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CIRCULANT GRAPHS AND 4-RANKS 
OF IDEAL CLASS GROUPS 

JURGEN HURRELBRINK 

ABSTRACT. This is about results on certain regular graphs that yield information 
about the structure of the ideal class group of quadratic number fields associated with 
these graphs. Some of the results can be formulated in terms of the quadratic forms 
x2 + 27y2, x2 + 32y2, x2 + 64y2. 

1. Introduction. For a real quadratic field E — Q(\/d), d being a product of t dis
tinct prime numbers incongruent to 3 mod 4, the 4-rank of the narrow ideal class group of 
E can be computed via Eulerian yertex decompositions (EVD's) of the graph TE attached 
to E. We study the situation t = p,p an odd prime number, and TE a circulant graph onp 
vertices, where the relevant data can be obtained from the arithmetic of the cyclotomic 
field Q(^). 

Section 2 presents the reformulation of the Rédei-Reichardt Theorem on the 4-rank 
of the narrow ideal class group of E in terms of the number of EVD's of the graph FE as 
it can be found in [12]. 

Section 3 studies circulant graphs and introduces P. E. Conner's Theorem about their 
number of EVD's in arithmetic terms. 

Section 4 makes the results explicit e.g. for Paley graphs and Cayley graphs corre
sponding to the subgroups of cubes and fourth powers of (Z/pZ)*. 

These connections between combinatorics and arithmetic provide us with number 
fields E whose graph TE is connected, regular, and has an arbitrarily large number of 
EVD's, which in particular implies that the 4-rank of the ideal class group of E is arbi
trarily large. It should be noted—compare (2.9)—that those graphs are extremely rare 
among all graphs. 

An extension of the results for more general circulant graphs on t vertices by using 
the arithmetic of Q(£r) would be interesting and will encounter new obstacles. One might 
wish to investigate the case of t being a prime power. 

2. Rédei-Reichardt revisited. We will consider real quadratic number fields E — 
Q(y/d) with d — p\ pu a product of t > 1 distinct prime numbers /?,• ^ 3 mod4. 
These are the quadratic number fields E for which — 1 is a field norm from E over Q. Let 
C(E) be the narrow ideal class group of E and let 2-rank C(E) and 4-rank C(E) denote 
the number of cyclic factors of C{E) of order divisible by 2 and 4, respectively. 

Received by the editors April 30, 1992. 
AMS subject classification: 05C90, 11R11, 11R29. 
© Canadian Mathematical Society 1994. 

169 

https://doi.org/10.4153/CJM-1994-005-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-005-2


170 JURGEN HURRELBRINK 

By Gauss' genus theory we have the well known 2-rank formula 

(2.1) 2-rank C(E) = t - 1. 

With E = Q{yjp\ Pt) as above we associate the t x t matrix ME — (a^) over F2 
given by 

[1 ifi?jmd(p = -l 
{22) aV-\0 i f /^yand(^) = +l 

t 

an = J2 aij-
7=1 

Here, for/?/ = 2 and/?y = 1 mod 4, it is understood that ( - ) = (^) = +1 if and only 
if Pj = 1 mod 8. 

We call ME the Rédei matrix of E and notice that ME is a symmetric matrix over F2 
whose rows sum up to the zero row. In particular, the rank of ME over F2 is at most 
t—\. What Rédei and Reichardt have set up in terms of "d-splittings of the second type" 
amounts to the 4-rank formula 

(2. 3) 4-rank C(E) = t - 1 - rankF2 ME\ 

compare [5], [7] through [16], and [18], [20]. 
With the Rédei matrix ME we now associate a graph TE given by 

(2.4) set of vertices V = {1,2,..., t}; two distinct vertices / and j are 
adjacent if and only if a^ = 1. 

In other words, vertices / and / are linked by an edge if and only if (&) = —1. In this 
way we have obtained from E a graph TE having a finite set of vertices, no loops, and no 
multiple edges. Moreover, by Dirichlet's theorem on primes in arithmetic progressions, 
every such graph T is a graph VE for some quadratic number field E (in fact, for infinitely 
many quadratic number fields E). 

An Eulerian vertex decomposition (EVD) of a graph T with set of vertices V is an 
unordered pair 

(2.5) {Vi, V2} such that V = V\ U V2, Vi H V2 = 0 

and every vertex in V is adjacent to an even number of vertices in the subset V\ or V2 to 
which it does not belong. 

By this definition, for an EVD {V\, V2}, the subgraph of V consisting of all edges 
between V\ and V2 is an Eulerian graph. We refer to {0, V} as the trivial EVD. 

