from homes for the 
aged 

# On a low-protein diet before experiment. 
t hpprehensive; stopped after 48 h. 

enable the infants to be reared from birth in the respiration chamber. Only male 
infants were used. The fathers were allowed to visit their children during the tests, and 
the infants were taken from the chamber and shown to their mothers at least once in 
the 48 h. 

The young men were all sailors. During the experiment they lived in a small room 
with an almost constant, comfortably warm temperature. The old men were admitted 
to hospital and, like the young men, spent most of their time lying on their beds or 
moving quietly about the ward. Samples of blood were taken without anticoagulant 
before the period of starvation and at the end of each 24 h during the test. The serum 
was separated and used for the determination of urea. Urines were collected under 
toluene in periods of 24 h and the basal metabolic rate was determined by the Douglas- 
bag technique (Best & Taylor, 1950). Expired air was collected for 12 min periods 
from the young men and for 15 min periods from the old men. All were trained in the 
use of the mask and bag before the experiment began. 

The metabolic rates of the infants were determined by means of an apparatus which 
operated upon the closed circuit principle and consisted of the following parts : 
(I) A cylindrical glass chamber, with a volume of about 60 l., closed by a quick release 
airtight door at the head end and mounted on stilts which gave it a downward tilt of 
15' from the head end to the foot end. Longitudinal runners inside it carried a 
Perspex frame for the baby. Below this lay a soft rubber bag which could be filled 
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24 R. A. MCCANCE AND W. M. B. STRANGEWAYS '954 
from a graduated column of water in a tube with a diameter of 10 cm situated outside 
the chamber and connected with the bag by rubber and metal tubing. A paper 
hygrometer and a mercury thermometer were mounted in the chamber. Through the 
foot end passed the copper inlet and outlet tubes for the gases, tubes for sampling the 
air in the chamber, for the admission of water to the bag and for the admission of 
oxygen to the apparatus, a glass tube for the manometer, glass tubes for stethoscopic 
purposes, and the wiring for the thermoelectric rectal thermometer. The manometer 
was designed to show small differences of pressure between the inside and the outside 
of the chamber. The gases leaving the chamber passed through copper piping with + in. internal bore to ( 2 )  a Perspex box 8 x 8 x 12 cm, which acted as a silencer and 
prevented alkali from being sucked back through the pump into the chamber. 
(3) A rotary air pump driven through a variable gear by an electric motor. (4) The 
absorbers for CO, and water vapour. Two of these were mounted in parallel and only 
one was used at a time. The CO, absorber consisted of a Perspex box. The gases passed 
through a duct down the side of the box and entered it through a perforated slot in the 
floor. When the pump was not running, alkali entered the slots and rose in the duct to 
the level inside the box. The dimensions of the box were 14 x 7.5 x 14 cm, and it was 
fitted with three baf€le plates fixed to the sides and a guard at the outlet tube in the 
ceiling to prevent alkali being carried out of the box by the stream of air. In the 
absorber box were placed 750 ml. of C0,-free zN-NaOH solution and this could be 
sampled and analysed as and when required. To  do so 12 ml. were withdrawn through 
a tube provided for this purpose in the side, the first few mi. were discarded, and 
4 0  ml. used for each analysis (see below). 

The water vapour was absorbed in a box 17 x 7 x 10 cm, fitted with three baffle 
plates fixed to the ceiling and floor alternately and containing silica gel (Messrs Hopkin 
and Williams, Chadwell Heath, Essex) to which had been added cobalt chloride. This 
box was provided with a bypass tube made of rubber and fitted with a screw clip. By 
varying the amount of gas passing through the bypass the humidity of the gases 
returning to the chamber could be controlled. From this box the gases were led back 
to the chamber and distributed from perforated rubber tubing lying below the Perspex 
frame. 

The chamber itself was mounted on the upper deck of a trolley and enclosed in 
a rectangular Perspex case 32 x 22 x 22 in., the end of which could be removed very 
easily. The silencer trap, the motor and all the absorber sets were mounted on the 
lower deck. The apparatus was tested many times by burning alcohol in it and the 
chamber was always cleaned out with distilled water and sterilized with formalin 
vapour before a new subject was placed in it. 

