INTEGRAL MEANS OF FUNCTIONS WITH POSITIVE REAL PART

F. HOLLAND AND J. B. THOMEY

1. We denote by \mathscr{P} the class of functions of the form

$$
h(z)=1+\sum_{n=1}^{\infty} c_{n} z^{n}
$$

that are regular in $\Delta=\{z:|z|<1\}$ and satisfy $\operatorname{Re} \mathrm{h}(z)>0$ there. For $0 \leqq r<1$, we write

$$
\begin{aligned}
& I_{p}(r)=I_{p}(r, h)=\frac{1}{2} \pi \int_{0}^{2 \pi}\left|h\left(r e^{i \theta}\right)\right|^{p} d \theta, \quad(p>0), \\
& I(r)=I_{1}(r), \\
& A(r)=A(r, h)=\sup \{\operatorname{Re} h(z):|z|=r\} \\
& M(r)=M(r, h)=\sup \{|h(z)|:|z|=r\}
\end{aligned}
$$

We note that, for $h \in \mathscr{P}$, the inequality

$$
M(r) \leqq \frac{1+r}{1-r}
$$

is classical.
Let now $h \in \mathscr{P}$ and write $h(z)=u(r, \theta)+i v(r, \theta)$ for $z=r e^{i \theta} \in \Delta$. Then

$$
\begin{aligned}
I(r) \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi} u(r, \theta) d \theta+\frac{1}{2 \pi} \int_{0}^{2 \pi}|v(r, \theta)| d \theta & \\
& =1+\frac{1}{2 \pi} \int_{0}^{2 \pi}|v(r, \theta)| d \theta
\end{aligned}
$$

by the normalization $h(0)=1$. Furthermore, by Zygmund's theorem [1, p. 58],

$$
\begin{aligned}
\int_{0}^{2 \pi}|v(r, \theta)| d \theta \leqq \int_{0}^{2 \pi} u(r, \theta) \log ^{+} u(r, \theta) d \theta & +6 \pi e \\
& \leqq 2 \pi \log A(r)+6 \pi e
\end{aligned}
$$

since $\log ^{+} u(r, \theta)=\max \{\log u(r, \theta), 0\} \leqq \log A(r)$, as $A(r) \geqq 1$. We have thus proved the first part of our opening theorem.

Theorem 1. Let $h \in \mathscr{P}$ and $0 \leqq r<1$. Then

$$
I(r) \leqq \log A(r)+B
$$

and, for $p>1$,

$$
\begin{equation*}
I_{p}(r) \leqq B_{p} A(r)^{p-1} \tag{1.1}
\end{equation*}
$$

(Throughout this paper B, C, K denote positive absolute constants and B_{p}, C_{p} denote positive constants which depend only on p, but the constant denoted by each symbol may differ at different occurrences.)

To prove the second part of Theorem 1 we need only note that, by M. Riesz's theorem [1, p. 54], for $p>1$,

$$
\int_{0}^{2 \pi}\left|h\left(r e^{i \theta}\right)\right|^{p} d \theta \leqq B_{p} \int_{0}^{2 \pi} u(r, \theta)^{p} d \theta \leqq 2 \pi B_{p} A(r)^{p-1}
$$

For $h \in \mathscr{P}$, therefore,

$$
\begin{align*}
& I(r)=O(\log A(r)) \tag{1.2}\\
& I_{p}(r)=O\left(A(r)^{p-1}\right), p>1
\end{align*}
$$

as $r \rightarrow 1$. For $0<p<1$, of course, it is well known that

$$
I_{p}(r)=O(1), r \rightarrow 1
$$

for such h. The question now arises whether, in some sense, the relations in (1.2) are best possible. One might ask, for instance, whether there is a positive function ϕ on (0,1) such that if $h \in \mathscr{P}$ and $A(r)=O(\phi(r))$, then

$$
I(r)=o(\log A(r))
$$

as $r \rightarrow 1$. Using examples constructed by Salem, we prove a general theorem which implies that the answer to this question is in the negative.

Theorem 2. Let ϕ be any positive function continuous and increasing to infinity on $[0,1)$ such that $(1-r) \phi(r)$ decreases on $[0,1)$. Then there is " function $f \in \mathscr{P}$ with $A(r)=0(\phi(r)), r \rightarrow 1$, for which
(1.3) $\quad \liminf _{r \rightarrow 1} \frac{I(r)}{\log \phi(r)}>0$,
and
(1.4) $\liminf _{r \rightarrow 1} \frac{I_{p}(r)}{\phi(r)^{p-1}}>0$
for each $p>1$.
Remark. The hypothesis that $(1-r) \phi(r)$ is decreasing is not an unnatural one here since it can be shown (cf. Lemma 5 below) that, for $h \in \mathscr{P},(1-r)(1+r)^{-1} A(r)$ is a decreasing function of r on $[0,1)$.