The 4-rank formula (2.3) for C(E) in terms of the Rédei matrix ME becomes in terms 
of the corresponding graph TF a formula on the number of EVD's of YE. Namely: 
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THEOREM 2.6 (RÉDEI-REICHARDT). For a quadratic number field E as above with 
associated graph YE, the 4-rank of the narrow class group C(E) is given by 

->4-rank(£) # ofEulerian vertex decompositions of YE. 

See [12] for this formulation of the Rédei-Reichardt theorem. In particular we have 
by Theorem 2.6: 4-rank C(E) — 0; that is, the 2-Sylow subgroup of C{E) is elementary 
abelian if and only if YE does not admit a non-trivial EVD. 

Consider a graph Y on t vertices and any quadratic number field E = Q(y/pi pt) 
such that T = T^. We then say, for 0 < c < t — 1, 

r has property Pc if and only if Y has 2C EVD's; that is, 

(2.7) if and only if 4-rank C(E) = c\ that is, 

if and only if co-rankf 2 ME — c + 1. 

Extreme cases: Y has property PQ if and only if 2-Sylow C(E) is elementary abelian, and 
r has property Pt-\ if and only if ME is the zero-matrix; that is, if and only if Y is totally 
disconnected. Property Po is what is called property (P) in [11]. 

ILLUSTRATION 2.8. 

E 0 ( ^ 5 • 13 • 37) Q(A/5- 13- 17-41) Q(>/13 • 17- 101) 
2-rank C(E) 

Rédei matrix ME 

rankf2 ME 
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graph r^ 

# of EVD's 
4-rank C(E) 

0 1 1 
1 0 1 
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1 0 1 0 
0 1 0 1 

\ l 0 1 0 / 
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• 
21 
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3 

22 
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It follows from [16] that the graphs with property Pc for c large are extremely rare 
among all graphs (having finitely many vertices, no loops, and no multiple edges). For 
example: 

(2.9) More than 41.94% of all graphs have property Po, the same percent
age of graphs have property P\, and more than 99.85% of all graphs 
have property Pc for some c < 3. 

We will exhibit families of connected, regular graphs having property Pc with c arbitrarily 
large. 
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3. Circulant graphs. A circulant graph is a graph whose adjacency matrix, for 
some ordering of the vertices, is a circulant matrix; compare [2]. In this paper we consider 
only circulant graphs onp vertices, where p is an odd prime number. 

By a graph set we mean a subset S of the group of units (Z/pZ)* = 
{±1, ± 2 , . . . , i^y^} of Z/pZ satisfying (— l)S = S. In particular, a graph set has an 
even number of elements. 

DEFINITION 3.1. For an odd prime p and a graph set S C (Z/pZ)*, the circulant 
graph r(5) is given by: 

set of vertices Z/pZ = {0} U (Z/pZ)*; 
two vertices ij G Z/pZ are adjacent if and only if i—jE S. 

These are the graphs onp vertices with a circulant adjacency matrix. In Illustration 2.8 
we have seen two circulant graphs onp = 3 vertices. Forp = 5, S = {±2} we obtain 
T(S)tobe n 

/ 0 0 1 1 0 \ 
0 0 0 1 1 

with circulant matrix 1 0 0 0 1 
1 1 0 0 0 

\ 0 1 1 0 0 / 

In general, a circulant graph T(S) is regular of degree # S. So, for S = 0 we obtain 
the totally disconnected graph, for S = {±/} the p-cycle, for S = (Z/pZ)* the complete 
graph onp vertices. 

The totally disconnected graph on p vertices has property Pp-\, the p-cycle and the 
complete graph on p vertices both have property /V For 5 ^ 0 the graphs T(S) are 
connected. In fact, they are Cayley graphs, defined in terms of the additive group Z/pZ; 
compare [3], [4]. 

REMARK 3.2. The adjacency matrix of a circulant graph T(S) = TE is the Rédei 
matrix ME as defined in (2.2). 

Reason: since T(S) is regular of even degree, all diagonal entries of the Rédei matrix 
of E are 0. 

Thus, in view of (2.3), (2.7), in order to determine property Pc in case of circulant 
graphs, it suffices to know the rank over F2 of their adjacency matrices. In turn, this will 
yield information about the 4-rank of ideal class groups. 

For a graph set S C (Z/pZ)* we put 

G = G(S) = {u G (Z/pZ)* : uS = S}. 

In particular, G(<j>) = G((Z/pZ)*) = (Z/pZ)*. Clearly, G is a group of even order 
dividing p — 1 that contains {±1}. The reader will notice that G can be viewed as a 
subgroup of the group of automorphisms of the graph F(S). 