All the mothers were given gas-air analgesia during the delivery. The birth of the 
infant was watched and only infants whose birth was normal were used. A sample of 
cord blood was collected and the serum separated. As soon as the infant had emptied 
his bladder and respiration had been established, he was wrapped up, shown to his 
mother, and taken to the nursery. There he was washed, weighed and fitted with an 
apparatus for collecting any urine he might pass. He was then clothed in a napkin, 
frock, mittens, socks and a shawl and laid on his side on wide-meshed netting strung 
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on the Perspex frame. He was secured on this frame by a nylon sheet passing round 
them both and on it he was lifted feet first into the chamber. 

After all the fittings had been attached the door was firmly closed, but while this was 
being done a tap was left open to retain atmospheric pressure in the circuit. The motor 
was then started and allowed to run with the tap open till the temperature and 
humidity had settled to steady values. After these preliminaries, if the infant seemed 
quiet and likely to settle, about 2 1. of oxygen were passed into the chamber and the 
last tap closed. The gases were then passed through fresh absorption boxes and after 
a further period of equilibration a sample of gas was taken from the chamber for 
analysis (Haldane), and NaOH for analysis was withdrawn from the C0,-absorption 
box. Throughout the test the humidity and temperature of the interior of the chamber 
were kept as constant as possible and varied in fact very little. As the oxygen in the 
circuit was used up and the CO, absorbed, the pressure inside and outside the chamber 
was equalized by running water from the measuring column outside the chamber into 
the bag inside the chamber. (The flow could be reversed by changing the levels, and 
this was done between the tests when the circuit was being recharged with oxygen.) 
The metabolic rates were measured for 60-90 min, and at the end of each test further 
samples of NaOH and of chamber gas were taken. Tests were made at suitable intervals 
night and day for the first 48 h of the infant's life, but the only measurements recorded 
in this paper were basal ones made while the infants were absolutely quiet and their 
temperatures within normal limits. Each figure given represents the mean of several 
tests. When measurements were not being made or contemplated in the next few hours 
the door of the chamber was usually opened and the motor switched off. When the 
baby passed meconium he was taken out, cleaned and fitted with a fresh napkin unless 
this interrupted one of the tests. 

The urine was removed and stored under toluene soon after it had been passed. The 
last specimen was often voided when the baby was being handled at the end of the 48 h; 
otherwise the apparatus was kept in place till the infant next emptied his bladder 
unless he had done so within the previous 2 h. The collecting tube and bottle were 
cleaned out with distilled water and the washings analysed. Blood was collected from 
the heel at 24 and 48 h, the serum was separated and used for urea determination. The 
oxygen consumption was calculated from a curve obtained by taking readings at 
intervals of about 5 min, assuming the initial volume of the chamber to be 58 1. and 
deducting from this the volume of water run into the bag, the resulting volume being 
reduced to s.t.p. in the usual manner. The CO, given out was determined by titrating 
the samples of NaOH withdrawn. Owing to the evaporation of water from the absorp- 
tion box it was also necessary on each occasion to determine the change in normality 
of the total alkali. The sample of NaOH and NaHCO, was therefore treated with 5 ml. 
N-BaCl, and titrated to the phenolphthalein end-point with 0.2 N-HCl and the 
titration then continued to the end-point given by methyl red (Cumming & Kay, 1948). 
A correction was made for any rise or fall of CO, in the circuit gases. 

The percentage of oxygen in the chamber was maintained between 23 and 19. The 
air in the circuit was usually kept 70 % saturated with water vapour and it contained 
about 0.2 yo CO, . The temperature of the chamber was usually held at 27'. The total 
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nitrogen in the urine was determined by the micro-Kjeldahl technique and the urea 
in serum and urine by Lee & Widdowson's (1937) method. A full description of this 
apparatus with diagrams and a much more detailed account of the procedure involved 
in measuring the infant's basal metabolic rates will be published later (Strangeways, 
1954). Diagrams of the apparatus are available now and can be supplied if anyone 
wishes to construct one on similar lines. 

The nitrogen katabolized by infants and adults was calculated from the increase or 
decrease in the quantity of urea nitrogen in the body water and the total nitrogen 
excreted in the urine. Seventy-two yo of the fat-free parts of the body of the adults 
was assumed to consist of water; the amount of fat in the body was deduced from 
Fig. 3 given by McCance & Widdowson (1951). Sixty-nine % of the body-weight of 
these full-term normal babies was assumed to consist of water (Widdowson & Spray, 
1951). 