The proof of Theorem 2 is given in Sections 2 and 3 but we conclude this section by noting that the first part of the theorem extends a recent result due to Lewis [6]. This author has shown that, given any number ϵ in $(0,1)$, there exists a function $h \in \mathscr{P}$ satisfying $M(r)=O\left((1-r)^{-\epsilon}\right)$ for which
(1.5) $\liminf _{r \rightarrow 1} \frac{I(r)}{\log 1 /(1-r)}>0$.

Hayman [4] had earlier established a similar result but with, in (1.5), lim sup in place of lim inf. If we take $\phi(r)=(1-r)^{-t}$ above and note that $A(r)=O\left((1-r)^{-\epsilon}\right)$ implies $M(r)=O\left((1-r)^{-\epsilon}\right)$ for $h \in \mathscr{P}$ (this follows easily from (5.7) below, for example), then we see that (1.5) is a special case of (1.3).
2. Proof of theorem 2. In this section we state and prove two lemmas that we need.

Lemma 1. Let $h \in \mathscr{P}$ and write $u(r, \theta)=\operatorname{Re} h\left(r e^{i \theta}\right)$. Then, for $p>1$,

$$
\begin{align*}
& \int_{0}^{2 \pi} u(r, \theta)^{p} d \theta \log \left\{\frac{1}{2 \pi} \int_{0}^{2 \pi} u(r, \theta)^{p} d \theta\right\} \tag{2.1}\\
& \leqq(p-1) \int_{0}^{2 \pi} u(r, \theta)^{p} \log u(r, \theta) d \theta
\end{align*}
$$

for $0 \leqq r<1$.
Proof. Fix $r \in[0,1)$ and, for $h \in \mathscr{O}$, set

$$
\mu_{r}(\theta)=\frac{1}{2 \pi} \int_{0}^{\theta} u(r, t) d t
$$

for $\theta \in[0,2 \pi]$. Then μ_{r} is an increasing function of θ and $\mu_{r}(2 \pi)-$ $\mu_{r}(0)=1$. Hence, if

$$
J_{p}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(r, \theta)^{p} d \theta=\int_{0}^{2 \pi} u(r, \theta)^{p-1} d \mu_{r}(\theta)
$$

then $[9, \mathrm{p} .73]\left[J_{p}(r)\right]^{1:(p-1)}$ is an increasing function of p in $(1, \infty)$. Consequently,

$$
\frac{d}{d p}\left\{\frac{1}{p-1} \log J_{p}(r)\right\} \geqq 0
$$

for $p>1$, from which it easily follows that

$$
\frac{1}{p-1} J_{p}(r) \log J_{p}(r) \leqq \frac{d}{d p} J_{p}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} u(r, \theta)^{p} \log u(r, \theta) d \theta
$$

and we have proved Lemma 1.

Some preliminaries are necessary before we can state our second lemma. If $h \in \mathscr{P}$, then, by the Herglotz representation theorem, there is a function μ increasing on ($-\infty, \infty$) satisfying

$$
\mu(t+2 \pi)-\mu(t)=1
$$

for $t \in(-\infty, \infty)$, such that
(2.2) $\quad h(z)=\int_{0}^{2 \pi} \frac{e^{i t}+z}{e^{i \bar{t}}-z} d \mu(t)$
for $z \in \Delta$. Then, for $0 \leqq r<1$,
(2.3) $\operatorname{Re} h\left(r e^{i \theta}\right)=\int_{0}^{2 \pi} P(r, \theta-t) d \mu(t)$
where

$$
P(r, \psi)=\frac{1-r^{2}}{1-2 r \cos \psi+r^{2}}=\frac{1-r^{2}}{(1-r)^{2}+4 r \sin ^{2} \frac{1}{2} \psi}
$$

is the Poisson kernel. We note that, for $|\theta-t|<\pi$ and $\frac{1}{2} \leqq r<1$,

$$
\begin{equation*}
P(r, \theta-t) \leqq \frac{1-r^{2}}{(1-r)^{2}+4 r \pi^{-2}(\theta-t)^{2}} \leqq \frac{\pi^{2}(1-r)}{(1-r)^{2}+(\theta-t)^{2}} . \tag{2.4}
\end{equation*}
$$