The complete graph on p vertices turns out to be the only circulant graph on p ver
tices with 2 G G that has property PQ. Namely we prove in terms of Eulerian vertex 
decompositions: 
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THEOREM 3.3. Let T(S) be a circulant graph that is not complete. /f 2 G G(S), then 
T(S) does not have property PQ. 

PROOF. Assume 2 G G(S)\ consider a vertex / ^ S. Letj G 5 be a vertex that is 
adjacent to /; that is, i—j G S. Then / —j is also adjacent to /. 

i-jes 

Now, j ^ i—j since 2/ ^ / in view of 2 G G(S),j G S and / ^ S. Thus, the vertices 
in S that are adjacent to a vertex not in S come in pairs. Since the vertex 0 is adjacent to 
exactly the vertices in S we can state: 

Every vertex / fi S U {0} is adjacent to an even number of vertices in S U {0}. 
We continue to assume 2 G G(S); consider a vertex / G S. Let j G S be a vertex that is 

adjacent to /. Then, as above, j and / — j G S are adjacent to /. This time, y ^ / — j if and 
only if j ^ 2"1/ G S. So, every vertex / G 5 is adjacent to an odd number of vertices in 
S. In view of T(S) being regular of even degree we can state: 

Every vertex / G S U {0} is adjacent to an even number of vertices not in S U {0}. 
Put V\ = S U {0}, V2 = (Z/pZ) \ V\. We have proved: every vertex in V2 is adjacent 

to an even number of vertices in V\ and every vertex in V\ is adjacent to an even number 
of vertices in V2. Thus, {V\, V2} is an EVD of T(S); see (2.5). Since T(S) is not complete; 
that is, S 7̂  (Z//?Z)*, we have found a non-trivial EVD. Consequently, by (2.7), r(S) has 
property Pc with c > 1. • 

The converse of Theorem 3.3 does not hold in general as will follow from results like 
Theorem 4.8 in the next section. 

Let £ = £p be a primitive p-th root of unity. It is natural to associate with a graph set 
S C (Z/pZ)* = {1,2,...,/? — 1} an element Is in the ring of integers Z[£] of the p-th 
cyclotomic field Q(£)« We put 

Let F be the fixed field of the subgroup G = G(S) of Gal(Q(0/Q). Clearly, 7<> lies in 
the ring Of of integers of F. We define: 

a = a(S') > 0 is the number of distinct dyadic primes of Of that divide (Is)-
b = b(S) > 1 is the smallest natural number satisfying 2b G G(S). 
f is the order of 2 modulo/?. 

Then (2b)#G = 1 mod/? and | ^ is the total number of dyadic primes of F. Thus we can 
say 

(3.4) f\b.#G\p-\. 

It might be a bit of a surprise that, for a circulant graph T(S), our problem of deter
mining its property Pc essentially amounts to being able to compute a — a(S); namely: 
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THEOREM 3.5 (P. E. CONNER). Let T(S) be a circulant graph. Then V(s) has property 
Pc with 

c ~ a • b • #G. 

ADDENDUM. If S = (l/piyn and 2 G 5, then a = n-\ mod 2. 
For the proofs we refer to the appendix. 

COROLLARY 3.6. If 2 is a primitive root modulo p, then every circulant graph Y{S) 
with S T̂  0 on p vertices has property PQ. 

PROOF. The totally disconnected graph has been excluded. So, by (2.7) with t = p, 
V(S) has property Pc for some c satisfying 

0<c<p- 1. 

The assumption of 2 being a primitive root modulo p means/ — p — 1. By (3.4) we 
obtain b • #G = p — 1 and conclude by Theorem 3.5 that 

p — \ \c\ 

so c — 0. • 
A Sophie-Germain prime is a prime number p for which lt~- is also a prime. It is still 

open if there are infinitely many such primes. 

COROLLARY 3.7. If p is a Sophie-Germain prime, then every circulant graph V(S) 
with S 7̂  0 on p vertices has property PQ. 

PROOF. For a Sophie-Germain prime/?, the only possibilities for/ are ~^- andp—\. 
As in the proof of Corollary 3.6 we conclude that c is a multiple of/ and c is even, so 
p — 1 | c, implying c — 0. • 

4. Applications. We are going to exhibit infinite families of connected, regular 
graphs whose property Pc can be determined effectively in number theoretic terms. These 
graphs will be circulant graphs on p vertices where p denotes an odd prime number. 

For any odd n satisfying 1 < n < p — 2 we consider the graph set 

s.= {jea/pzr:^<j<P-n-^}; 
so 

S{ = (Z/pZ)*, #Sn = p - n, V 2 = { ± ^ ) • 

PROPOSITION 4.1. Let p be an odd prime. Then every circulant graph T(Sn) with a 
graph set Sn Ç (Z//?Z)* as above has property PQ. 

