
BULL. AUSTRAL. MATH. SOC. 4 6 B I 0

VOL. 18 ( 1978), 105-123.

Characterisation of normed

linear spaces with Mazur's

intersection property

J.R. Giles, D.A. Gregory, and Brailey Sims

Normed linear spaces possessing the euclidean space property that

every bounded closed convex set is an intersection of closed

balls, are characterised as those with dual ball having weak *

denting points norm dense in the unit sphere. A characterisation

of Banach spaces whose duals have a corresponding intersection

property is established. The question of the density of the

strongly exposed points of the ball is examined for spaces with

such properties.

It was Mazur [7] who drew attention to the euclidean space property

(I):

every bounded closed convex set can be represented as an

intersection of closed balls;

and he began the investigation to determine those normed linear spaces

which possess this property. Phelps [9] continued this investigation,

characterising finite dimensional spaces with property (I). Recently,

Sullivan [/2] has given a characterisation of smooth spaces with property

(I).
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We develop SulIivan's key idea, and in Theorem 2.1 characterise normed
linear spaces with property (I) as those with dual ball having weak *
denting points norm dense in the unit sphere. In this theorem we actually
give four equivalents for property (I) , two of which had been given by
Phelps as necessary conditions, [9, p. 979], and two others related to
SuI Ii van's approach.

For a dual space the appropriate intersection property which
corresponds to property (J) is property (weak * I) :

every bounded weak * closed convex set can be represented as
an intersection of closed balls.

In Theorem 3.1 we characterise Banach spaces with property (weak * I)
on the dual as those with ball having denting points norm dense in the unit
sphere.

Phelps proved that a normed linear space has property (I) if the weak
* strongly exposed points of the dual ball are norm dense in the unit
sphere, [9, p. 977], and he raised the question of the necessity of this
condition for property (J) . The corresponding question for property (weak
* J) concerns the norm density of the strongly exposed points of the ball
in the unit sphere. We show, in particular, that when a Banach space has
both property (j) and property (weak * I) on the dual, then both these
density properties hold.

1 . Pre l im inar ies

We consider rea l normed linear spaces. Given a normed l inear space

X , and y € X and r > 0 , we denote by B[y; r] the closed ball

{x € X : \\x-y\\ 5 r} . We denote by B{X) the closed unit ball

{x € X : \\x\\ 5 1} and by S(X) the unit sphere {x € X : \\x\\ = 1} . For

x € Six) , we denote by D(x) the set {/ € S(X*) : fix) =1} , and for

/ € S(X*) , we denote by D^if) the set {a; € S(X) : fix) = 1} . (For

every x € S(X) , D(x) is non-empty, but for some / € S(X*) , O~1(f)
may be empty.) We say that X is smooth at x € Six) , if Dix) is a
single point set. The set valued mapping x i—>• Dix) of Six) into
subsets of Six*) is called the duality mapping on X . The inverse

duality mapping on X* is the set valued mapping f \-+ D~ if) of D[SiX))
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into subsets of S(X) . A mapping x *—*• f of S(X) into S(X*) , where
x

f € D{x) , is called a support mapping on X .

A slice of the ball B{X) determined by / € S(X*) is a set of the

form S[B(X), f, 6) ± {x € B(X) : f(x) > 1-6} for some 0 < 6 < 1 . A

slice of the ball B(X*) determined by a; € S(X) is sometimes called a

weak * slice of B(X*) . We say that x t S(X) is a denting point of

B(X) if, for every e > 0 , x is contained in a slice of B(X) of

diameter less than e . We say that / € S{X*) is a weak * denting

point of B(X*) if, for every e > 0 , / is contained in a weak *

slice of B(X*) of diameter less than e . We say that x € S{X) is a

strongly exposed point of B(X) , if there exists an / 6 S(X*) such that,

for every e > 0 , f determines a slice of B{X) containing x and of

diameter less than e . We say that f € S(X*) is a weak * strongly

exposed point of B{X*) , if there exists an x € S(X) such that, for

every e > 0 , x determines a slice of B(,X*) containing / and of

diameter less than e . A strongly exposed point is a denting point, but

the converse is not true even in finite dimensional spaces.

We have the following elementary but useful property for slices.