Finally, for $\delta>0$, we write

$$
\omega(\delta, \mu)=\sup \{\mu(\theta+\delta)-\mu(\theta): 0 \leqq \theta<2 \pi\}
$$

so that $\omega(\delta, \mu)$ is the "modulus of continuity" of μ.
Lemma 2. Let $h \in \mathscr{P}$ and μ be related as in (2.2). Then

$$
A(r, h) \leqq K \omega(1-r, \mu) /(1-r)
$$

for $\frac{1}{2} \leqq r<1$.
Proof. For $m=0,1,2, \ldots$, write

$$
F_{m}=F_{m}(r, \theta)=\{t: m(1-r) \leqq|\theta-t|<(m+1)(1-r)\} .
$$

Then, for $r \in\left[\frac{1}{2}, 1\right)$ and $\theta \in[0,2 \pi]$,

$$
\begin{aligned}
& \operatorname{Re} h\left(r e^{i \theta}\right) \leqq \int_{\theta \rightarrow \pi}^{\theta+\pi} \frac{\pi^{2}(1-r)}{(1-r)^{2}+(\theta-t)^{2}} d \mu(t) \\
& \leqq \pi^{2}(1-r) \sum_{m=0}^{\infty} \int_{F_{m, n}} \frac{d \mu(t)}{(1-r)^{2}+(\theta-t)^{2}} \\
& \\
& \quad \leqq \frac{2 \pi^{2} \omega(1-r, \mu)}{1-r} \sum_{m=0}^{\infty} \frac{1}{1+m^{2}}=K \frac{\omega(1-r, \mu)}{1-r}
\end{aligned}
$$

by (2.3) and (2.4). This proves Lemma 2.
3. As we have already said in Section 1, our proof of Theorem 2 is based on a result of Salem [10] which we now state as

Lemma 3. Let the function ψ be defined and increasing on $(0, \infty)$ and satisfy $\psi(\delta) / \delta \rightarrow \infty$ as $\delta \rightarrow 0$. Suppose also that, for every integer $n>1$ and $\delta \in(0, \infty), \psi(n \delta) \leqq n \psi(\delta)$. Then there exists a function F defined and increasing in $(-\infty, \infty)$ with $F(t+2 \pi)-F(t)=1$ for $t \in(-\infty, \infty)$ whose modulus of continuity $\omega(\delta, F)$ satisfies
(3.1) $\omega(\delta, F) \leqq \psi(\delta), 0<\delta \leqq 2 \pi$,
and such that if

$$
c_{n}=\int_{0}^{2 \pi} e^{-i n t} d F(t), \quad n \geqq 1
$$

then
(3.2) $\quad \sum_{k=1}^{n}\left|c_{k}\right|^{2} \geqq \operatorname{Cin} \psi\left(\frac{1}{n}\right), \quad n \geqq 1$.

Suppose now that ϕ is the function defined in Theorem 2 and set

$$
\psi(\delta)= \begin{cases}\delta \phi(1-\delta), & 0<\delta<1 \\ \delta \phi(0), & \delta \geqq 1\end{cases}
$$

Then it is easily verified that ψ satisfies the conditions of Lemma 3. Let F be the corresponding function obtained in the lemma and write

$$
f(z)=\int_{0}^{2 \pi} \frac{e^{i t}+z}{e^{i t}-z} d F(t)=1+2 \sum_{n=1}^{\infty} c_{n} z^{n}, \quad z \in \Delta .
$$

Then $f \in \mathscr{P}$ and, by Lemma 2 and (3.1),

$$
\begin{equation*}
A(r, f) \leqq K \frac{\omega(1-r, F)}{1-r} \leqq K \frac{\psi(1-r)}{1-r}=K \phi(r) \tag{3.3}
\end{equation*}
$$

for $\frac{1}{2} \leqq r<1$. We show next that

$$
\begin{equation*}
I_{2}(r, f) \geqq B \phi(r), \frac{1}{2} \leqq r<1 \tag{3.4}
\end{equation*}
$$

Let $r \in\left(\frac{1}{2}, 1\right)$ and let n be the integer that $1-1 / n \leqq r<1-$ $1 /(n+1)$. Then, using Parseval's theorem and (3.2),

$$
\begin{array}{r}
I_{2}(r, f)=1+4 \sum_{m=1}^{\infty}\left|c_{m}\right|^{2} r^{2 m} \geqq 4 \sum_{m=1}^{n+1}\left|c_{m}\right|^{2}\left(1-\frac{1}{n}\right)^{2 m} \geqq K \sum_{m=1}^{n+1}\left|c_{m}\right|^{2} \\
\geqq B(n+1) \psi\left(\frac{1}{n+1}\right)=B \phi\left(1-\frac{1}{n+1}\right) \geqq B \phi(r)
\end{array}
$$

since ϕ is increasing. This proves (3.4), and (1.4) follows for the case $p=2$.

