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An adjoint-functor theorem

over topoi

B.J. Day

The usual statements of the classical adjoint-functor theorems
contain the hypothesis that the codomain category should admit
arbitrary intersections of families of monomorphisms with a
common codomain. The aim of this article is to formulate an
adjoint-functor theorem which refers, in a similar manner, to
arbitrary internal intersections of "families of monomorphisms"
in the case where the categories under consideration are suitably
defined relative to a fixed elementary base topos (in the usual

sense of Lawvere and Tierney).

Introduction

The aim of this article is to formulate a suitable context in which to
establish the adjoint-functor theorem based on internal intersection in an
elementary topos. This is done in Section 1,and the theorem proved in
Section 2 generalises a form of the adjoint-functor theorem ([1], Theorem
2.1) which, under additional completeness hypotheses, contains Freyd's
original adjoint functor theorems (as given in [6], Chapter V, 6-8). It is
closely related to an extension of the adjoint-functor theorem due to
Mikkelsen which serves to describe the free E-locale on an object in an

elementary topos E .

The references for basic theory and notation are Eilenberg and Kelly
[2], Lawvere [5], and Mac Lane [6].
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1. Categories over a topos

Throughout this section we suppose that E is a fixed elementary
‘topos with subobject representor 2 and that all categorical algebra is
relative to E . We denote by B the category of ordered objects in €
(see [4], 1.2).

A 2-category E~Cat is constructed as follows. A 0O-cell of E~-Cat

c°P

is a category C together with a functor M : > E and a natural

transformation ¢ : M+ Q : C°® » E called "factorisation”. By the

representation theorem the components of ¢C M0+ Q of ¢ yield a
natural transformation:

C(c, D) xMD + Q.
Thus we obtain a family:

¢ = o, > C(C, D) x MD

%
of monomorphisms in E ; the "elements" of (DCD are thought of as "pairs"

(f, m) such that f factors through m .

PROPOSITION 1.1. If v : C(C, D) x MD + Q denotes the canonical

trans formation

%
c(c, D) x MD - MC —> Q ,
then the diagram
& — C(C,D)xMD
4 b
1 ——*t Q
is a pullback.

Proof. This is immediate from the definition of ¢ and the

representation theorem. //

A 1-cell of E~Cat from (C, M, ¢) to (B, N, ¢) is a functor

T : C B together with a structure transformation

T:M”NTOP:COP*E.
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A 2-cell a: (T, T) @ (S, 0) is a natural transformation o : T =S
such that T = (Na“P)s0 .

With these definitions we see that the topos E is itself a O-cell
with MC = [C, Q] and oo = Vuc : [, 21 > Q . It then follows that, for

each O-cell (C, M, ¢) , each representable functor C(K, -) : C > E is a
l-cell with structure
Mp + [C(k, D), Q]
derived from
C(K, D) x MD » Q
by adjunction.

We also note that the constant functor C + E which sends C to 1
is a l-cell with structure ¢C : MC > Q= [1, Q) .

Let E = Eo(l, -) : E~>Ens . An E~category (C, M, ¢) is said to
be MR (mono representable) if there exists a subcategory MO of
E-monomorphisms in C such that:

MR1. There is a natural bijection between morphisms 1 -+ MD

("global sections" of MD = elements of EMD ) and Mo-monomorphisms

B > D ; strictly speaking of course the bijection is with equivalence

3

classes of Mo-monomorphisms with codomain D .

MR2. Each diagram

M(f)(m)--~>B
m
c _f*D ,

with m € MO , admits completion to a pullback diagram in C ; that is,

M(F)(m) = Fim .

A l-cell T : (C, M, ¢) ~ (B, N, y) between MR-categories C and B
is called MR if the transformation Et : EMC + ENTC 1is induced by T .

An E~category (C, M, ¢) is called CMR (completely mono
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representable) if it is MR and it satisfies the following conditions for

each C ¢ C :

CMR1. each MC 1is a complete lattice in 13 5

1 1
101 lt
Q

MC ——
¢C

CMR2. +the square

1
—

is a pullback;

CMR3. given any monomorphism < : B > M’ and morphism

f:1~+C(Cc, D) , if there exists a factorisation

B

e
7

e i
e
X

& >— C(C,D)xMD
then there exists a factorisation

1

rd
4
e

Phd fxinfB
rd

x
¢ >——— C(C,D)*MD .

PROPOSITION 1.2. If (C, M, ¢) is CMR then the set map
E® +~ EC(C, D) x EMD 1<is a bijection onto the set of all pairs (f, m) such

that m € M, and f factors through m .