LEMMA 1.1. In a normed linear space X , consider x € S{X) . For

any slice determined by an f € S(X*) and containing x there exists an

E > 0 such that for all g € S(X*) , where ||/-g|| < e , ihere exists a

slice determined by g which contains x and is contained in the slice

determined by f .

Proof. Suppose x € s[B(X), /, 5) . Choose e < %(/(x)-l+<5) . Then

for \\f-g\\ < c we have #(x) 2 fix) - e > 1 - (6-e) ; so

x € S{B(X), g, &-£.) . Also for all y € S[B(X) , g, 6-e) we have

fly) ̂  g(y) - e > 1 - 6 j so y i S[B(X), f, 6) .

From the Bishop-Phelps Theorem we make an immediate deduction.

COROLLARY 1.1. For a Banach space X , consider x (. S{X) . For any

slice determined by an f € S(X*) and containing x there exists a slice

determined by a g € D[S{X)) which contains x and is contained in -the

slice determined by f .

As we might guess, conditions for property (J) must involve some
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smoothness condition on the unit sphere, and the problem has been to find

the right condition for a characterisation. Both Mazur and Phelps

concentrated on conditions involving strong differentiability of the norm.

The norm of a normed space X is said to be strongly differentiable

(Frechet differentiable) at x i S(X) , if for all y 6 S{X) and real X ,

llm JkiMdki
\o x

exists and is approached uniformly for all y € S(X) . If the norm is

strongly differentiable at x € S(X) , then X is smooth at x . The norm

of X is strongly differentiable at x € S{X) , if and only if / € D(x)

is a weak * strongly exposed point of B(X*) by x . The norm of X*

is strongly differentiable at / € S(X*) , if and only if there exists an

x € S(X) such that / € D(x) and x is a strongly exposed point of B[X)

by / [70, Theorem 1 ] .

Sul livan, instead of concentrating on the set of points of strong

differentiability of the norm in S(X) , considered more general sets. For

given e > 0 , consider the set M (X) consisting of points a; € S(X)

such that for some 6(e, a:) > 0 ,

p

0<X<6

We note that the set of points of Six) where the norm of X is strongly

differentiable is precisely the set fl M (X) . Sullivan also established

e>0

an important link with strong differentiability of the norm in the

following result [72, §3, Corollary 6]. Another link is given in Corollary

2.2 below.

THEOREM 1.1. For a Banach space X , if M (.X) = S(X) for some

0 < e < 1 then X is an Asplund space [that is, every equivalent norm for

X is strongly differentiable on a norm dense subset of S(X) IS,

P. 7k9D).

However, the M (X) sets in S(X) also relate to the weak *
E

denting points of B{X*) and the M (X*) sets in S(X*) relate to the
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denting points of B(X) .

LEMMA 1.2. (i) For a normed linear space X , consider A c S(X)

where D(A) is norm dense in S(X*) . Then A contains the denting

points of B(X) .

(ii) For a normed linear space X , consider A c S(X*) where

D~ (.A) is norm dense in S(X) . Then A contains the weak * denting

points of B(X*) .

Proof. (i) Consider x € S(X) a denting point of B(X) . Since

D(A) is norm dense in S(X*) , we have by Lemma 1.1 that for each e > 0

there exists a y (. S(X) n A and f € D{y) such that / determines a

s l ice of B{X) which contains x and has diameter less than Z . As

y € A belongs to this s l i c e , \\x-y\\ < e , and so x € A .

(ii) This proof follows similarly, applying Lemma 1.1 to X* .

In par t icular , we can make the following deduction.

COROLLARY 1.2. (i) For a normed linear space X , if for every

e > 0 , D[M (X)) is norm dense in S(X*) , then fl M (X) contains the
e e>0 e

denting points of B{X) .

(ii) For a normed linear space X , if for every e > 0 }

D~^~[M (.X*)) is norm dense in S(X) , then fl M (X*) contains the weak
e e>0 E

* denting points of B(X*) .

2. Characterisation of spaces with property (J)

We approach our theorem by characterising points in M (X) sets.

Lemma 2.1 and the corresponding Lemma 3.1 generalise results given

initially by Smulian, for points of strong differentiability of the norm

[ M , p. 61.5].