We next use (3.4) to establish (1.4) for arbitrary $p>1$. By Holder's inequality, with $1 / q=1-1 / p$ and $p>1$, we have

$$
I_{2}(r) \leqq I_{p}(r)^{1 / p} I_{q}(r)^{1 / q}
$$

and so, by (3.4), (1.1) and (3.3),

$$
B \phi(r) \leqq I_{p}(r)^{1 / p} C_{p} \phi(r)^{1 / p}
$$

i.e.,

$$
I_{\mathcal{D}}(r) \geqq B_{p} \phi(r)^{p-1}
$$

for $\frac{1}{2} \leqq r<1$. This clearly gives (1.4).
It remains only to show that (1.3) holds. Write $u(r, \theta)=\operatorname{Re} f(z)$ for $z=r e^{i \theta} \in \Delta$. Then by (2.1), with $p=2$, (3.4) and (3.3),

$$
\begin{aligned}
& B \phi(r) \log B \phi(r) \leqq \int_{0}^{2 \pi} u(r, \theta)^{2} \log u(r, \theta) d \theta \\
& \quad \leqq \int_{0}^{2 \pi} u(r, \theta)^{2} \log ^{+} u(r, \theta) d \theta \leqq K \phi(r) \int_{0}^{2 \pi} u(r, \theta) \log ^{+} u(r, \theta) d \theta,
\end{aligned}
$$

that is,

$$
\begin{equation*}
\int_{0}^{2 \pi} u(r, \theta) \log ^{+} u(r, \theta) d \theta \geqq C \log B \phi(r), \tag{3.5}
\end{equation*}
$$

for $\frac{2}{2} \leqq r<1$. But, by a converse [1, p. 60] to the theorem of Zygmund used in Section 1, it follows that, since $f \in \mathscr{P}$,

$$
\begin{array}{r}
\int_{0}^{2 \pi} u(r, \theta) \log ^{+} u(r, \theta) d \theta \leqq \frac{\pi}{2} \int_{0}^{2 \pi}\left|\operatorname{Im} f\left(r e^{i \theta}\right)\right| d \theta+K \\
\\
\leqq \frac{\pi}{2} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right| d \theta+K
\end{array}
$$

for $0 \leqq r<1$, and this, together with (3.5), clearly implies (1.3). The proof of Theorem 2 is now complete.
4. Some refinements of theorems 1 and 2. The function F constructed by Salem in [10] to establish Lemma 3 is a singular function, so it is natural to ask whether Theorem 2 can be proved with a function $f \in \mathscr{P}$ which is 'generated', according to (2.2), by an increasing function μ which is absolutely continuous. The subclass of \mathscr{F} of such functions will be denoted by $\mathscr{P}_{\text {ac }}$. That the answer to the question is in the negative, at least in a special case, has already been proved by Keogh [5] who has shown, essentially, that if $h \in \mathscr{P}_{\mathrm{ac}}$, then

$$
I(r)=o\left(\log \frac{1}{1-r}\right)
$$

as $r \rightarrow 1$. We prove here the following more complete result.
Theorem 3. Let $h \in \mathscr{P}_{\mathrm{ac}}$ and suppose that $A(r, h) \rightarrow \infty$ as $r \rightarrow 1$. Then, as $\gamma \rightarrow 1$,
(4.1) $\quad I(r, h)=o(\log A(r, h))$
and, for each $p>1$,

$$
\begin{equation*}
I_{p}(r, h)=o\left(A(r, h)^{p-1}\right) \tag{4.2}
\end{equation*}
$$

Proof. To prove (4.1) it is enough, by Zygmund's theorem again, to show that

$$
\int_{0}^{2 \pi} u(r, \theta) \log ^{+} u(r, \theta) d \theta=o(\log A(r, h))
$$

where $u(r, \theta)=\operatorname{Re} h\left(r e^{i \theta}\right)$. Let μ be the absolutely continuous increasing function related to h by (2.2). Then (as in Section 2)

$$
u(r, \theta)=\int_{0}^{2 \pi} P(r, \theta-t) d \mu(t)=\int_{0}^{2 \pi} P(r, \theta-t) g(t) d t
$$

for some $g \in L[0,2 \pi]$, and it is familiar from harmonic function theory that we then have
(4.3) $\lim _{t \rightarrow 1} u(r, \theta)=g(\theta)$
a.e. in $[0,2 \pi]$. We write next