PROOF. The integer 7^, G Z[£] associated with Sn is given by 

7s„ = r]n+i + T/«+3 + • • • + r/c^ + rjp_i 
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where 

Thus 

a cyclotomic unit. Consequently the norm of 7s„ from Q(£) to Q is ± 1 , hence odd. So, 

a = a(S) is 0 in Theorem 3.5 and T(Sn) has property PQ. m 

We have seen how to obtain in a systematic way circulant graphs having property PQ. 

Now our main concern is to determine connected graphs having property Pc with c large; 

recall (2.9). 

Let us consider Paley graphs, the "quintessential example of concrete random graphs 

on p = 1 mod 4 vertices for which the edges are chosen independently and with proba

bility | " ; compare [4]. They are defined, for primes/? = 1 mod4, as the circulant graphs 

T(S) with 

s = (i/piy2 = [j e a/piy -. (^) = +1}. 

We notice that S is a graph set since we have arranged for (—) = +1. Since S is the group 

of quadratic residues modulo /?, we have G(S) — S, T(S) is regular of degree ^ - and 

2 G G(5) if and only if (-) = + 1 . 

So, by Theorem 3.3 we know already: If p = 1 mod8, then the Paley graph on/7 vertices 

does not have property PQ. Specifically: 

THEOREM 4.2. Let p be a prime, p = 1 mod 4, S = (JLjpTf1. Then we have for the 

Paley graph: 

Y(S) has property PQ if and only ifp = 5 mod 8 

T(S) has property PP_-± if and only ifp = 1 mod 8. 

PROOF. The group G(S) has ^ elements, so T(S) has property Pc for some multiple 

c of ^r- , by Theorem 3.5; thus c = ^ or c = 0 since 0 < c < p — 1. For p = 1 mod 8 

we have already concluded by Theorem 3.3 that V(S) does not have property PQ, SO T(S) 

has property P^-i. For p = 5 mod 8 we obtain b — 2 in Theorem 3.5 since 2 ^ G(S)\ 

consequently c is a multiple of 2 • ̂  = /? — 1, so c = 0. • 

We can rephrase the above result as follows: 

COROLLARY 4.3. The Paley graph does not have property PQ if and only if 2 is a 

square modulo p. 

It will pay off later to reprove this in terms of Gaussian sums. For S = (Z//?Z)*2, 7s 

is given by 
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an integer in Qi^/p). Namely: 

(4.4) Y,(i)? = y/P. 

and hence 7s = ~ \ • The norm of 75 from Q(-y/p) over Q is ^ which is odd if and 
only if p = 5 mod8. So, we have a = 0 with c = 0 in Theorem 3.5 if and only if 
p = 5 mod 8 and a = 1 with c = ^ if and only if p = 1 mod 8. • 

It seems to be natural to look at the following generalization of Paley graphs. Choose 
an odd prime q and consider 

S = ÇL/pl)*q. 

Clearly, S is a graph set since — 1 is a q-th power and G(S) — S. If p ^ 1 mod q, then 
S — (Z/pZy. Thus T(S) is the complete graph on p vertices and has property PQ. We 
exclude this easy case and assume p = 1 modq. Then Theorem 4.2 and Corollary 4.3 
generalize to: 

THEOREM 4.5. Let p be a prime, p = 1 mod g with an odd prime q; S = {ZjpTfq. 
Then T(S) does not have property PQ if and only if 2 is a q-th power modulo p. 

PROOF. If 2 is a q-th power mod/?, then T(S) does not have property PQ, by Theo
rem 3.3. If 2 is not a g-th power mod/?, then b • #G = q • ̂ — = p — 1 and hence c — 0 
in Theorem 3.5. • 

For q — 3 this result can be made specific in terms of/? being represented by a positive 
definite binary quadratic form over Z. Namely for primes p = 1 mod 3, even Gauss 
observed 

(4.6) 2 is a cube modulo /? if and only if /? = x2 + 21 y2 for some x, y G Z; 

compare for example [20]. Thus 

COROLLARY 4.7. Letp be a prime, p = 1 mod 3, S = (Z//?Z)*3. Then r(S) does not 
have property PQ if and only ifp = x2 + 21 y2 for some i,y G Z. 

This tells us that forp = 31,43,109,... the circulant graphs T(S) with S = (Z//?Z)*3 

have property Pc with c — ^ or c = 2 • ̂ p . One can be even more specific. By the 
addendum to Theorem 3.5 with n = 3we conclude that a = 0mod2, so a = 2. Hence, 
for all primes/? = x2 + 27_y2, the graph T(S) has property Pc with c = 2 • ^y^. 

