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Abstract. In [11] the authors obtained an operator matrix with two variables
that distinguishes the classes of p-hyponormal operators, w-hyponormal, absolute-
p-paranormal, and normaloid operators on Hilbert spaces. We establish the general
model for n variables, which provides many more examples to show that such classes
are distinct.
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1. Introduction. Let H be a complex Hilbert space and let L(H) be the algebra
of all bounded linear operators on H. There are several classes of operators with
weaker conditions than quasinormality; for example, p-hyponormal, w-hyponormal,
p-quasihyponormal, absolute p-paranormal, p-paranormal, and normaloid operators,
etc. Here is a brief review of those operators (see [5], [6], [10], and [12] for further
discussion).

• An operator T ∈ L(H) is p-hyponormal if (T∗T) p ≥ (TT∗) p (0 < p < ∞).
• T is ∞-hyponormal if (T∗T) p ≥ (TT∗) p, for all p ∈ (0,∞).
• T is p-quasihyponormal if T∗((T∗T) p − (TT∗) p)T ≥ 0 (0 < p < ∞).
• T is an A(p)-operator if (T∗ |T |2p T)1/(p+1) ≥ |T |2 (0 < p < ∞).
• T is p-paranormal if ‖ |T |p U |T |p x‖ ≥ ‖ |T |p x‖2 for all unit vectors x ∈ H (0 <

p < ∞), where U is the partially isometric part of the polar decomposition of
T . In particular, 1-paranormality is referred to as paranormality.

• T is absolute-p-paranormal if ‖|T |pTx‖ ≥ ‖Tx‖p+1 for all unit vectors x ∈ H
(0 < p < ∞). Note that absolute-1-paranormality and 1-paranormality are
equivalent.

• T is w-hyponormal if |T̃ | ≥ |T |, where T̃ := |T |1/2 U |T |1/2 is the Aluthge
transform of T ([2], [3], [9]).

• T is normaloid if ‖T‖ = r(T), where r(T) is the spectral radius of T, which is
equivalent to ‖Tn‖ = ‖T‖n for all natural numbers n. (See [6, p. 100].)

There are several well-known relationships among the classes of operators
described above. The interesting implications in this note are as follows:

• quasinormal ⇒ p-hyponormal ⇒ p-quasihyponormal ⇒ A(p)-operator ⇒
absolute-p-paranormal ⇒ normaloid.

Only a few examples of these operators, in particular p-hyponormal operators, have
been known, and so it is worthwhile to develop examples to show that these classes are
distinct. For this purpose, in [11] the authors considered a matrix of block operators
with 2 variables and obtained a graph to classify those classes in 2-dimensional space.
In this note we extend the study of the 2 variable version in [11] to yield the general
version of n variables which establishes some examples to show that the classes of
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p-hyponormal operators are distinct for each n ≥ 2. Thus such examples are abundant!
In addition, we consider the graphs for operators. These will be discussed in this note
in 3-dimensional space.

2. p-hyponormality. Let C = (cij ) be an n × n matrix with cij = 1/n (1 ≤ i, j ≤ n)
and let D ≡ D(x1, x2, . . . , xn) := Diag{x1, x2, . . . , xn} with xi ≥ 0, i = 1, . . . , n. We
define T(x1, x2, . . . , xn) on H ≡ �n ⊗ �2(�) by

T(x1, x2, . . . , xn) =



. . .

. . . O

C O

C O

D O

D O
. . .

. . .


,

where · denotes the center of the two sided infinite matrix.

THEOREM 2.1. Let p ∈ (0,∞). Then the following assertions are equivalent:
(i) T(x1, x2, . . . , xn) is p-hyponormal;

(ii) n ≥ (1/x1)2p + · · · + (1/xn)2p with xi > 0, 1 ≤ i ≤ n.

The following lemma proves Theorem 2.1.

LEMMA 2.2. Let p ∈ (0,∞). Then the following assertions are equivalent:
(i) T(x1, x2, . . . , xn) is p-hyponormal;

(ii) �k > 0 (1 ≤ k ≤ n − 1) and �n ≥ 0, where

�1 : = x2p
1 − 1

n
and

�k : = −1
n

∑
1≤i≤k

 ∏
1≤j≤k,j �=i

x2p
j

 +
∏

1≤i≤k

x2p
i (2 ≤ k ≤ n).