Proof. Because F 1is representable the diagram

E® — E (C,D)XEMD

| P

* ——— EMC
ic

is a pullback by Proposition 1.1 and CMR2. Thus E® 1is equivalent to the

set of all pairs (f, m) , m € M. , such that M(f)(m) =1 But, by

0 c

MR2,
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M(f)(m)—> B

| m
¢ —— D

f

is a pullback so M(f)(m) =1, if and only if f factors through m . //

c

PROPOSITION 1.3. If (C, M, ¢) is MR and satisfies CMRL then CMR3
ig satisfied if Mf : MC >~ MD preserves inf for all f € CO(C, D) and

oo MC + Q preserves inf for all C € C .

Proof. By Proposition 1.1, & = v, (%) .

_ B

P i

(y(,1)) ,(¢) >—— mp
1

Y{t) — C(c,D)>mp

1] ——— - Q

Thus, if B < Y,(¢t) then B = (Y(f x 1)).(#) so 3I(y(f x1))(B) =t .

The proof then follows from considering the diagram:

1
i v infB
i \'XB\ n
: (D, inf ~ MD
' 2 a2
: 3 (yir>1)) {Mc,Q] C(C,D)xMD MC
]
y
: 3¢ . o
I "X} [[1,01.9] Q
i/M
in vhich N'x; =t since N{-} =1. //

COROLLARY 1.4. The elementary topos E 1is itself CMR.
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Proof. Each object [X, 2], X € E, is a complete lattice object in

g and
[x,0] —vz;+ Q

is a pullback diagram. Moreover ch = Vu, is inf preserving since

X
u, 4 Yu and each [f, Q] has left adjoint 3f hence is inf preserving.

Thus the result follows from Proposition 1.3. //

2. The adjoint-functor theorem

This section is devoted to the proof of the main theorem. Again we
suppose that, unless otherwise stipulated, the categorical algebra is

relative to a fixed elementary topos E .

We suppose that T : (C, M, ¢) - (B, N, ¢) is an MR E.functor and
that B is CMR. Furthermore, we suppose that there exists a "bounding"

family {BB : B> TC(B)} of morphisms in B, such that for all C €

and f € BO(B, TC) +there exists a commuting square:

8 —B~ rc(B)

f’ ng

€ ——t ID
with m € M, .

THEOREM 2.1. Under the above hypotheses on T the functor
To : CO - BO has an ordinary (Ens-based) left adjoint if C is
M-complete in the sense that
(a) MC is a complete lattice for each C € C ,

(b) CO has pullbacks of Mo—subobjects and they lie in My s

(e) Co has equalisers and they lie in My, and T is
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M-continuous in the sense that T, preserves pullbacks of

Mo—subobjects and equalisers and E applied to

(Mc,Q] _inf MC
BTC o
inf

[nTC,Q] —— NTC
commutes.

Proof. First form the pullback

P(R) 1xMC(B)
(*) "R™x1

c(B)

¢ ————— B(B,7C(B))<NTC(D)

for each BB in the bounding family. An Mo-monomorphism i : SB > C(B)

/ &ﬂ’(s)

[MCc(B),Q] —inf , MC(B)

is then defined by

LEMA 2.2. If

— E'
f

N

QO +—"y

t8 a pullback diagram in E then there exists a factorisation
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Proof. 3f -4 f, so 3]"')(1’3 = @ if and only if P = f,@ . But

P=f,@ ; hence B_frxz‘) = Q. //

From the pullback diagram (*) we obtain, by Lemma 2.2, a factorisation

D
7
'
e
7
'
P TR1x3 ry?
7 B>3T0(5) Xp
7
4
7
el !
® B8(B,TC(B))xNTC(B)
Because B is assumed CMR this factorisation gives
/l
7~
7
L
P "8'xinfD
7’
7~
,/
o <—— - B(B,TC(B))xNTC(B)
Because T is M-continuous this gives
1
1
| R
ry infP(B)
!
%
i
' [(Mc(B),Q] inF MC(B)
I
! 3
! Te(a) c(8)
1
i
' inf \
| (¥7c(B),q] — NTC(B)
|
|
[} (B1xl
t
|
¥ 4
® B(B,TC(B))xNTC(B) .

Thus we obtain a factorisation

https://doi.org/10.1017/50004972700022814 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700022814

An adjoint-functor theorem 389

MC(B)

TBIXTC(B)

—————— B(B,TC(B)) xNTC(B) .

By Proposition 1.2 this implies that, on applying FE we obtain a
factorisation

B
'8
n |\K
B,
8B —57> TC(B)
where T¢ 1is a monomorphism because 7T 1is MR, so nB is well defined.

Finally, to verify that ng ¢ B > TSB 1is the required universal arrow, we

consider
8
B — B 7c(B)
B
\\‘ %
\ TSB
1 /Tq Tgq
/ N
Tp
e T —~— TD
with m ¢ M0 . Let @ be the pullback of m along gi .