Here we would like to express our thanks to the referee for the natural question 
whether it is always possible to give the precise value of c in the situation of Theo
rem 4.5. We can announce that the answer will be yes for q = 5 and q = 7 also. Namely, 
with p=\ mod q and 2 G S, we have in Theorem 4.5: 

If S = (Z//?Z)*5, then r(5) has property Pc with c = 4 • £zi. 
If S = (Z//?Z)*7, then r(5) has property Pc with c = 6 • ^ . 

Thus, for q = 3,5,7, we obtain c — (q — 1) • £—-, a result which one however is 
not allowed to expect for all /? if q > 7. Already for q — 11, the circulant graph on 
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p = 331 vertices given by S = (Z//?Z)*n has 2 ,80EVD's; that is, it has property Pc with 
c = 6 • ^ 

We turn to another analogue of Paley graphs, namely circulant graphs on p vertices 
defined in terms of fourth powers modulo p. 

Let p be a prime, p = 1 mod 8, and denote by [-]4 the fourth power symbol modulo 
p. Put 

s = a/pzy4 = \j e (i/pir : [-] = +1 ). 
Because of p = 1 mod 8, —1 is a fourth power modulo p and S is a graph set. Clearly, 
G(S) = S and #G(S) = ^ . Moreover, 2 is a square modulo /?; if 2 is a fourth power 
modulo p, then 2 G G(5) and the circulant graph T(S) does not have property Po, by 
Theorem 3.3. Hence, if T(S) has property PQ, then [-]4 = —1, and we prove: 

THEOREM 4.8. Letp be a prime, p = 1 mod 8; S = (Z//?Z)*4. If[-U = —1, //zéw: 
T(5) has property Pç> if and only ifp = 1 mod 16. 
T(S) has property P^ if and only ifp = 9 mod 16. 

PROOF. The group G(S) = S has ^ elements, 2 is a square modulo /?, but not 
a fourth power, so b — 2 and c is a multiple of ^ , by Theorem 3.5. Thus, F(S) has 
property Pc with 

c = 0 or c 
2 . 

in which case a = 0 or a = 1 in Theorem 3.5, respectively. 
The fixed field F of G Ç Gal(Q(£)/Q) is of degree 4 over Q, and we have a tower of 

cyclic subfields of the/?-th cyclotomic field Q(Q with relative degrees as indicated: 

2 2 — 2 

Q c — Q(v® c — F ^— OCC + r 1 ) c — Q(0-
Consider the integer Is £ F that is associated with the graph set S = (Z/pZ)*4. It is 

given by 
P-\ ^ 

j fourth power mod/7 y fourth power mod/? 

where r/j — £/ + £_7'. Let us determine the norm of 7s from F to Q(y/p). The Galois 
group of F over Q(y/p) is generated by the automorphism £2 induced by £ —» £2. Here 
we use I-1 = —1 again. The r/'s multiply according to rjirjj — rji+j + r//_y, so 77̂  • r/2>

4 — 

^ + 2 / +7?x4-2y4-

Since — 1 is a fourth power modulo /?, this identity yields: 

NF/Q^S = 7s • <52(7s) = s • S+ + n • 2T 

with 

s + = E £;> 1-= E 0-
p - 1 

E e, ir E 
/square modp 7 non-square mod/7 
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s = # { ( r \ Y4)eSxS:v = X4+ 2Y4} 

n = # { ( r \ F 4 ) G 5 x k S : w = X4 + 2Y4}, 

where v denotes any quadratic residue and w denotes any quadratic non-residue modulo 

P-
We stress again that the values of s and n do not depend on the particular choice of 

the non-zero square v and the non-square w, respectively. 
In particular, 

s = #{(;f\ Y4) e S x S : 1 = X4 + 2Y4} 

= HiX4, Y4) e S x S : 2 = X4 + F 4 }, 

and we conclude that s is odd. 

There are ^ summands in Z+ and Z each, thus 

i p 
— +n • — 

1 \ 2 

so, 

5 + n 

Once again we can use the Gaussian sum (4.4) in order to find Z+ and £ . From 

Z+ + Z~ = - l and Z + - Z = y ^ 

we obtain 

Z+ 1 + V ^ I = 
1 V ^ 

Hence, 

that is, 

NF/Q{y/p)/ys 
-l+y/P 1 

+ n 
VP. 

NF F/Q(Jp)1s -s + (s — n) 

2 

1 + v ^ 

This norm computation will make explicit the circulant graph's property Pc. Namely: 

If p = 1 mod 16, then ^ - is even and thus s — n = 0 mod 2. Since s is odd, we obtain 

\+y/p 
NF/QiVf))ls£ 1 + 2 Z 

so NF/Q1S odd, so a = 0 in Theorem 3.5 and hence c = 0. 