Proof. First note that T(x1, x2, . . . , xn) is p-hyponormal if and only if D2p − C ≥ 0.

Let

A := D2p − C =



x2p
1 − 1

n
−1

n
· · · −1

n

−1
n

x2p
2 − 1

n
· · · −1

n
...

...
. . .

...

−1
n

−1
n

· · · x2p
n − 1

n


(2.1)
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and let Sk be the k × k matrix in the upper left corner of A. Then the determinant of
the matrix Sk, 2 ≤ k ≤ n, is

�k := −1
n

∑
1≤i≤k

 ∏
1≤j≤k,j �=i

x2p
j

 +
∏

1≤i≤k

x2p
i . (2.2)

According to the Nested Determinants Test (cf. [4, p. 213]), obviously (ii) implies (i).
We shall show that (i) implies (ii) here. If D2p − C ≥ 0, then obviously Sk ≥ 0 and

xi �= 0 for i = 1, 2, . . . , n. (2.3)

Suppose that �k = 0 for 1 ≤ k < n. Then �k+1 = · · · = �n = 0 (cf. [4, Propo-
sition 2.6]). Multiplying by x2p

k+1 and adding − 1
n

∏
1≤i≤k x2p

i to (2.2), we have

�k+1 = �kx2p
k+1 − 1

n

∏
1≤i≤k

x2p
i = 0 (2 ≤ k < n).

Hence x2p
1 · · · x2p

k = 0. Therefore xk0 = 0 for some 2 ≤ k0 ≤ k, which contradicts
(2.3). �

Proof of Theorem 2.1. The implication (i) ⇒ (ii) follows easily from Lemma 2.2.
For the reverse implication (ii) ⇒ (i), we assume n ≥ (1/x1)2p + · · · + (1/xn)2p with
xi > 0, 1 ≤ i ≤ n. Then

n >

(
1
x1

)2p

+ · · · +
(

1
xk

)2p

, (1 ≤ k ≤ n − 1).

Hence we may obtain �k > 0 (1 ≤ k ≤ n − 1) by a simple computation. Since �n ≥ 0
is equivalent to n ≥ (1/x1)2p + · · · + (1/xn)2p, we have proved this theorem. �

For 0 < p ≤ ∞, we denote by R(n)
p the set of (x1, . . . , xn) in �

(n)
+ such that

T(x1, x2, . . . , xn) is p-hyponormal, where �+ is the set of nonnegative real numbers. The
following proposition shows that the classes of p-hyponormal operators are distinct
for 0 < p ≤ ∞.

PROPOSITION 2.3. For 0 < q < p < ∞, R(n)
∞ � R(n)

p � R(n)
q .

Proof. Since the case of n = 2 was proved in [11], we may assume that n ≥ 3. Let
us consider x1 = x2 = · · · = xn−2 = 1 and let

R(n)
p |(1, . . ,1,xn−1,xn) :=

{
(1, . . , 1︸ ︷︷ ︸

(n−2)

, xn−1, xn) : 2 ≥
(

1
xn−1

)2p

+
(

1
xn

)2p }
,

which is the projection of R(n)
p w.r.t. x1 = x2 = · · · = xn−2 = 1. Then a computation

similar to that in the proof of [11, Lemma 2.2] shows that R(n)
p |(1, . . ,1,xn−1,xn) �

R(n)
q |(1, . . ,1,xn−1,xn). Obviously R(n)

p � R(n)
q . �

REMARK 2.4. Let R(n)
qn be the set of (x1, . . . , xn) ∈ �

(n)
+ for which the operator

T(x1, x2, . . . , xn) is quasinormal. Then by the definition of quasinormality, we may
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show that R(n)
qn is the singleton {(1, . . . , 1)}. This fact points out an error in [11, Theo-

rem 2.3 (v)].