Clearly @ < SB
in EMC(B) . Also @ € EP(B) 3 thus ¢ = SB :
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Hence @ = SB as subobjects of (C(B) . Similarly, equalisers can be used

to show that factorisation of the required type through nB is unique. //

REMARK 2.3. The adjunction S —iTO : Co > BO can be enriched to an

E-adjunction if C has cotensoring over E and T preserves this

cotensoring (see [3]).

3. Examples

EXAMPLE 3.1 (Mikkelsen). Let C be the E-category of E-locales
and let U : C > E be the underlying-E-object functor. Then there exists

a "bounding" functor R : E + C given by
rx = [[x, ], 9]
with bounding unit

By : X~ ullx, Ql, 9]

the canonical "evaluation" transformation. If X = UA where A4 is an

E-locale then

B,, : UA = U[lua, ), ]

vA

is Um : UA ~» U[[UA, Ql, Q] where m has the left-exact left adjoint
sup : [[v4, Q], Q] >~ UA . Thus, by Theorem 2.1, U has a left adjoint.
This left adjoint describes the free E-locale on each object «x € E .

EXAMPLE 3.2. Suppose E and E' are elementary topoi and

T : E~+E' is a functor which preserves finite limits and which, as a

closed functor T = (T, T, To) is normal in the sense that the canonical

transformation E = E'T is an isomorphism.

We can consider T, E as an E'-category with

IT&El IEI 2

T(x, Y] .

TE(X, ¥)

Moreover, T,E is an E'-category with

M (T,E)P > E!

given by MX = T[X, Q] and ¢ : M > Q' given by
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Ty X
6, ¢ TIX, Q] —%, m IE g

The functor T : T,E > E' is an E'~functor with Ty @ MX > NTX given by

7 [2x7] .
T, ¢ T0X, Q] — [7X, 7] — [I%, Q'] .
Both T,E and E' are CMR and (T, 1) is MR by normality of T and the
fact that T 1is assumed to preserve finite limits

o
= !

Y ——> 11— 1

Tt t!

TX —— TQ —— Q'

Xy X7t
The functor T : T,E > E' then has a left adjoint if E' applied to

[rlx,91,0'] =25 7(x,0]

HTX TX

[[rx,2'1,0'] o [7%,0']

commutes and 7 has a bounding family of morphisms. It has a left-adjoint
E'-functor if T,E 1is cotensored and T preserves this cotensoring. 1In
particular T4 E is cotensored if T 4is the left-adjoint part of a

geometrical morphism of topoi (see [3], 5).

EXAMPLE 3.3. Suppose S—T : E' + E is a geometrical morphism of
topoi. Then, as in Example 3.2, we obtain T,E' as an E-category and we
obtain, by Kelly [3], 5, an E-adjunction

(,n) : §-T : T,E' +E .
The E-category T,E' is cotensored over E by Kelly [3], 5.1, with
[X, X'] = [SX, X']" and to say that the induced E-adjoint S : E > T,E'
preserves this cotensoring is to say that S[X, Y] = [SX, SY]' ; note that
S 1is not necessarily a normal closed functor,so this does not always imply

that S : EO > (T*E')0 is a full embedding.

The E-category T,E' is a CMR E~category with NX' = T[x',6 Q']' .

Moreover S has structure
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o : [Xx, Q] »Tlsx, @']" =[x, 10']
given by

TXst

ng o

Q > TSQ

To see that (S, o) is an MR-functor let Y be an arbitrary subobject of
X and note that the diagram

Y » 1 — 7!
Jt Tt'
X > 0 T5Q !
Xy T TXgt
transforms to
SY > S1 1!
SX + S -+ STSG > STQ! > Q'
Sxy  Sng STXg4 Eq!

which becomes
Sy —> 51— 1'

| )

SX ~—5— S0 — Q'
Xy Xs¢

s

and use the fact that S preserves finite limits.

Because E has 9 as a strong E-cogenerator we obtain a bounding

family of morphisms

Byr : x' > [T,E' (X', 5Q), sQ] = [sT[x', sQ]', s9]'

for S with the property that if S preserves cotensoring, the diagram
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BX,
x' -~ [sT{x',5Q]',59]"'
Ik
s[rix',s01',9]
lSET[f,ll 1]
f
s[risx,s0'1,9]
13[.9,1]
5x = > 5[[x,21,9]

commutes for all f € E(')(X', SX) ,where m : X > [[x, 1, ©] is the
canonical monomorphism in E .
This gives us the result that S : £ » T,E' has a left E-adjoint if
S preserves cotensoring and E applied to the diagram
[x,01,8] —25 [x.0]

Jo o)

[[x,2'1,9] =25 (x,m0']

commutes.
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