RESULTS 

Table 2 gives the basal metabolic rates and the nitrogen katabolism of the babies in 
the first 2 days of life and of the young sailors and of the old men for the 2nd and 3rd 
day of fasting. The figures for the adults on the 1st day of deprivation have not been 

Table 2. Basal metabolic rates and nitrogen catabolism of the subjects 

Subject 'Day I Day 2 Day 3 
A 45 61 - 
B 47 48 - 
C 5 4  49 - 

D 45 47 - 
E 5 2  53 - 
F 4 7  48 - 

29 25 I 
-- 28 28 

26 24 
J 
K 

24 26 L 
M -- 29 25 
N - 27 25 

19 17 U 
22 21 V 

w -- 21 20 
X __ 18 19 

21 24 Y 
30 - z 

- 

__ 
_- 

- 
_- 

__ 
- 

Day 2 

0.105 
0.048 
0.064 
0.046 
0.088 

0.175 
0.137 
0.169 
0.145 
0.195 
0.094 
0.108 
0.088 

0121 

0121 

0'101 

0'100 

0.148 

Day 3 
- 
- 

- 
- 

- 
- 

0-169 
0-197 
0' I99 
0.178 
0.217 
0' I82 
0-180 

0.149 
0.190 
0.135 
0.108 
- 

Ratio, basal Cal./ 
g N katabolized 

T- 

Day z D a y 3  
504 - 
457 - 
735 - 

I 1 5 0  - 
541 - 
236 150 
161 143 
192 120 
142 147 
I99 117 
138 136 

204 I44  
238 107 
I79 I43 
209 218 

1020 - 

203 96 

200 - 

given since they were variable and clearly belonged to the transition period between 
the normal state of full nutrition and hydration and the abnormal one of established 
starvation and hydropenia. Signs of an irregular transitional period were not evident 
just after birth, and since no observations were made on the 3rd day of life the nitrogen 
catabolism and the basal metabolic rates of the infants have been given for the first and 
second 24 h of starvation. The respiratory quotients of the sailors (not given in the 
table) were around 0'77 on the 2nd day and had fallen to about 0'74 by the 3rd day. 
The figures for the old men were a little lower and averaged 0.72 on the 3rd day. The 
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respiratory quotients of the infants were 085-0-90 soon after birth but by the end of 
the first 24 h of life had fallen to about 0-75. These findings are similar to those of 
Benedict (1907) and of Benedict & Talbot (1915) and indicate that, whatever the age 
of the subject, the carbohydrate stores available for combustion had largely been 
utilized by the beginning of the 2nd day of starvation. 

The figures for the basal metabolic rates of the fasting sailors ranged from 240 to 
28-8 Cal./kg/q h on the 2nd day and from 23-9 to 28.2 on the 3rd day. These are in 
good agreement with the results obtained by others (Kleitman, 1926), and which 
might have been expected (Benedict, 1907, 1915; Lusk, 1928; Boothby & Sandiford, 
1929; Du Bois, 1936). Old man 2 was always apprehensive and was not a good subject. 
His basal metabolic rate came to 29.7 Cal./kg/zq h on the 2nd day and he gave up the 
experiment at the end of it. The basal metabolic rates of the other five old men ranged 
from 18.1 to 22.0 Cal./kg/q h on the 2nd day and from 17-3 to 23-6 Cal./kg/24 h on 
the 3rd day. A rate of about 20 Cal./kg/24 h for this group might have been predicted 
from a general knowledge of early starvation and from the tables given by Du Bois 
(1936), so here again the present results fall into line with those of others. The basal 
metabolic rates of the newborn infants varied from 45 to 54 Cal./kg/eq h on the 1st day 
of their lives and from 47 to 61 Cal./kg/zq h on the 2nd day. Only one was over 
53 Cal./kg/q h. The average figure given by Murlin, Conklin & Marsh (1925) was 
48 Cal./kg/zq h (Talbot, 1925). I t  may be concluded that there was nothing unusual 
about the basal metabolic rates of the present subjects. 