$$
\begin{aligned}
\int_{0}^{2 \pi} u(r, \theta) \log ^{+} u(r, \theta) d \theta= & \int_{0}^{2 \pi}\left[\log ^{+} u(r, \theta)\right] g(\theta) d \theta \\
& +\int_{0}^{2 \pi}\left[\log ^{+} u(r, \theta)\right]\{u(r, \theta)-g(\theta)\} d \theta
\end{aligned}
$$

$$
=J_{1}+J_{2}, \text { say }
$$

Now $\log ^{+} u(r, \theta)\{\log A(r)\}^{-1}$ is uniformly bounded in Δ and, because of (4.3), tends to 0 a.e. in $[0,2 \pi]$ as $r \rightarrow 1$. Hence, by Lebesgue's dominated convergence theorem,

$$
J_{1}\{\log A(r)\}^{-1} \rightarrow 0 \text { as } r \rightarrow 1
$$

Also

$$
\begin{equation*}
J_{2}\{\log A(r)\}^{-1} \leqq B \int_{0}^{2 \pi}|u(r, \theta)-g(\theta)| d \theta \tag{4.4}
\end{equation*}
$$

and, since, trivially,

$$
\int_{0}^{2 \pi} u(r, \theta) d \theta \rightarrow \int_{0}^{2 \pi} g(\theta) d \theta \quad \text { as } r \rightarrow 1
$$

it follows from (4.3) (see, for example, [1, p. 21]) that the integral on the right of (4.4) tends to 0 as $r \rightarrow 1$. This completes the proof of (4.1).

The relation (4.2) can be obtained by a similar argument or it can be deduced from (4.1) by means of Lemma 1 ; in either case the details are easy and are left to the reader.

Both (4.1) and (4.2) are best possible but before proving this we mention another result of Keogh [loc. cit.]. The result is stated by the author in terms of starlike functions but it can be given an equivalent formulation for $\mathscr{P}_{a c}$ as follows: given any positive function η, defined in $[0,1)$ with $\eta(r) \rightarrow 0(r \rightarrow 1)$, there exists $h \in \mathscr{P}_{\text {ac }}$ such that

$$
\sup \left\{\left|\int_{0}^{\tau} \frac{\operatorname{Reh}\left(\rho e^{i \theta}\right)-1}{\rho} d \rho\right|: z=r e^{i \theta} \in \Delta\right\}<\infty
$$

and

$$
\limsup _{r \rightarrow 1} \frac{I(r)}{\eta(r) \log 1 /(1-r)}>0 .
$$

We strengthen and extend this result by proving
Theorem 4. Let ϕ be as in Theorem 2 and let η be any positive function defined in $[0,1)$ with $\eta(r) \rightarrow 0(r \rightarrow 1)$. Then for $p \geqq 1$, there are functions $g_{p} \in \mathscr{P}_{\mathrm{ac}}$ satisfying $A\left(r, g_{p}\right)=O(\phi(r)), r \rightarrow 1$, such that
(4.5) $\liminf _{r \rightarrow 1} \frac{I\left(r, g_{1}\right)}{\eta(r) \log \phi(r)}>0$
and
(4.6) $\liminf _{r \rightarrow 1} \frac{I_{p}\left(r, g_{p}\right)}{\eta(r) \phi(r)^{p-1}}>0$
for each $p>1$.
This theorem will be shown to be a consequence of Lemma 3 and the following lemma.

Lemma 4. Let $f(z)=1+2 \sum_{n=1}^{\infty} c_{n} z^{n} \in P$ and let $\left(\lambda_{n}\right)_{0}$, where $\lambda_{0}=1$, be a convex sequence of positive numbers which converges to 0 . Let

$$
g(z)=1+2 \sum_{n=1}^{\infty} \lambda_{n} c_{n} z^{n}, \quad z \in \Delta .
$$

Then $g \in \mathscr{P}_{\mathrm{ac}}$ and $A(r, g) \leqq A(r, f)$ for $0 \leqq r<1$.
Proof. Since, for $0 \leqq r<1,\left(\lambda_{n} r^{n}\right)_{0}{ }^{\text {o }}$ is a convex sequence which converges to 0 , it follows $[\mathbf{1 2}, \mathrm{p} .183]$ that

$$
\operatorname{Re}\left\{\frac{1}{2}+\sum_{n=1}^{\infty} \lambda_{n} z^{n}\right\} \geqq 0
$$

