
ON A THEOREM OF AUBRY-THUE 
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1. Introduction. In 1913 L. Aubry [1] proved the following theorem: 

If a and m are relatively prime, m > 0, and if b/m1 is not an integer, then it is 
always possible to find integers x and y not both zero such that 

(1) ax — by = 0 (mod m) 

and \x\ < m^, \y\ < m*. 

In 1917 A. Thue proved [10]: 

If a, b and m are relatively prime, then (1) can be solved by integers x and y 
such that \x\ ^ m2, \y\ ^ m*. 

This is called, in general, the Theorem of Thue. See, for instance, the books 
of A. Scholz [7, p. 45], and O. Ore [5, p. 268]. If (b, m) = 1 and m is not a 
square, the results of Aubry and Thue are identical. If m is a square but b/m* 
is not an integer, then Aubry's result is better than Thue's. Since Aubry 
published the theorem first and Thue proved it independently a little later, 
it should be called the Theorem of Aubry-Thue. In addition to the books 
mentioned above, this theorem is also proved in the book of Uspensky and 
Heaslet [11, p. 234] without mentioning either Aubry or Thue. 

Actually Thue had already proved in 1915 [9] a more general result under 
certain unimportant restrictions without formulating it as a theorem. If we 
omit these restrictions, Thue's result can be formulated as follows: 

If Q<\, a2, . . . , an are relatively prime, then it is possible to find integers xi, x2, 
. . . , xn not all zero such that 

(2) a\X\ + a2#2 + . . . + anxn = 0 (mod m) 

and 0 ^ |*,| ^ m1/n. 

In 1926 J. M. Vinogradov [12] generalized the Theorem of Aubry-Thue in 
another direction: 

Let p be a prime (a, p) = 1 and k any positive integer. Then there exist rela
tively prime integers x and y satisfying 

ax s= y (mod p), 0 < x ^ k, 0 < \y\ < p/k. 

It is clear that the corresponding theorem holds for ax = by (mod p) where 
(b, p) — 1. Moreover it follows from the proof that the modulus need not be 
a prime number. In the book of Scholz [7] this generalization of Thue is also 
proved. 

Received February 24, 1950, 

367 

https://doi.org/10.4153/CJM-1951-042-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1951-042-6


368 ALFRED BRAUER AND R. L. REYNOLDS 

Independently Thue's Theorem was proved by De Backer [3] and Vino
gradov's generalization by Ballieu [2]. Moreover Ballieu considered the case 
where a and m are not relatively prime, but ordinarily it will be sufficient for 
the applications to consider the case where (a, m) = 1 since by must be divisible 
by the g. c. d. of a and m. In a second paper De Backer [4] stated without 
proof the following theorem which is unfortunately incorrect: 

If (a, m) = 1 and if A is any integer, then 

ax = y + A (mod m) 

always has a solution for which \x\ ^ ra*, \y\ ^ mK 

For instance, 2x = y + 23 (mod 47) has no solution. De Backer used this 
result to prove the following theorem : 

//" p is a prime and a, b, cy d are integers, then the system 

ax + by = z (mod p) 
ex + dy = u (mod p) 

always has a solution x, y, z, u where each is less than p% in absolute value. 

We wish to prove the latter theorem is correct by proving the following 
generalization of the theorem of Aubry-Thue which also contains (2) as a 
special case. 

The system of r linear homogeneous congruences in s unknowns (r < s) 

s 

£ apex* = 0 (mod m) (p = 1, 2, . . . , r) 

always has a non-trivial solution for which 

\xa\ ^ mr/* (a = 1,2, . . . ,s). 

This result will be obtained by proving the corresponding generalization of 
Vinogradov's theorem. 

The theorem of Aubry-Thue is used in particular for the proof of the repre
sentation of primes of form 4w + 1 as sum of two squares and that the least 
&th power non-residue (mod p) with p = 1 (mod k) is less than p*. Corres
pondingly, we shall use our generalisation to simplify the proof that every 
integer can be represented as sum of four squares and we shall prove here that 
for odd k and p = 1 (mod k) each of the k — 1 classes of &th power non-
residues contains at least one element less than p(k~ti/k. For sufficiently large 
p and the special case k — 3 a sharper bound can be obtained from Vinogradov's 
results [13] but not for k > 3. 

Porcelli and Pall have just announced that they can prove the following 
theorem with the help of Farey Series : 
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If p is an odd prime, D a quadratic residue {mod p), g and h positive integers 
such that g ^ p and h = [p/g], then at least one of the numbers l2, 22, . . . , h2 

is congruent to one of the numbers D, £D, 9D, . . . , (g — 1)2D. 

We will show this theorem is an immediate consequence of Vinogradov's 
theorem and that it also holds for &th power residues with even k. Finally 
we will generalize the theorem of Aubry-Thue for congruences with regard to 
a double modulus and for congruences with respect to ideals in algebraic 
number fields. 