The nitrogen katabolized by the sailors ranged from 0’121 to 0.195 g/kg/z4 h on the 
2nd day and from 0.169 to 0.217 g/kg/zq h on the 3rd day. These figures are of the same 
order as those found by others for the nitrogen excreted in the urine on the 2nd and 3rd 
days of a fast, and since in all previous studies the water intake was not restricted in 
any way the nitrogen excreted may be taken as being equal to the nitrogen katabolized. 
Benedict (1907), for instance, found a range of 0-149-0-259 g/kg/zq h for the 2nd day 
of a fast, Folin (quoted by Benedict) a figure of 0.130 g/kg/q h, Cathcart (1907) 
0.219 and 0-209g/kg/24 h on the 2nd and 3rd days respectively and Johannson, 
Landergren, Sonden & Tigerstedt (1897) 0.190 and 0-200 g/kg/q h for the same 
2 days. Benedict & Diefendorf (1907) found 0.125 g/kg/24 h for a woman, and 
Brugsch & Hirsch (1906) and Bonniger & Mohr (1906) 0*140g/kg/24 h also for 
a woman. The sailors had ratios of basal Cal./g N katabolized of from 138 to 236 on 
the 2nd day and from 117 to 150 on the 3rd day. The decrease, when of noteworthy 
size, was due mainly to a rise in the katabolism of nitrogen. Benedict’s (1915) tables 
show that Levanzin’s ratios were 185 and 135 for 2nd and 3rd days of his fast, and it is 
evident that the sailors’ ratios are representative of those to be expected in young 
adults. 

The old men katabolized 0088-0.148 g N/kg/zq h on the 2nd day of their fasts and 
0-108-0~190 g/kg/24 h on the 3rd day. There are no previous figures with which to 
compare these, but it will be noted that they, like the basal metabolic rates, are some- 
what lower than those of the sailors. The ratios of basal Cal./g N katabolized were, 
therefore, very like those of the sailors and ranged from 179 to 238 on the 1st and from 
96 to 218 on the 2nd day of the fast. 
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28 R. A. MCCANCE AND W. M. B. STRANGEWAYS 1954 
The nitrogen katabolized by the baby boys ranged from 0.046 to 0.095 g/kg during 

the first 24 h and from 0.046 to 0’121 g/kg during the second 24 h. These are measure- 
ments that do not appear to have been made before, and they show that the amount of 
nitrogen broken down was on the whole considerably less than that broken down by 
the sailors and somewhat less than that by the old men; and this, taken in conjunction 
with the fact that the basal metabolic rates of the infants were at least twice as high as 
those of the adults, gave the infants much greater ratios of Cal./g N katabolized. These 
ranged from 457 to 1150 on the 2nd day of their fast. It is perhaps a pity that the 
experiments on the newborn boys could not have been prolonged to the 3rd day but 
it is open to argument whether they had not reached by the second 24 h a state of 
starvation and hydropenia similar in severity to that reached by the sailors and old men 
on the 3rd day. At any rate they had lost a greater percentage of their original body- 
weight. Perhaps, therefore, the 2nd-day figures for the infants should be compared 
with the 3rd-day figures for the sailors and old men. If this is done, Table 2 shows 
that the differences are considerably magnified. 

Table 3 shows the average basal metabolic rates for the three different ages and the 
percentage of the calories derived from protein. The breakdown and combustion of  
protein contributed only 4% to the calories of the baby boys. Protein provided 
15-20 yo of the sailors’ basal calories and there was no change in this percentage with 
advancing years. 

Table 3. Average values and standard deviations for basal calorie consumption 
and percentage of this derived from protein 

Baby boys Young men Old men 
r---Jc--7 c 7 

Basal Cal. derived Basal Cal. derived Basal Cal. derived 
Day of metabolic from metabolic from metabolic from 
starva- rate protein rate protein rate protein 

tion (Cal./kg/z4 h) (%) (Cal./kg/zq h) (%I (Cal./kg/z4 h) (76) 
- - - - I 48’3k3-4 3’9f1 .0  

z 51-af4.9 4 ’ 1 + 1 * 3  27.2+1.7 15’4k2.9 21.8k3.8 13.7+z.o 
3 - - 25’6fr.4 19’7k1.9 z0.4fz.1 zo.3+5.1 

DISCUSSION 

The newborn infants 
The nitrogen breakdown of the newborn infants per kg body-weight was greater than 
the figures given by Barlow & McCance (1948) for the nitrogen excretion. This 
difference was due to the nitrogen retention which so often takes place at that time of 
life, and which was measured in the present investigation. A paper is being prepared 
about it, and the difference requires no further discussion. 