for $z=r e^{i \theta} \in \Delta$. Hence, by (2.2),

$$
\lambda_{n}=\int_{0}^{2 \pi} e^{-i n t} d \mu(t)
$$

for some function μ increasing on $[0,2 \pi]$ with $\mu(2 \pi)-\mu(0)=1$. Thus, for $z \in \Delta$,

$$
g(z)=\int_{0}^{2 \pi}\left\{1+2 \sum_{n=1}^{\infty} c_{n} r^{n} e^{i n(\theta-t)}\right\} d \mu(t)=\int_{0}^{2 \pi} f\left(r e^{i(\theta-t)}\right) d \mu(t)
$$

and so $g \in \mathscr{O}$ and $A(r, g) \leqq A(r, f)$. We next use the fact $[12$, p. 179$]$ that if $\frac{1}{2} a_{0}+\sum_{1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right)$ is a Fourier-Stieltjes series and $\left(\lambda_{n}\right)_{0}^{\infty}$ is a convex sequence tending to 0 , then $\frac{1}{2} a_{0} \lambda_{0}+\sum_{1}^{\infty}\left(a_{n} \cos n x+\right.$ $\left.b_{n} \sin n x\right) \lambda_{n}$ is a Fourier series. This result implies here that there is a function $G \in L[0,2 \pi]$ such that

$$
\lambda_{n} c_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} e^{-i n t} G(t) d t \quad(n \geqq 0)
$$

(where $c_{0}=1$), from which we obtain

$$
g(z)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \frac{e^{i t}+z}{e^{i l}-z} G(t) d t .
$$

Since

$$
G(t)=\lim _{r \rightarrow 1} \operatorname{Re} g\left(r e^{i t}\right) \geqq 0
$$

a.e. on $[0,2 \pi]$, it follows that $g \in \mathscr{P}_{\text {ac }}$. This completes the proof of the lemma.

Proof of Theorem 4 . For $n \geqq 1$, let

$$
\epsilon_{n}=\sup \left\{\eta(r)^{1 / 2}: 1-1 / n \leqq r \leqq 1-1 /(n+1)\right\}
$$

Then $\epsilon_{n} \rightarrow 0$ as $n \rightarrow \infty$. Let $\left(\lambda_{n}\right)_{0}{ }^{\infty}$ be a convex decreasing sequence such that $\lambda_{n+1} \geqq \epsilon_{n}(n \geqq 1)$ and $\lambda_{n} \rightarrow 0$. (Such a sequence is easily constructed.) Let $f(z)=1+2 \sum c_{n} z^{n}$ be the function defined in the proof of Theorem 2 and let

$$
g(z)=1+2 \sum_{1}^{\infty} \lambda_{n} c_{n} z^{n}, \quad z \in \Delta
$$

Then, by Lemma $4, A(r, g) \leqq A(r, f)=O(\phi(r))$ and $g \in \mathscr{Y}_{\text {ac }}$. Now fix $r \in(0,1)$ and choose n such that $1-1 / n<r \leqq 1-1 /(n+1)$. By the argument used to prove (3.4),

$$
I_{2}(r, g) \geqq B \lambda_{n+1}^{2} \phi(r) \geqq B \eta(r) \phi(r)
$$

and it is clear that (4.6) follows in the case $p=2$ on taking $g_{2}=g$.
The method used in Section 3 to deduce (1.4) from (3.4) now gives

$$
I_{p}\left(r, g_{2}\right) \geqq B_{p} \eta(r)^{p} \phi(r)^{p-1}\left(\frac{1}{2} \leqq r<1\right)
$$

for every $p>1$, and it is clear from this that a $g_{p} \in \mathscr{P}_{\mathrm{ac}}$ exists for which (4.6) holds for all such p.

Finally, by the argument used to prove (1.3),

$$
I\left(r, g_{2}\right) \geqq C \eta(r) \log [B \eta(r) \phi(r)]
$$

and assuming, as we may, that $\eta(r) \geqq K \phi(r)^{-1 / 2}$, say, for all γ sufficiently near 1 , we immediately deduce (4.5) with $g_{1}=g_{2}$. This completes the proof of Theorem 4.
5. The maximum modulus. As a consequence of Theorem 1 we have, for $h \in \mathscr{P}$,

$$
I(r) \leqq \log M(r)+A
$$

and

$$
I_{p}(r) \leqq B_{p} M(r)^{p-1}(p>1)
$$

for $0 \leqq r<1$. We now turn our attention, in this final section, to the problem of obtaining lower estimates for the integral means in terms of the maximum modulus. We begin by deriving a simple inequality of this type for functions that are merely regular in Δ.