LEMMA 2.1. For a normed linear space X , given e > 0 , the

following statements are equivalent:

(i) x € Mt(X) ;

(ii) x determines a slice of B{X*) of diameter less than e ;
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(Hi) for all sequences f € S(X*) such that f (x) •*• 1 ,

lim sup \\fn-fj < e ;fnfj

(iv) for all sequences x € S(X) where x •*• x 3 and all

f € D[x ) ,f
xn

lim sup ||f - / || < E .
Xn xm

Proof, (i) •* (ii) . Suppose that diam S[B{ X*), x, 6} 2 e for a l l

0 < 6 < 1 . Then there exis t f , g € B(X*) such that

fn(x) > 1 - 1/n2 , gn(x) > 1 - 1/n2 , and H/,,-^11 > e - 1/n .

Choose y € S(X) such that [f -g ) [y ) > e - 1/n .

Then

II* + ~
|| n

-bnh-fnl*+bn)+*n[X-i»n)
- 4; * J (/„-«„)

Therefore,

l / n
> e - - for al l n .n

(ii) ** (Hi) . If there exists a 6 > 0 such that

diam S(B(JT*), x, 6) < C , then f € .?(fl(X*), a;, 5) for n sufficiently

large.

,

(Hi) =» (iv). \f (x)-l | S |f [x-x) | < ||x-x || , so thatxn xn n n

(iv) ** Ciy). For any given j/ € S{X) and X -»• 0+ , and for any
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and g € D
x-X

we have

[5; p.- 108]. But

- Nil + |xnl

So there exists a 0 < 6(e, x) < 1 , and, from (iv),

Ik+A j/||+||x-X a ||-2
rsup

0<X <6
n

< e .

The following consequences are immediate from this lemma.

COROLLARY 2.1. For a normed linear space X , given e > 0 , the set

M (X) is open in S(X) .

Proof. Consider x i. M (X) . By Lemma 2.1 (ii) , x determines a

slice of B(X*) of diameter less than e . By Lemma 1.1 applied to X* ,

if y € S(X) and ||x-y|| is sufficiently small, y also determines a

slice of B(X*) of diameter less than e , so that by Lemma 2.1 (i),

y e #£U) .

Corollary 2.1 enables us to establish another link with strong

differentiability of the norm.

COROLLARY 2.2. For a Banaah space X , if M^(X) is norm dense in

S(X) for every 0 < e < 1 , then the norm of X is strongly

differentiable on a norm dense G. subset of S(X) .

Proof. By the Baire Category Theorem, D M (X) is norm dense in
e>0 e
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S(X) , but fi M Ax) i s t h e subset of S(X) where the norm i s s t rong ly
E>0

differentiate.

The following reflexivity result is a special case of a lemma of

Sullivan [72, Lemma, §3.3], but the proof is somewhat simpler.

COROLLARY 2.3. If for a Banadh space X there exists some

0 < e < 1 such that D[MAX*)) is norm dense in S(X**) , then X is

reflexive.

Proof. Since e < 1 , it is sufficient to show that each

F € D{MAX*)) is within e distance of X . Since B{X) is weak *

dense in B(X**) each weak * slice of B(X**) containing F contains

some element of B(X) . But by Lemma 2.1 (ii) , F is in such a weak *

slice of diameter less than e .

In particular, using the Bishop-Phelps Theorem we can make the

following deduction from Corollary 2.3. This generalises the well known

result that a Banach space X is reflexive if the norm of X* is strongly

differentiable on S(X*) .

COROLLARY 2.4. If for a Banach space X there exists some

0 < e < 1 such that M (X*) = S(X*) , ihen X is reflexive.

We now give a characterisation of functionals which satisfy a certain

separation property. This is a local property which globally makes up

property (I).

LEMMA 2.2. For a normed linear space X , given f € S(X*) , iihe

following statements are equivalent:

(i) f € 0 D{M U)J ;
e>0 e

(ii) for every bounded set C with inf f(C) > 0 there exists

a closed ball containing C which does not contain 0 ;

(Hi) given 0 < e < 1 there exists an x € S(X) and a

6(e) < 0 suoh that D(y) cB{f; e) for all

y € S{X) n B{x; 6) .

Proof. (i) =* (ii) . Let C be a bounded set with inf f(C) > 0 .
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There exists a k > 0 such that C c B[0; k] . Choose e i i inf f{C) .

Since / € D(M /fe(*)J there exists an x € A/ ., U ) and an / € Z?(x)

such that ||/-/ || < z/k . Consider the sequence of closed balls

B H S[nex; («-1)E] . We show that there exists an nn such that
n 0

C c B . Suppose otherwise, that for every n there exists an

"o
x

x € C\B . Write y = — ; then since {x } is bounded, y •*• 0 .