PROPOSITION 2.5. For p ∈ (0,∞), we have the following equalities.
(i) R(n)

∞ = [1,∞) × · · · × [1,∞) (n−copies),
(ii)

⋃
p>0 R

(n)
p = {(x1, . . . , xn) : x1x2 · · · xn > 1} ∪ {(1, . . . , 1)}.

Proof. (i) Let T(x1, . . . , xn) be ∞-hyponormal. Then by (2.1), we have x2p
i ≥ 1

n for

all p > 0 and i = 1, . . . , n. Hence xi ≥ limp→∞( 1
n )

1
2p = 1.

Conversely, suppose xi ≥ 1 (1 ≤ i ≤ n). By (2.1) and (2.2), we may show easily that
In ≥ C, where In is the n × n identity matrix. Hence D2p ≥ In ≥ C for all p ∈ (0,∞),
which proves that T(x1, . . . , xn) is p-hyponormal.

(ii) Let (x1, . . . , xn) ∈ R(n)
p for some p > 0 and suppose xi �= 1 for some i = 1, . . . , n.

Then

n · x2p
1 x2p

2 · · · x2p
n ≥

n∑
i=1

∏
1≤j �=i≤n

x2p
j ≥ n · n

√
(x1x2 · · · xn)2p(n−1), (2.4)

which shows that x1x2 · · · xn ≥ 1. Now suppose that x1x2 · · · xn = 1. According to
(2.4), we have

n =
(

1
x1

)2p

+
(

1
x2

)2p

+ · · · +
(

1
xn

)2p

.

Hence x1 = · · · = xn = 1 (use the relationship of arithmetic and geometric means).
This contradiction shows that x1x2 · · · xn > 1. Hence (x1, . . . , xn) belongs to the set on
the right side in (ii).

On the other hand, since (1, . . . , 1) ∈ R(n)
p for every p > 0, we may suppose that

x1x2 · · · xn > 1 to prove the reverse inclusion. Let us define

ϕ(p) =
(

1
x1

)2p

+
(

1
x2

)2p

+ · · · +
(

1
xn

)2p

.

Then a simple computation shows that limp→0+ ϕ′(p) = −2 ln(x1 · · · xn) < 0, and hence
ϕ′(p) < 0 on (0, p0) for sufficiently small p0 > 0. Since ϕ(0) = n, we have

n >

(
1
x1

)2p

+
(

1
x2

)2p

+ · · · +
(

1
xn

)2p

,

for such p ∈ (0, p0). Thus by Theorem 2.1, (x1, . . . , xn) ∈ ∪0<p<p0R
(n)
p . �

We consider the graph of the set R(3)
p for p-hyponormal operators.

EXAMPLE 2.6 (The case n = 3). It follows from Theorem 2.1 that T(x, y, z) is p-
hyponormal if and only if 3 ≥ (1/x)2p + (1/y)2p + (1/z)2p (x, y, z > 0). The regions for
the p-hyponormality of T(x, y, z) are shown in Figure 2.1.

3. Absolute p-paranormality. By direct computation, we obtain the following
lemma.
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Figure 2.1

LEMMA 3.1. Let B = (bij ) be an n × n matrix satisfying bij = a + b (if i = j) and
bij = a (if i �= j), where a, b ∈ �. Then det B = bn−1(na + b) for all n ≥ 1.

THEOREM 3.2. For any p > 0, the following assertions are equivalent:
(i) T(x1, x2, . . . , xn) is absolute p-paranormal;

(ii) x2p
1 + x2p

2 + · · · + x2p
n ≥ n and xi ≥ 0 (1 ≤ i ≤ n).

Proof. For brevity, let us put T := T(x1, x2, . . . , xn). It is well known ([6, Theo-
rem 1, p. 174] and its proof ) that T is absolute p-paranormal if and only if for all λ > 0,
we have

�(λ) := T∗(T∗T) pT − ( p + 1)λp(T∗T) + pλp+1 ≥ 0.

Obviously we have

�(λ) = Diag {. . . , C2p+2, C2p+2, CD2pC, D2p+2 , D2p+2, D2p+2, . . .}
− (p + 1)λpDiag {. . . , C2, C2, D2 , D2, D2, . . .} + pλp+1.