The numerical value of the ratio basal Cal./g N katabolized depends upon the 
soundness of two quite separate measurements. The ratios in this study might have 
been too high because the metabolic rates were not really basal, for any expenditure of 
energy on muscular exertion during starvation raises the calorie output but not the 
nitrogen breakdown (Voit, 1878; Lusk, 1928). The measurement of the true basal 
metabolic rate of a newborn infant has always been recognized as a troublesome task. 
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Vol. 8 Metabolism during starvation 29 
Small spontaneous movements often introduce difficulties, particularly if the infants 
are hungry. Some workers have measured the calorie expenditure when the babies 
were apparently asleep, others after a little food or the administration of a barbiturate 
(Karlberg, 1952). The present investigators have done their best by keeping the 
infants under continuous observation over the whole of the first 48 h of their lives 
and by making their measurements of basal metabolic rate only when the infants 
really were, and had been, quiescent for some time. No drugs were given except a 
little phenobarbitone to one infant who showed slight signs of cerebral irritation. The 
results obtained are, as already stated, closely in line with those of others and the 
rates must be accepted as basal in the ordinary sense of the term. The ratio might also 
have been too high because only part of the urine formed was collected or because of 
some technical error in the Kjeldahl determination. The infants were not catheterized 
but each one was kept under observation till it passed urine spontaneously at the end 
of the 2nd day. There is no reason to think that any of the babies were returned to the 
nursery with urine in their bladders, and if they were the amount can only have been 
very small relative to that which they had already passed. Occasionally a few drops of 
urine were spilt while handling the baby. The total quantity probably never exceeded 
I ml. and an allowance was made for any such losses on the rare occasions when they 
did occur. Faults on the chemical side have been excluded by the usual blanks, controls 
and determinations of standard solutions. Urates, which often deposited in the cooled 
urines, were dissolved by warming before the urines were sampled. The ratios, there- 
fore, must stand. They indicate that the babies were breaking down less than 2.0 mg 
nitrogen/basal Cal. during starvation. How much lower the rate of breakdown would 
have been if the infants could have been given a high-calorie protein-free diet it is 
difficult to say, but it would almost certainly have been lower. The generalization of 
Terroine et al. (1933) and of Brody (1945) can scarcely hold for the human infant 
immediately after birth, and Ashworth & Cowgill (1938) were probably right in 
thinking that the ‘endogenous’ nitrogen/basal Cal. ratio changed with age. 

If we knew the mechanisms within the body that fix the Cal./N ratio in adults it 
would be easier to speculate on the reason why it is so much higher in newborn infants. 
The thyroid controls the basal metabolic rate of the body and may have something to 
do with fixing the ratio but the present evidence is rather against it, for thyroid activity 
appears to decrease in old age (Perlmutter & Riggs, 1g49), whereas the ratio has not 
been found to change. Less, but not much less, nitrogen is katabolized by infants 
per kg body-weight than by adults. The differences are somewhat reduced if the 
results are expressed per kg of cell mass. The growth hormone may be the agent that 
makes the ratio so high in infants or it may be insulin. The former has been said to 
act by inhibiting protein katabolism (Li & Evans, 1947) but how it does so is another 
matter (Greenbaum, 1953). The nitrogen katabolized by adults ingesting no protein 
is greatly reduced by small amounts of carbohydrate (Hervey & McCance, 1952). 
Insulin does stimulate the combustion of glucose and has been shown to be capable 
of acting remarkably like a growth hormone (Best, 1952). It would be interesting to 
know if the turnover rate of amino-acids was slower or faster in infants than in adults. 
Infants often have lower enzyme activities in their tissues than adults (Hines & 
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McCance, 1953). They may have less of the enzymes that destroy amino-acids (Epps, 
1945). If the acids accumulate they may alter the turnover equilibrium between the 
cell proteins and the free acids in such a way that breakdown takes place more slowly. 
There is evidence (Crumpler, Dent & Lindan, 1950) that there is more amino-nitrogen 
in the cord serum than there is in the maternal serum. The facility with which fat is 
made available far metabolism in the body of the newborn might explain why the 
breakdown of protein is so small. In other words, protein is not katabolized simply 
because plenty of fat and fatty acids present themselves at the required sites for break- 
down and metabolism, and the enzymes are available for doing this. The latest work 
on the growth hormone (Greenbaum, 1953) suggests that it may be the responsible 
agent. From this point of view the infant at birth can be pictured as being in the 
position of an adult on a diet very low in protein but high in calories. 

Further discussion must await the experimental results, but meanwhile there are 
some other points to which reference must be made, The first is that Karlberg (1952) 
was probably wrong in calculating his basal metabolic rates to assume that 15 yo of his 
infants’ calories were derived from protein. The second is that the small percentage of 
the total calories that the starving human infant derives from protein just after birth 
must bear some relationship to the small percentage of the calories that can be derived 
from the protein in human milk if it is completely metabolized. It remains to be seen 
what the ratio basal Cal./g N katabolized will turn out to be in other newborn animals- 
firstly in relation to the composition of their milk and secondly to their ratio basal 
Cal./g N katabolized at maturity. The third is that, were the ratio not so high, the loss 
of protein and consequently of weight in the first 2 days of life would certainly be 
greater than it is, more urea would be formed and would have to be excreted by 
kidneys which are incapable as it is of dealing with the relatively small amounts of 
urea which the tissues make. 