But

and this contradicts x i. M ,T,(.X) •
£ IK

(ii) •* (Hi). Consider D = B{X) n /""""(O) , and let u € S(X) be

2
such that /(u) > e . Write u' = ^ u . Then f(D+u') = ^- > 0 and

0 f Z> + u' . So there exists a closed ball containing D + u' and not

containing 0 . Therefore there exists a closed ball containing D and

not containing u' . The proof now follows identically that of Lemma U.I

of Phelps [9, p. 979].

(Hi) •* (i) . Given e > 0 and 0 < n < e/2 , there exists an

x € S{X) and a 6(n) > 0 such that D(y) c B(/; n) for all

y € S U ) n B(x; 6) . In particular D(x) c B(/; n) , and for all

x € S(X) where x ->• x we have that lim sup ||/ -/ || 5 2r| < e for all
n n xn x

m

/ € Z?(x ) . But by Lemma 2.1 (iv) this implies that x i M [X) . So

xn n> e
I I / - 4 I I < n , w h e r e / ^ € Z?(A/£(X)) .

The localised form of one of Mazur's resul ts [7 , p . 128] follows
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direc t ly from Lemma 2.2 (ii).

COROLLARY 2.5. For a named linear space X , let f € S{X*) have

any of the properties of Lemma 2.2. Then, for any bounded sequence {x }

such that every closed ball containing a subsequence also contains x , we

have that f[x ) •*• fix) .

We say that the duali ty mapping x •—•• D(x) on X i s quasi-continuous

if , given / € S(X*) and 0 < e < 1 , there exists an x € Six) and a

6(e , f) > 0 such tha t Diy) c_ B(f; e) for a l l y € S(X) n B(x; 6) .

THEOREM 2 . 1 . For a normed linear space X > the following statements

are equivalent:

(i) X has property ( J ) ;

(ii) the duality mapping on X is quasi-continuous;

(Hi) every support mapping on X maps norm dense sets in Six)

to norm dense sets in S(X*) ;

(iv) for every e > 0 , D{MAx)) is norm dense in Six*) ;

(v) the weak * denting points of B(X*) are norm dense in

S(X*) .

Proof. (i) °* (ii) . I f the duality mapping is not quasi-continuous,

there exis ts an / € S(X*) which does not obey the property given in

Lemma 2.2 (Hi). So by Lemma 2.2 (ii) there exists a bounded closed convex

set C with inf fiC) > 0 and every closed ba l l containing C also

contains 0 . So then C cannot be represented as an intersection of

closed b a l l s . (This i s Phelps1 Lemma U.l [9, p . 979].)

(ii) "* (Hi) . I t follows directly from the definition of quasi-

continuity that for any support mapping <)> on X , i f A i s norm dense in

S{X) , then <)>U) i s norm dense in S{X*) . (This i s Phelps' Corollary

U.2 [9 , p . 980].)

(Hi) •* (ii) . Suppose that the duality mapping is not quasi-

continuous. Then there ex is t s an / € S{X*) and an r > 0 such t ha t , for

every x € S(X) and e > 0 , there exists a y € S(x; e) , where

D(y) ^ B{f; r) . So there exists a norm dense set A in S(X) and a

support mapping <f> , where (J>(J4) n B(f\ r) = 0 .
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(ii) °* (iv) . If the duality mapping is quasi-continuous, i t follows

from Lemma 2.2 (i) that S(X*) = fl D\M (X)) .
e>0 E

(iv) =* (v) . For given e > 0 , we have by Lemma 2.1 (ii) that

D[M {X)) is contained in the set D , the union of points in S(X*)

which are weak * interior to weak * slices of B(X*) of diameter less

than e . So for each e > 0 , D is norm open and norm dense in S{X*) .

By the Baire Category Theorem D D is norm dense in S(X*) ; but these
e>0

are precisely the weak * denting points of B(X*) .

(v) =» (iv) . Consider / € S{X*) , a weak * denting point of

B(X*) . Given e > 0 and 0 < r\ < z , there exists an x € S(X) such

that / belongs to a slice determined by a; of diameter less than n .