Similarly, if/? = 9 mod 16, then ^ -

we obtain 

Nt 

is odd and thus s — n — 1 mod 2. Since s is odd 

F/Q{y/P)' 

so NF/Qls even, so a 7̂  0 in Theorem 3.5 and hence c — l^-. m 

We notice from Theorem 4.8 that the converse of Theorem 3.3 does not hold. The 

analogue of Theorem 4.2 for 2 G G(S) is given by: 
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THEOREM 4.9. Let p be a prime, p = 1 mod8; S = (Z//?Z)*4. If[j]4 = +1, then: 
V(S) has property Pp_± if and only ifp = 9 mod 16. 

4 

T(S) has property P^ £-i if and only ifp = 1 mod 16. 
- 4 

PROOF. We try to follow the proof of Theorem 4.8 and point out the different fea
tures. This time, 2 is a fourth power modulo /?, so b = 1 and c is a non-zero multiple of 
^ - by Theorems 3.3 and 3.5. Thus V(S) has property Pc with 

p-\ p-\ p-\ 
c = or c = or c = 3 • 

in which case a — 1 or a = 2 or a = 3, respectively. 
The Galois group of F over Q(y/p) is generated by an automorphism 6g induced by 

£—>£*, where g denotes any square modulo/? that is not a fourth power. Again we obtain 

this time with 

and 

s = #{(X\Y4) ESXS: v = X4+gY4} 

n = #{(X\ Y4)eSxS:w = X4+ gY4}. 

with v and w as before. In particular, 

s = #{(X4,Y*)eSxS: 1 = X4+gY4} 

= #{(X4,Y4)eSxS:g = X4 + Y4}. 

Since g does not differ from 2 by a fourth power, we conclude that—differently from 
Theorem 4.8—s is even. 

As before, we have s + n — ̂ - and 

1 + v ^ 
MF/Qiy/pfls = S + (S ~ n) . 

which now yields: 

if/? = 1 mod 16, then NF /QC^^S £ 2 Z [ - ^ ] ; 

if/7 = 9mod 16, then % Q ( v ^ 7 s G 1 + 2 Z [ - ^ ] . 
The fixed field F has four dyadic primes. By the addendum to Theorem 3.5 we can 

eliminate the possibility of a = 2. Namely with n = 4 we have a = 1 mod 2, so a = 1 
or « = 3. 

Hence 
i f / V F / Q ( v ^ 7 s G 2 Z [ ^ ] , t h e n a = 3; 

if Np/fx^ls i 2 Z [ ^ j . then a = 1. 

Thus, /? = 1 mod 16 implies c = 3 • ^ j - anc ' P — 9 mod 16 implies c = ^7-. • 
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As before for cubes, we can characterize the property of 2 being a fourth power mod
ulo/? in terms of/? being represented by a positive definite binary quadratic form over Z. 
For primes p = 1 mod 8, the result we can attribute to Dirichlet is: 

(4.10) - = +1 if and only if p — x2 + 64y2 for some x,yG Z; 

compare for example the exercise in [17, p. 70]. 
Thus, given any fourth power circulant graph on/? = 1 mod 8 vertices, one can readily 

determine its property Pc by: 

COROLLARY 4.11. Letp be a prime, p = 1 mod 8; S = (Z//?Z)*4. Then: 
T(S) has property Po if and only ifp = 1 mod 16 andp ^ x2+64y2 for all x, y G Z 
T(S) has property PP_-± if and only ifp = 9 mod 16 and p — x2 + 64y2 for some 
x,yeT 
T{S) has property PP_-± if and only ifp = 9 mod 16 and p ^ x2 + 64y2 for all 

T(S) has property ^3.£_i if and only ifp = 1 mod 16 and p = x2 + 64y2 for some 
x j e z . 

PROOF. Combine Theorem 4.8, Theorem 4.9 and statement (4.10). • 
Each of the four classes of primes listed in Corollary 4.11 has a density ^ in the set of 

all primes/? = 1 mod 8. We see that for/? = 17,73,41, and 113 the fourth power circulant 
graphs have property P0, PP_± = Pis, PP-\ = ^20, and R p-\ = P84, respectively. 

4 2 -1 ' 4 

Concerning the fourth power symbol [- j , we would like to point out the following 
analogy. For a prime/? = 1 mod 8, the 2-Sylow subgroup of the ideal class group of both 
imaginary quadratic number fields 

Q(y/=p) and Qi^lp) 

is known to be cyclic of order divisible by 4, see e.g. [6, (18.6) and (19.2)]. So, both class 
numbers /z(<Q(A/=/?)) and h(Q(y/—2p)} are multiples of 4. 