To show that �(λ) ≥ 0, for all λ > 0, we need to prove that
(i) �1(λ) := C2p+2 − (p + 1)λpC2 + pλp+1 ≥ 0 (λ > 0),

(ii) �2(λ) := CD2pC − (p + 1)λpC2 + pλp+1 ≥ 0 (λ > 0),
(iii) �3(λ) := D2p+2 − (p + 1)λpD2 + pλp+1 ≥ 0 (λ > 0).

Let �
(i)
k denote the determinant of the k × k submatrix of the upper left corner in �i(λ)

for each i = 1, 2, 3 and k = 1, . . . , n. In order to obtain �i(λ) ≥ 0 for all λ > 0, it is
sufficient to show that �

(i)
n ≥ 0 and �

(i)
k > 0 for k = 1, . . . , n − 1.
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First, by a simple calculation, we have the n × n matrix �1(λ) = [θ (1)
ij ], where

θ
(1)
ij =


1 − (p + 1)λp

n
+ pλp+1 for (i = j)

1 − (p + 1)λp

n
for (i �= j)

and i, j = 1, 2, . . . , n. Using Lemma 3.1, we have for k = 1, 2, . . . , n,

�
(1)
k = (pλp+1)k−1

(
k
n

− k
n

(p + 1)λp + pλp+1
)

.

Put f1(λ) := pλp+1 − k
n (p + 1)λp + k

n , for k = 1, 2, . . . , n. Then, f1(λ) has its minimum

value at λ = k
n and f1( k

n ) = k
n (1 − ( k

n )p) for k = 1, 2, . . . , n. Since �
(1)
k = (pλp+1)k−1 ·

f1(λ), we have that �
(1)
k > 0 for k = 1, 2, . . . , n − 1 and �

(1)
n ≥ 0, and so �1(λ) ≥ 0

(λ > 0).
Consider also the matrix �3(λ) = [θ (3)

ij ], where

θ
(3)
ij =

{
x2p+2

i − (p + 1)λpx2
i + pλp+1 for (i = j)

0 for (i �= j)

and i, j = 1, 2, . . . , n. Put f3(λ) := x2p+2
i − (p + 1)λpx2

i + pλp+1 for i = 1, 2, . . . , n.
Then, by the same method, f3(λ) has its minimum value at λ = x2

i and f3(x2
i ) = 0

for i = 1, 2, . . . , n. Therefore, �3(λ) ≥ 0 for all λ > 0.
Next, by another calculation, we have the matrix �2(λ) = [θ (2)

ij ], where

θ
(2)
ij =


x2p

1 + · · · + x2p
n − n(p + 1)λp

n2
+ pλp+1 for (i = j)

x2p
1 + · · · + x2p

n − n(p + 1)λp

n2
for (i �= j)

and i, j = 1, 2, . . . , n. Using Lemma 3.1, we have for k = 1, 2, . . . , n,

�
(2)
k = (pλp+1)k−1

[
k
n2

(
n∑

i=1

x2p
i − n(p + 1)λp

)
+ pλp+1

]
.

Put

f2(λ) := pλp+1 − k
n

(p + 1)λp + k
n2

n∑
i=1

x2p
i ,

for k = 1, 2, . . . , n. Then, we can see that f2(λ) has its minimum value at λ = k
n . If

x2p
1 + · · · + x2p

n ≥ n, then

f2

(
k
n

)
= k

n2
·

n∑
i=1

x2p
i −

(
k
n

)p+1

≥ k
n

[
1 −

(
k
n

)p]
> 0

for k = 1, 2, . . . , n − 1. Since f2
( n

n

) = 1
n

∑n
i=1 x2p

i − 1 ≥ 0,the inequality x2p
1 + · · · +

x2p
n ≥ n implies that �2(λ) ≥ 0 (λ > 0). The reverse implication is obvious. �
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PROPOSITION 3.3. Let

�p = {(x1, . . . , xn) ∈ �
(n)
+ : T(x1, . . . , xn) is absolute p-paranormal}.

Then ⋂
p>0

�p = {(x1, . . . , xn) : x1 · · · xn ≥ 1}.