Now D(x) is contained in this slice. Therefore ||/ -f\\ < n for any

fx € D(x) , and by Lemma 2.1 (ii) , x 6 M U ) c M (X) . So / € D[M {X)) .

(iv) ** (i) . Consider a bounded closed convex set C and a point

y € X\C . We may assume that y = 0 . By the Separation Theorem there

exists a continuous linear functional / such that inf /(c) > 0 . How

/ € n D[M {X)) , so by Lemma 2.2 (ii) there exists a closed ball
e>0 E

containing C which does not contain 0 .

A weak * denting point is an extreme point. In a finite dimensional

space an extreme point is a weak * denting point, so Phelps1 result [9,

p. 980] is immediate.

COROLLARY 2.6. A finite dimensional normed linear space X has

property (I), if and only if the set of extreme points of B(X*) is dense

in S(X*) .

From Corollary 2.3 the following result is immediate.

COROLLARY 2.7. A Banach space X whose dual X* has property (J)

is reflexive.

Using the fact that (1 D\M (X)) contains the weak * denting
e>0 £

points of B(X*) and that for a reflexive space B(X*) is the closed

convex hull of its denting points [4, p. 25], we can deduce the following
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extension of Mazur's resu l t given locally in Corollary 2 .5 .

COROLLARY 2.8. For a reflexive Banach spaae with property (J)., a
bounded sequence [x } converges weakly to x > if and only if every

closed ball containing a subsequence also contains x .

In his paper [9, p. 982], Phelps asked whether X having property (I)
implies that the set of weak * strongly exposed points of B(X*) is norm
dense in S(X*) . In the light of Theorem 2.1 this question takes the
following form.

PROBLEM 2 .1 . If X has the set of weak * denting points of B{X*)

norm dense in S(X*) , is the set of weak * strongly exposed points of

B(X*) norm dense in S{X*) ?

If the norm of X is strongly differentiable on a norm dense set in
S(X) , then from Theorem 2.1 (Hi) we have an affirmative answer to our
question. Asplund spaces satisfy this condition. So then all reflexive
Banach spaces and al l separable Banach spaces with property (X) satisfy
this condition. This leads us to ask the further question:

PROBLEM 2.2. Is every Banach space with property (I) an Asplund

space?

We point out that if X has the property that every point of D(S(X))

is a weak * denting point of B(X*) , then the norm of X is strongly
differentiable on S{X) . So from Theorem 2.1 (Hi) the set D[S(X)) of
weak * strongly exposed points of B{X*) is norm dense in S(X*) , and
if X is a Banach space, then from Theorem 1.1, X is an Asplund space.

3. Characterisation of spaces with property (weak * I)

By developing Lemmas 3.1 and 3.2 for the dual space similar to Lemmas
2.1 and 2.2 we are able to establish a characterisation theorem for dual
spaces with property (weak * J) similar to that given in Theorem 2.1 for
spaces with property (J) .

LEMMA 3.1. For a Banach space X , given z > 0 , the foliating
statements are eqidvalent:

(i) f <= Me(X*) ;

(ii) f determines a slice of B(X) of diameter less than e ;
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(iii) for all sequences x € S(X) such that f[x ) •* 1 ,

lim sup ||x -x II < e ;

(iv) for all sequences x € S{X) and all f € D[x ) , where
n

fx + f , llm sup ll*n-agi < e .

Proof, (i) ** (ii) follows from (i) °* (ii) in Lemma 2.1.

(ii) ** (iii) and (iii) ** Tiu^ follow as in Lemma 2.1.

(iv) "* fiii.) . From the Bollobas estimates for the Bishop-Phelps

Theorem [/] we have that for every sequence a; € S(X) such that

n
f[x } -*• 1 , there exists a sequence y i. S(X) and / € D{y ) such that

||x• -y || * 0 and | | /-f || f 0 .
" yn

(iii) °* Ci^ . Suppose that / ^ Af (̂ *) ; then from Lemma 2.1 (iii)

there exists a sequence F € S(X**) such that F (/)-*• 1 , but

\\F -F || > e for all m, n . So for each n there exists / € 5(A:*)

such that | [F -F ) (/ ) | > e - 1/n . Since B(^) is weak * dense in

B(X**) , there exists a sequence x € S(X) such that

and

I l*B-£n) (/) I < l/n

Then f{x ) •*• 1 ; but

> e - 3/n .