It has been proved in [1] that 

(4.12) /*(Q(y=p)) =0mod8ifandonlyif/? = x2 + 32/forsomejc,v G Z. 

Now it is known that h(Q(yJ—2/?)) is a multiple of 8 if and only if [ — 1 = +1. Hence, 
by (4.10), we have analogously to (4.12): 

(4.13) h^Qi^lp)) = 0 mod 8 if and only if p = x2 +64y2 for some x, y G Z. 

There is a vast literature on the divisibility of htQiy/^^p)) and h(Q(^—2p)) by 8. 
For some further references we just point out the recent paper [19]. For a reformula
tion of (4.13) in terms of the quadratic form x2 + 32y2 we refer to [6; 24.6]. Thus also 
Corollary 4.11 can be expressed in terms of x2 + 32y2. 
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A final remark on 4-ranks of narrow ideal class groups: we can choose primes /?/ = 
1 mod 4 for / = 1, . . . , 257 such that the graph FE associated with the real quadratic field 

E = Q(y/p\p2 P25l) 

is the circulant graph T(S) with S = (Z/257Z)*4. Then we have obtained a connected 
graph with 2192 Eulerian vertex decompositions and can conclude that 

2-rank C(E) = 256 
4-rankC(£)= 192. 

This is the result of Corollary 4.11 for the prime/? = 257 = 1 mod 16, 257 = 12 + 64 • 22, 
about property P~ P_± = P\92-

5. Appendix. Here is a proof of Theorem 3.5. As before,/? is an odd prime number, 
£ = £p, and T(S) denotes the circulant graph associated with a graph set S C (Z//?Z)*. 
We want to deduce that T(S) has property Pc where 

c = a•b•#G 

with a = a(S), b — b(S), G — G(S) defined as before in Theorem 3.5. 
Let Cp be a cyclic group of order/? with generator t and consider the group ring F2[C/71. 

There is a 1 : 1 correspondence between the set of subsets L of (Z//?Z)* and 

( E V ^ 2 [ g : 7 o = o ) 
[j=o J 

given by L —> 7L = E^rJ ^LW with characteristic function X/,(/') = 1 if y G L and 
XL(/) — 0 otherwise. 

Every EVD of T(S) is an unordered pair {L, (Z//?Z) \ L} for some L Ç (Z/pZ)*. In 

^2 [Çp] w^ have 

7S-7L= E ^ ^ ' E ^ O V 
J=0 i=0 

= Ê ( E *s(s)xL(j))tl 

i=0 \+j=i(p) ' 

= ^r(Pj:xs(i-j)xL(j))ti. 
/=o v=o y 

Since r(5) is Eulerian, a subset L of (Z//?Z)* yields an EVD if and only if every vertex 
i = 0,1,...,/?— 1 of r(5) is adjacent to an even number of vertices in L; that is, if and 
only if ECo Xs(i — J)XL(J) is e v e n f° r all /, 0 < / < / ? — 1. The last condition means 
7L -75 = 0 in F2[C/7]. So: the number of EVD's of T(S) is equal to the number of elements 
in 

( E V G F2[Q] : 7o = 0 and 7 • 7^ = o). 
l7=o J 
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We map ¥2[CP] onto Z[£]/(2) by t —> £. Every element of Z[£]/(2) can be writ
ten uniquely as YFJZQ 7</£

/' with 7/ £ { M } and 7o = 0. The only relation between 
1, £, £2,.- -, £p~l to consider is 1 + £ + • • • + ^ _ 1 = 0. For all 7 G ¥2[CP] we have 
7-75 T̂  \ +t + — • + f~x since the augmentation of 7s is even and p is odd. Thus we 
obtain: the number of EVD's of T(S) is equal to the number of elements in 

{7GZ[C]/(2) :7-75 = 0}, 

where 7s now stands for YfsZo XS(S)£,S £ Zf^]/(2), of course. What is the number of 
elements in the annihilating ideal of 7s in Z[£]/(2)? The ideal (2) is a product of distinct 
prime ideals in Z[£], so the ring Z[£]/(2) is a direct sum of fields, with one direct sum-
mand each for every dyadic prime of Q(0- Hence: the number of EVD's of V(S) is equal 
to the number of elements in 

ZK]/(2,75). 

In other words, by (2.7), we have concluded that r(5) has property Pc if and only if 
the ideal norm from Q(£) to Q of the greatest common divisor of (7s) and (2) is 2rZ; i.e. 

NQ(0/Q(ls,2) = 2cZ. 