2. Generalization of Vinogradov's Theorem. 

THEOREM 1. Let r and s be rational integers with r < s and letf^ be positive 
numbers less than m (a = 1, 2, . . . , s) such that 

(3) n /„ > mr. 
< r = l 

Then the system of r linear congruences 

s 

(4) yp = £ apax9 = 0 (mod m) (p = 1, 2, . . . , r) 
< T = l 

has a non-trivial solution in integers x* such that 

(5) |*,| < / , (a = 1 , 2 , . . . , * ) . 

Proof. Let /* , be the greatest integer less than /„. For <r = 1, 2, . . . , s 
we choose 

(6) *, = 0 , 1 , 2 , . . . , / * , 

and obtain II (/*, + 1) sets of r-tuples (yi, y2, . . . , yr)- By (3) we have 

n (f, + l) Ï n / , > mr. 

Thus it follows from Dirichlet's principle of the drawers that at least two of 
the r-tuples, say (y\, y'2, . . . , y'r) and (y"u y"2l . . . , y"r) will satisfy the 
congruences 

(7) y\^y"> (modm) ( P = l , 2 , . . . , r ) . 

If we denote the corresponding values of xff by x'\ and xn\ respectively, we have 

y'P = aPix\ + ap2x\ + . . . + apsx'8 

it it \ it i i it \P ^ I» • • • » */• 

Hence by (7) for p = 1, 2, . . . , r, 

aPi(Vi— x"i) + ap2{x\ — x"2) + . . . + ap,(x'« — x"9) = 0 (mod m). 
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If we denote x'\ — x" a by Xa, then Xi, X2, . . . , Xs are a non-trivial solution 
of the congruences (4) which by (6) satisfy the conditions (5). 

COROLLARY 1. Letf(x) be any irreducible monic polynomial of degree n and 
p any prime. Let / i , /2 , • • • , fin be positive numbers less than p such that 

2n 

n /, > pn. 

If g(x) and h(x) are given polynomials with integral rational coefficients, then we 
can find polynomials with integral rational coefficients : 

4>(x) = U\xn~x + u2x
n~2 + . . . + un, 

\f/{x) = ViXn~l + V2X
n~2 + . . . + Vn, 

not both zero such that, 

(8) g(x)<l>(x) + h(x)*(x) = 0 (modd/(x), p), 

where 
M < f>, M < fv+n (v = 1 , 2 , . . . , ft). 

Proof, The coefficients of g(x)<f>(x) are linear forms in uh u2f . . . , un. If 
we divide g(x)4>(x) by the monic polynomial f(x), then the coefficients of the 
remainder are also linear combinations of #i, u2, . . . , un with given integral 
rational coefficients. Similarly the remainder of h(x)\p(x) after dividing by 
f(x) will have coefficients which are linear forms in vh v2, . . . , vn with given 
integral rational coefficients. In order that (8) may hold, at most n linear 
congruences in the 2n variables uv and vv must be satisfied. Hence the corollary 
follows at once from Theorem 1. 

If A = (ap<T) and B = {bpa) are matrices with integral elements, we write 
A = B (mod m) if apa = bpa (mod m) for every p and a. 

COROLLARY 2. Let fOT and for be positive numbers less than m (a — 1, 2, 
. . . , 5; r = 1, 2, . . . , /) such that 

Ti far for > m r t . 

Let A = {apa) and B = (bp(T) be two r X s matrices with integral rational elements 
and r < 2s. Then for every given integer t we can find integral s X t matrices 
U = (tier) and V = (vOT) such that 

(9) AU = BV (mod m), 

where 
Wor\ <for, \V9T\ < f'cr, ( * = 1 , 2 , . . . ,S\ T = l , 2 , . . . , / ) . 

Proof. The rt elements of A U are linear combinations of the elements of 
U. Hence (9) requires that rt linear congruences for the 2st unknown elements 
of U and V be satisfied. 

A similar result holds for left-hand multiplication of A and B. 
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3. The Four Square Theorem. It is well known that it is sufficient to prove 
this theorem only for prime numbers p. The simplest proofs use the fact that 
wre can find integers a and b such that 

(10) a2 + b2 + 1 = 0 (mod p) 

and the method of descent [11, pp. 383-6]. We wish to prove that the theorem 
follows easily from (10) and Theorem 1. 

Let a and b satisfy (10), then the congruences 

(11) x = az + bt (modp) 
y = bz — at (mod p) 

have a non-trivial solution with 

(12) max (\x\,\y\9 \z\, \t\) < p*. 

It follows from (11) and (10) that 

x2 + y2 = (a2 + b2)z2 + (a2 + b2)t2 = - z2 - t2 (mod p). 

Hence 

(13) x2 + y2 + z2 + t2 = Ap. 