So lim sup Ifc^^JI 2 e •

From Lemmas 2.1 and 3.1 we make the following deduction.
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COROLLARY 3 . 1 . For a normed linear space X , if x Z M (X) , then

x € M (X**) .

LEMMA 3.2. For a Banaah space X , given x € S(X) , the following

statements are equivalent:

(i) x € n D~1[M {X*)) ;
eX) e

(ii) for every bounded set C in X* with inf x(C) > 0 ,

there exists a closed dual ball containing C which does

not contain 0 ;

(Hi) given 0 < e < 1 there exists an f € D[S(X)) and a

6(e) > 0 such that D~

g € D[S{X)) n B(f; 6) .

6(e) > 0 such that D {g) c_B(x; e) for all

Proof, (i) •* (ii) . Given e > 0 , D 1{M (X*)) C D[M (X*)) ; so

x € fl D\M (X*)} , and the result follows from Lemma 2.2 (ii) .
e>0 E

(ii) =* (Hi) . Given e > 0 , we have from Lemma 2.2 (Hi) , that there

exists an /' € S(X*) and a 6'(e) > 0 such that D(g) cB(x; e) for all

g € S(X*) n B(f; 6') . But by the Bishop-Phelps Theorem there exists an

/ € D[S(X)) and a 0 < 6 < &' such that B(f; 6) <=_B(f; 6') . So

D~1(ff) c B(x; e) for all g I D[S(X)) n B(f; 6) .

Ciiij =* (i) . Given e > 0 and 0 < n < e/2 , there exists an

/ € D{S(X)) and a 6(n) > 0 such that D~1(f) c_B(x; n) for all

g € Z)(SU)) n B(/; 6) . In particular, ZJ~1(/) c S(x; n) and for all

x € S(Z) and / € o(x ) , where f •* f , we have that
n x n x
x
n

lim sup llx -x II < 2n < e . By Lemma 3.1 (iv) th i s implies thatn m

f € M£[X*) . So ||x-x J| < n where as. € Z)"1(Me(^*)) .

The inverse duality mapping f*-~+D~(f) on AT* is quasi-continuous

if, given x € S{X) and 0 < e < 1 , there exists an / € D{S(X)) and a

6(e, x) > 0 such tha t Z?"1(g) c S(x; e) for a l l g € D[S(X)) n B(f; 6) .

THEOREM 3.1 . For a Banaah space X , the following statements are
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equivalent:

(i) X* has property (weak * I) ;

(ii) the inverse duality mapping on X* is quasi-aontinuous;

(iii) every support mapping on X* which maps D[S(X)) into

S(X) has the property that it maps norm dense sets in

D[S(X)) to norm dense sets in S(X) ;

(iv) for every e > 0 , D~ [M£(X*)) is norm dense in S(X) ;

(v) the denting points of B(X) are norm dense in S(X) .

Proof. All the proofs follow a similar pattern to those given in

Theorem 2.1, but using Lemmas 3.1 and 3.2. The proof (v) "* (iv) also uses

Corollary 1.1.

Our characterisation Theorem 3.1 raises the question dual to that

raised by Theorem 2.1.

PROBLEM 3.1. If X has the set of denting points of B(X) norm

dense in S(X) , is the set of strongly exposed points of B(X) norm dense

in S(X) ?

In connection with the question dual to that raised in Problem 2.2 we

make the following remark. A normed linear space X is locally uniformly

rotund, if for every x € S(X) and sequence x 6 S(X) such that

\\x +x\\ •*• 2 , we have x -*• x . It follows that in a locally uniformly
" n " n

rotund space X , every point of S(X) is a strongly exposed point of

B{X) , and so, from Theorem 3.1 (v), X* has property (weak * I). Using

this fact we note that a Banach space X with property (weak * J) on X*

is not necessarily weak * Asplund; that is, not every equivalent dual

norm for X* need be strongly differentiable on a norm dense subset of

i>(X*) [2, p. 103]. The space c can be equivalently renormed to be

locally uniformly rotund, but I is not weak * Asplund.

4. Spaces with property (J) and property (weak * I) on the dual

We have drawn attention to two significant questions in Problems 2.1

and 3.1. It is of interest to examine their solutions for spaces which
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combine all the special features associated with property (I) and property

(weak * X) on the dual.