The old men 
It is evident that the ratio basal Cal./g N katabolized does not change appreciably 

with advancing years, and that whatever fixes it remains functionally effective into old 
age. This is true of many of the other bodily and cellular functions (Lansing, 1951) 
and needs no further comment. A fall in the ratio, therefore, below the adult level 
may probably be dismissed as the reason why old men stand up badly to under- 
nutrition. The matter has not yet been explored or the fact shown to hold for animals, 
and the reasons may be largely social and psychological. Information about protein 
metabolism during starvation must be germane in any investigation into protein 
requirements. The composition of human milk, low in protein as it is, provides more 
nitrogen/Cal. than is called for by the basal metabolism of the starving infant. The 
tendency among European and American adults is to eat a diet of which about 12 % 
of the calories are derived from protein (Widdowson, 1936; Widdowson & McCance, 
1936). Albanese, Higgons, Vestal, Stephanson & Malsch (1952) found a much lower 
proportion than this in a small group of old women, but the proportion has also been 
found to rise slightly in old age (Ohlson, Brewer, Cederquist, Jackson, Brown & 
Roberts, 1948). However that may be, it certainly never approaches the 20 % which 
the basal metabolism of an adult demands during starvation. 
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SUMMARY 

I. Normal newborn male infants and young and old men were allowed no food 
and a restricted fluid intake for 48-72 h. Urine and blood were collected over this 
time and the basal metabolic rates were measured. 

2. The basal metabolic rate of the three groups averaged 50,26 and 21 Cal./kg/zq h 
respectively during starvation. 

3. The body nitrogen katabolized on these days averaged 0.075 g/kg/zq h in the 
infants, 0.17 in the young adults and 0.12 in the old men. 

4. It follows that starving young adults and old people derived about 19 % of their 
calories from protein but infants, during the first 48 h of their lives, only 4%. 

Miss Elizabeth Colbourn played a very important part in the investigations on the 
newborn infants, and the authors are very grateful to her. They are also indebted to 
Professor E. M. Glaser and Dr G .  R. Hervey for their co-operation in the work on the 
sailors and to Dr E. M. Widdowson for consistently sound advice. 
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Studies of the Site of Conversion of B-Carotene Injected 
Intravenously into Rats 

BY J. G. BIER1 AND CLIFFORD J. POLLARD 
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Galveston, Texas 

(Receiwed 26 June 1953) 

It has been known since the work of Drummond, Gilding & Macwalter (1934) and 
Drummond & Macwalter (1935) that when colloidal carotene is introduced directly 
into the circulation of animals the liver rapidly removes the pigment much as it does 
many other colloidal substances. Such carotene, as well as that deposited in the liver 
when colloidal carotene is given by other parenteral routes, is essentially not available 
to the animal as a source of vitamin A and may still be found in the liver after the 
animal has died from an apparent deficiency of the vitamin (Lease, Lease, Steenbock 
& Baumann, 194.2; Sexton, Mehl & Deuel, 1946). With the discovery by Tomarelli, 
Charney & Bernhart (1946) that parenteral carotene can serve as an effective source of 
vitamin A provided it is solubilized in water with a surface-active agent, it became 
apparent that the parenteral utilization of the provitamin was primarily a question of 
its physical state in the aqueous medium administered. 

Recently, Eaton, Matterson, Decker, Helmboldt & Jungherr (1951) injected an 
aqueous suspension of carotene intravenously into vitamin A-depleted calves and 
observed slight increases in plasma vitamin A levels.. No increased storage of 
vitamin Ain the liver, however, was found. Kowalewski, Henrotin & van Geertruyden 
(195 I) have reported that colloidal carotene injected3ntravenously into dogs gave rise 
to considerable increases in vitamin A in the serum and liver within 2 h. 

In  a previous study of the availability of solubilized carotene injected intramuscularly 
into vitamin A-depleted rats (Bieri & Schultze, 1951 b), only small amounts ofvitaminA 
were found in the serum and kidneys, and none was present in the liver. This indicated 
a rather inefficient utilization of the parenteral carotene, and subsequent investigation 
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