Proof. Let (x1, . . . , xn) ∈ ⋂
p>0 �p. Then it follows from Theorem 3.2 that

x2p
1 + · · · + x2p

n ≥ n (3.1)

for p > 0. Note that xi > 0 (1 ≤ i ≤ n) (because (3.1) holds for all p > 0). Since

xk ≥
n −

∑
1≤i≤n,i �=k

x2p
i


1
2p

, (3.2)

then, by letting p → 0 in the inequality of (3.2), we have that

xk ≥ 1
x1 · · · xk−1 · xk+1 · · · xn

.

Conversely, consider the vector (x1, . . . , xn) in �
(n)
+ satisfying x1 · · · xn ≥ 1. Then

x2p
1 + · · · + x2p

n

n
≥ (

x2p
1 · · · x2p

n

) 1
n ≥ 1 for all p > 0,

and hence x2p
1 + · · · + x2p

n ≥ n for all p > 0. �
PROPOSITION 3.4. For p ∈ (0,∞), the following assertions are equivalent:
(i) T(x1, . . . , xn) is absolute p-paranormal;

(ii) T(x1, . . . , xn) is p-quasihyponormal;
(iii) T(x1, . . . , xn) is p-paranormal;
(iv) T(x1, . . . , xn) is A(p)-operator;
(v) x2p

1 + · · · + x2p
n ≥ n (xi ≥ 0, 1 ≤ i ≤ n).

In particular, T(x1, . . . , xn) is 1/2-paranormal if and only if T(x1, x2, . . . , xn) is
w-hyponormal.

Proof. For brevity, we denote T = T(x1, . . . , xn). Then, according to the definition
of p-quasihyponormality, we have

T is p-quasihyponormal ⇐⇒ T∗{(T∗T)p − (TT∗)p}T ≥ 0

⇐⇒ CD2pC − C =
(

1
n

n∑
i=1

x2p
i − 1

)
C ≥ 0

⇐⇒ x2p
1 + · · · + x2p

n ≥ n.

Observe that T is p-paranormal if and only if U|T |p = T(xp
1, . . . , xp

n) is paranormal
(i.e., absolute-1-paranormal), which is equivalent to the condition x2p

1 + · · · + x2p
n ≥ n
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Figure 3.2

by Theorem 3.2. Finally, a proof similar to that of Theorem 3.1 shows that assertions
(iv) and (v) are equivalent. �

COROLLARY 3.5. LetN (n) be the set of (x1, . . . , xn) in �
(n)
+ such that T(x1, x2, . . . , xn)

is normaloid. Then

N (n)\
⋃
p>0

�p = [0, 1] × · · · × [0, 1]︸ ︷︷ ︸
(n)

\(1, . . . , 1︸ ︷︷ ︸
(n)

).

Proof. Use the proof of [11, Proposition 2.8] and Proposition 3.4. �

EXAMPLE 3.6. (Continued from Example 2.6). Recall that T(x, y, z) is p-
paranormal if and only if x2p + y2p + z2p ≥ 3 and x, y, z ≥ 0. The following
Figure 3.2 shows the regions for p-paranormality.

REMARK 3.7. Let

I �= A =
(

a b

b c

)

be an otherwise arbitrary 2 × 2 positive matrix with entries of complex numbers. If
A2 = A, then Ap = A for all p > 0. Hence

Ap = A for all p > 0 ⇐⇒ |b|2 = a(1 − a) & a + c = 1. (3.4)

(The case of a = b = c = 1/2 is special.) If we take a > 0, c = 1 − a ≥ 0, and
b ∈ {a(1 − a)eiθ : 0 ≤ θ ≤ 2π}, by (3.4) we have that T(x, y) is p-hyponormal if and
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only if

y ≥
(

c(x2p − a) + |b|2
x2p − a

) 1
2p

and x > a
1
2p .

More generally, we may consider a k × k matrix A = (aij ). If we take an arbitrary aij

satisfying A2 = A (which implies Ap = A for any p > 0), our technique introduced in
this paper may provide a lot of examples to show that the classes of such operators
discussed in this paper are distinct. We leave this work to the interested readers.
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