THEOREM 4.1. A Banach space X has property (I) and X* has

property {weak * I), if and only if the set of strongly exposed points of

B{X) is norm dense in S{X) and the set of weak * strongly exposed

points of B{X*) is norm dense in S{X*) .

Proof. Suppose that X has property (J) and X* has property

(weak * I). From Theorem 2.1 (iv), for every e > 0 , D[M (X)) is norm

dense in S{X*) and from Theorem 3.1 (v) , the denting points of B(X) are

norm dense in S(X) . From Corollary 1.2 (i) we deduce that, for every

E > 0 , M (X) is norm dense in S(X) . But from Corollary 2.2 the norm

is strongly differentiable on a norm dense subset of S{X) . Similarly,

using Theorems 3.1 (iv) , 2.1 (v) , and Corollary 1.2 (ii) , we have that the

set of points where the norm of X* is strongly differentiable is norm

dense in S{X*) . Applying Theorems 2.1 (Hi) and 3.1 (Hi) we have our

result.

Conversely, the proof follows directly from Theorems 2.1 (v) and 3.1

(v).

There are many examples of the spaces of Theorem U.I.

THEOREM 4.2. Any weakly compactly generated Banach space with weakly

compactly generated dual can be equivalently renormed to have property (J)

and property {weak * I) on the dual.

Proof. Such a space X can be equivalently renormed so that both X

and X* are locally uniformly rotund [6, p. 185]. It follows that every

point of S(X) is a strongly exposed point of B(X) and every point of

D(S(X)) is a weak * strongly exposed point of B(X*) . The result

follows from the Bishop-Phelps Theorem and Theorem U.I.

5. Uniform conditions

It seems reasonable to enquire about the special features of a normed

linear space X when the M (X) sets satisfy a uniform condition.

The norm of a normed linear space X is said to be uniformly strongly

differentiable (uniformly Frechet differentiable) on a set A c S(X) if
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for a l l x € A and y € S(X) ,

lim J

X-K)

exists and is approached uniformly for all x € A and y € S(X) ; or

equivalently, for any given e > 0 , there exists a 6(e) > 0 such that

for all x € A ,

lk«/ll + fc-yW < 2 + e ||i/1| for a l l y € * , where ||t/|| < 6 .

Now given e, 6 > 0 , we denote by M Ax) the set of points of S(X)

e,o
such that

lk-K/|| + \\x-y\\ < 2 + E ||i/1| for a l l 2/ € * , where ||t/|| < 6 .

The following lemma provides the mechanism for determining those

spaces which satisfy conditions analogous to those studied for property

( J ) .

LEMMA 5.1 . For a normed linear space X , suppose that for some

z, 6 > 0 , D[M AX)) is norm dense in S(X*) . Then for any

2 > E > e > 0 and f, g € S(X*) , where \\f-g\\ > e. , we have

\\f+g\\ < 2 - (^-6)6 .

Proof. Since D[M r(-^)) i-s norm dense in S[X*) , we have for every

f i x * ,

H/ll = sup{| / (x) | : x € M£

For f, g € S{X*) ,

) ( ) : x €

= svp{f(x-ty)+gix-y)-(f-g)(y) : x € M£ 6(^)} for a l l j / € AT

< 2 + E6 - (f-g)(y) for a l l j / € * such that ||i/|| < 6 .

If ILf-sll > £ , we can choose y such that \\y\\ < 6 and (f-g)(y) > E6 ,

and then ||/-+#|| < 2 - ( E ^ E ) 6 .

Our theorem shows the power of the assumption of our uniform

condition.

THEOREM 5.1 . (i) For a normed linear space X 3 suppose that for
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some 0 < e < 2 and 5 > 0 , D(M AX)) is norm dense in S(X*) . Then

X has an equivalent norm which is uniformly strongly differentiable on

S(X) .

(ii) For a normed linear space X , suppose that for any given

0 < e < 2 there exists a 6(e) > 0 such that D[M AX)) is norm dense
£,o '

in S(X*) . Then the norm of X is uniformly strongly differentiable on

S(X) .

Proof, (i) From Lemma 5-1, X is "inquadrate" which implies that

there exists an equivalent norm on X which is uniformly strongly

differentiable on S(X) [3, p. 169].

(ii) From Lemma 5.1 > X* is uniformly rotund and so the norm of X

is uniformly strongly differentiable on S(X) .
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