Suppose, initially, that $f(z)=\sum_{0}^{\infty} a_{n} z^{n}$ is regular in Δ and continuous in the closure $\bar{\Delta}$. For $0 \leqq r<1$, we have

$$
M(r, f) \leqq \sum_{0}^{\infty}\left|a_{n}\right| r^{n} \leqq\left(\sum_{0}^{\infty}\left|a_{n}\right|^{2}\right)^{1 / 2}\left(\sum_{0}^{\infty} r^{2 n}\right)^{1 / 2}
$$

and so, by Parseval's theorem,

$$
\left(1-r^{2}\right) M(r, f)^{2} \leqq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{2} d \theta
$$

Fix now $r \in(0,1)$ and let g be a function regular in Δ. Let the zeros of g in $\{z:|z| \leqq r\}$ be, with due account of multiplicity, $z_{1}, z_{2}, \ldots z_{n}$ and write

$$
B_{n}(z)=\prod_{k=1}^{n} \frac{z-\bar{z}_{k}}{1-\bar{z}_{k} z}, \quad z \in \bar{\Delta},
$$

Then $\left|B_{n}(z)\right|<1$ for $z \in \Delta$ and $\left|B_{n}(z)\right|=1$ when $|z|=1$. Now write

$$
F(z)=g(r z) B_{n}(z)^{-1}, z \in \Delta .
$$

Then F is regular and non-zero in Δ and continuous in Δ and so, given any $p>0$, we can define a regular branch of $F^{p / 2}$ in Δ which is also continuous on $\bar{\Delta}$. Hence, using (5.1) with $f=F^{p / 2}$,

$$
\begin{aligned}
\left(1-r^{2}\right) M\left(r^{2}, g\right)^{p} \leqq\left(1-r^{2}\right) M\left(r, F^{p / 2}\right)^{2} \leqq & \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|F\left(e^{i \theta}\right)\right|^{p} d \theta \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right|^{p} d \theta
\end{aligned}
$$

that is,
(5.2) $\left(1-r^{2}\right) M\left(r^{2}, g\right)^{p} \leqq I_{p}(r, g)$
for $p>0$.
This inequality is sharp for each $p>0$, as the example $g(z)=$ $(1-z)^{-2 / p}$ shows, and is essentially a known result. The case $p=1$, for instance, is proved in [7] and the general result, in however a less precise form, is obtained in [2]. Although (5.2) is sharp, it can be improved in one direction to yield the following more delicate result: if $: 8$ is regular in Δ, then
(5.3) $\int_{0}^{r} M(t, g)^{p} d t \leqq r \pi I_{p}(r, g)$
for $p>0$. A proof of this result can be found in [8]; but see also [3]. We note also that if, for some $p>0, g$ belongs to the Hardy class H^{p}, i.e., if

$$
\sup _{0 \leqq r<1} I_{p}(r, g)<\infty,
$$

then it is known $[3]$, and is, in fact, an easy consequence of (5.3), that in this case (5.2) can be improved to

$$
\begin{equation*}
M(r, g)=o\left((1-r)^{-1 / p}\right), r \rightarrow 1 \tag{5.4}
\end{equation*}
$$

For the class \mathscr{P}, of course, inequalities (5.2) and (5.4) are of interest only when $p \geqq 1$, since (as already noted in Section 1) $h \in \mathscr{P}$ implies $\left.M(r, h)=O\left((1-r)^{-1}\right)\right), r \rightarrow 1$. In the case $p=1$ both (5.2) and ($\left.\overline{0.4}\right)$ can be improved for the class \mathscr{P}, as we now show.

Theorem 5. Let $h \in \mathscr{P}$. Then, for $O<r<1$,

$$
\begin{equation*}
M(r, h) \leqq-\frac{2 r \pi I(r, h)}{(1-r) \log 1 /(1-r)} \tag{5.5}
\end{equation*}
$$

If, further, $h \in H^{1}$, then

$$
\begin{equation*}
M(r, h)=o\left(\left[(1-r) \log \frac{1}{1-r}\right]^{-1}\right), \quad r \rightarrow 1 \tag{5.6}
\end{equation*}
$$

We show that this theorem is a consequence of inequality (5.3) and the following lemma.