Each dyadic ideal of Q(£) has absolute norm 2^Z, where/ is the order of 2 modulo p. 
Thus T(S) has property Pc means: 

c —f • # of distinct dyadic primes of Q(£) that divide (7s)-

The total number of dyadic primes of Q(£) is ^j~. The degree of the fixed field F of 

G(S) over Q is ^ ; each dyadic prime of F has inertial degree b, so, the total number of 

dyadic primes of F is f^. 

This tells us that each dyadic prime of F splits in Q(£) into a product of ^ • ̂ y = 

^p- distinct dyadic primes. Thus, if a is the number of distinct dyadic primes of F di

viding (7s), then a • —^ is the number of distinct dyadic primes of Q(£) that divide (7s)-

So, c = a • b • #G. • 
Here is a proof of the addendum to Theorem 3.5. We may assume S = G(S) with 

#5 = ^ p and 2 G S. The fixed field F of S has degree n over Q. As an element of the 
ring OF of integers F, we have 7s = traceQ(^ iF(Ç) and hence 

traceF/Q7s = - 1 . 

Since 2 G G(S), we conclude that F is contained in the fixed field of the subgroup of 
(Z//?Z)* generated by 2. Therefore the rational prime 2 splits completely in F. So, F has 
n dyadic primes, D\,..., Dn, say. Consider the n residue homomorphisms 

n:0F->0F/Di^F2. 

We have r/(7s) = 1 if and only if D/ does not divide (7s), and r,(7s) = 0 for each of the 
a distinct dyadic primes of F that divide (7s)- Thus: —1 = traceryQ 7s = E/Li r/(7s) = 
n — a in Z/2Z; so n — a is odd; that is, a = n — 1 mod 2. • 

https://doi.org/10.4153/CJM-1994-005-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-005-2


CIRCULANT GRAPHS 183 

REFERENCES 

1. P. Barrucand and H. Cohn, Note on primes of type x2 + 32y2, class number and residuacity, J. reine angew. 
Math. 238(1969), 67-70. 

2. N. L. Biggs, Algebraic Graph Theory, Cambridge Tracts in Math. 67, Cambridge Univ. Press, 1974. 
3. N. L. Biggs and A. T. White, Permutation Groups and Combinatorical Structures, London Math. Soc. 

Lecture Note Ser. 33, Cambridge Univ. Press, 1979. 
4. B. Bollobâs, Random Graphs, Academic Press, London, 1985. 
5. B. Brauckmann, 4-ranks ofS-ideal class groups, preprint, (1990). 
6. P. E. Conner and J. Hurrelbrink, Class Number Parity, Ser. Pure Math. 8, World Scientific, Singapore, 1988. 
7. F. Gerth III, The 4-class ranks of quadratic fields, Invent. Math. 77(1984), 489-515. 
8. , The 4-class ranks of quadratic extensions of certain real quadratic fields, J. Number Theory 

33(1989), 18-31. 
9. G. Gras, Sur la norme du groupe des unites d'extensions quadratiques relatives, preprint, (1990). 

10. F. Halter-Koch, Uber den 4-Rang der Klassengruppe quadratischerZahlkorper, J. Number Theory, ( 1984), 
219-227. 

11. J. Hurrelbrink, On the norm of the fundamental unit, preprint, (1990). 
12. J. C. Lagarias, On determining the 4-rank of the ideal class group of a quadratic field, J. Number Theory 

12(1980), 191-196. 
13. P. Morton, Density results for the 2-ciass groups of imaginary quadratic fields, J. reine angew. Math. 

332(1982), 156-187. 
14. L. Rédei and H. Reichardt, Die Anzahl der durch 4 teilbaren Invarianten der Klassengruppen eines be-

liebigen quadratischen Zahlkorpers, J. reine angew. Math. 170(1934), 69-74. 
15. L. Rédei, Arithmetischer Beweis desSatzes uber die Anzahl der durch 4 teilbaren Invarianten der absoluten 

Klassengruppe im quadratischen Zahlkorper, J. reine angew. Math. 171(1935), 55-60. 
16. , Uber einige Mittelwertfragen im quadratischen Zahlkorper, J. reine angew. Math. 174(1936), 

131-148. 
17. H. E. Rose, A Course in Number Theory, Oxford Science Publ., Clarendon Press, Oxford, 1988. 
18. P. Stevenhagen, Rédei-matrices and the structure of quadratic 2-ciass groups, preprint, (1991 ). 
19 , On the 2-power divisibility of certain quadratic class numbers, preprint, (1991). 
20. T. Y. Uehara, On the 4-rank of the narrow ideal class group of a quadratic field, J. Number Theory 31( 1989), 

167-173. 

Department of Mathematics 
Louisiana State University 
Baton Rouge, Louisiana 70803 
U.S.A. 

https://doi.org/10.4153/CJM-1994-005-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1994-005-2