By (12), A must be equal to 1, 2, or 3. If A = 1, the theorem is proved. 
U A = 2 , then x must be congruent (mod 2) to at least one of y, z, t say x = y 
(mod 2) and then also z = t (mod 2). We obtain from (13) for p the following 
representation as sum of four squares: 

If A = 3 , we use a method of Sylvester [8]. It follows from (13) that one of 
x, y, z, t, say x, must be divisible by 3 and by proper choice of signs for y, z} 

and t we may assume that 

y = z = / (mod 3). 
Hence from (13) 

h+z+iV+ /x+z-t\2
+ /x-y+t\* /x+y-z\2 

This gives our representation since the parentheses are integers and hence 
proves our theorem. 

4. The least &th power non-residues. 

THEOREM 2. If k is odd and p a prime where p = l(mod k), then each of the 
k — 1 classes of kth power non-residues contains at least one element which is less 
thanp{k~l)/k. 
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Proof. Let nh n2, . . . , nk-\ be representatives of the k — 1 classes Ku 

K2, . . . , Kk-i of non-residues. We consider the system of k — 1 congruences 
in k unknowns: 

x = wi^i (mod £) 
(14) x = n2y2 (mod p) 

x = nk-iyk-i (modp). 

This system has a non-trivial solution #, j i , y2, . . . , 3^-1 where each unknown 
is less than p^k~^^k in absolute value. Since —1 is a £th power residue for odd 
k, then x and — x belong to the same class. Hence we only have to show that 
#> yu y2, . . . , yic-i are representatives of the k classes of residues and non-
residues. If x belongs to the class K of residues or non-residues, then y{ 

belongs to the class K Kfl (i = 1, 2, . . . , k — 1). It is obvious that these 
classes are different from each other and different from K. 

If we consider instead of the k — 1 congruences (14) only / of them, then it 
follows in the same way from Theorem 1 that / of these classes of &th power 
non-residues contain elements which are less than pl/l+l. Applying this sue-, 
cessively for Z = l , 2 , . . . , & — 1, we obtain 

THEOREM 3. If k is odd and p a prime with p = 1 (mod k), then it is possible 
to find k — 1 non-residues du d2, . . . , dk-i belonging to different classes such that 

0 < dx < />V(x+uf (X = 1, 2, . . . , * - 1). 

This gives for d\ the well known bound for the least &th power non-residue. 

5. Generalization of a Theorem of Porcelli and Pall. 

THEOREM 4. Let g and k be positive integers where k is even, p an odd prime 
with p = 1 (mod k) such that g ^ p. We set h = [p/g]. If D is a kth power 
residue, then at least one of the numbers lfc, 2h, . . . , hk is congruent to one of the 
numbers D, 2kD, . . . , (g - l)kD. 

Proof. Since D is a £th power residue, there exists an integer a such that 
ak = D (mod p). By Theorem 1, the congruence 

ax = y (mod p) 

has a solution for which \x\ < g and \y\ < h + 1 since g(h + 1) > p. Thus 

akxk = yk (mod p) 

and since k is even, 

D \x\k = \y\k (mod p). 

Since \x\ is one of the numbers 1, 2, . . . , g — 1 and \y\ one of the numbers 
1, 2, . . . , Â, the theorem is proved. 
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6. A generalization for algebraic numbers. 

THEOREM 5. Let m be an ideal of an algebraic number field and t the norm of 
m. Assume that t is less than the square of the smallest rational integer g of m. 
If a and p are two integers of the field, then the congruence 

(15) ax — fly = 0 (mod nt) 

has a solution in rational integers x and y not both belonging to m such that 

(16) |x| < **, \y\ < ft. 

Proof. The numbers 0, 1, 2, . . . , [ft] are incongruent (mod m) since their 
difference is less than g. if we choose for x and y the numbers 0 , 1 , 2 , . . . , [ft], 
then we obtain {[ft] + l } 2 numbers ax — @y, hence more than t integers of 
the field. At least two of them, say ax' — fiy' and ax" — $y" must be congru
ent (mod m). Hence 

a(x' - x") - p(y' - y") = 0 (mod m) 

and X = xr — x", Y = y' — y" are a solution of (15) satisfying (16), x' — x" 
= 0 (mod m) implies xf = x" and yf — y" = 0 (mod m) implies y' = y". 

The assumptions of Theorem 5 are satisfied, for instance, if mis the product 
of different prime ideals of degree 1 of which no two are conjugates. If, namely, 

TH = pi p2 • • • Pt 

and pi, pi, . . . , pt the prime numbers contained in these ideals, then pi, pi, 
. . . , pt are different and 

t = pi . pi. . . pt. 

On the other hand, p\pz. . . pt is the smallest positive integer contained in m. 
The theorem holds also if some of these prime ideals but not all are of degree 2. 

Note (May 4, 1951). In the meantime the paper of Porcelli and Pall has 
been published [6]. While in their abstract only the case k = 2 is mentioned, 
actually Theorem 4 is proved in the paper. Our proof is completely differ
ent from the proof of Porcelli and Pall. 
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