Lemma 5. Let $h \in \mathscr{P}$. Then

$$
\frac{1-r}{1+r} M(r, h)
$$

is a decreasing function of r on $[0,1)$.
Proof. For $h \in \mathscr{P}$,

$$
\begin{equation*}
\left|h^{\prime}(z)\right| \leqq \frac{2}{1-r^{2}} \operatorname{Re} h(z), \quad z \in \Delta \tag{5.7}
\end{equation*}
$$

(This classical inequality follows easily from (2.2)). Fix $\theta \in[0,2 \pi]$. Then, for $0<r<1$,

$$
\frac{\partial}{\partial r} \frac{1-r}{1+r}\left|h\left(r e^{i \theta}\right)\right|=\frac{1-r}{r(1+r)}|h(z)|\left\{\operatorname{Re} \frac{z h^{\prime}(z)}{h(z)}-\frac{2 r}{1-r^{2}}\right\}\left(z=r e^{i \theta}\right)
$$

$\leqq 0$ by (5.7). Hence $[(1-r) /(1+r)]\left|h\left(r e^{i \theta}\right)\right|$ decreases on $[0,1)$ for each fixed $\theta \in[0,2 \pi]$. Let now $0<r_{1}<r_{2}<1$ and choose θ_{0} such that

$$
\left|h\left(r_{2}{ }^{i \theta \theta}\right)\right|=M\left(r_{2}, h\right) .
$$

Then

$$
\begin{aligned}
& \frac{1-r_{2}}{1+r_{2}} M\left(r_{2}\right)=\frac{1-r_{2}}{1+r_{2}}\left|h\left(r_{2} e^{i \theta_{0}}\right)\right| \leqq \frac{1-r_{1}}{1+r_{1}}\left|h\left(r_{1} e^{i \theta_{0}}\right)\right| \\
& \leqq \frac{1-r_{1}}{1+r_{1}} M\left(r_{1}\right)
\end{aligned}
$$

and we have established Lemma 5 .
We now prove Theorem 5. By (5.3), with $p=1$,

$$
\begin{aligned}
r \pi I(r, h) \geqq \int_{0}^{r} M(t, h) d t \geqq \frac{1-r}{1+r} M(r, h) \int_{0}^{r} \frac{1+t}{1-t} d t & \\
& \geqq \frac{1}{2}(1-r) M(r, h) \log \frac{1}{1-r},
\end{aligned}
$$

where we have used Lemma is. This proves (5.5).
If $h \in H^{1}$ then, by (5.3) again,

$$
\int_{0}^{1} M(r, h) d r<\infty
$$

and an obvious refinement of the above argument gives (5.6). We omit the details but remark that they can be found in [11] where similar arguments have been used.

Our last theorem shows that (5.6) is, in a certain sense, best possible.
Theorem 6. Let $\epsilon(r)$ be any positive function defined on $(0,1)$ such that $\epsilon(r) \rightarrow 0(r \rightarrow 1)$. Then there exists a function $h \in \mathscr{P}$ such that $h \in H^{1}$ and
(5.8) $\limsup _{r \rightarrow 1} \frac{(1-r) M(r, h) \log 1 /(1-r)}{\epsilon(r)}>0$.
(A lim inf result is clearly not possible in general here because of (5.3).)
Proof. Let $\left(r_{n}\right)$ be a sequence of positive real numbers increasing to 1 such that

$$
\sum_{n=1}^{\infty} \epsilon\left(r_{n}\right)<\infty .
$$

Let

$$
A^{-1}=\sum_{n=1}^{\infty} \epsilon\left(r_{n}\right)\left(\log \frac{1}{1-r_{n}}\right)^{-1}
$$

and set

$$
\lambda_{n}=A \epsilon\left(r_{n}\right)\left(\log \frac{1}{1-r_{n}}\right)^{-1}, \quad n \geqq 1
$$

so that $\sum \lambda_{n}=1$. For $z \in \Delta$, we now define

$$
h(z)=\sum_{n=1}^{\infty} \lambda_{n} \frac{1+r_{n} z}{1-r_{n} z} .
$$

Then $h \in \mathscr{P}$ and, for $0 \leqq r<1$,

$$
I(r, h) \leqq \sum_{n=1}^{\infty} \lambda_{n} \int_{0}^{2 \pi}\left|\frac{1+r_{n} z}{1-r_{n} z}\right| d \theta \leqq B \sum_{n=1}^{\infty} \epsilon\left(r_{n}\right),
$$

so that $h \in H^{1}$. Finally, for $n \geqq 1$,

$$
M\left(r_{n}, h\right) \geqq \operatorname{Re} h\left(r_{n}\right) \geqq \lambda_{n} \frac{1+r_{n}{ }^{2}}{1-r_{n}^{2}} \geqq \frac{A \epsilon\left(r_{n}\right)}{2\left(1-r_{n}\right) \log 1 /\left(1-r_{n}\right)},
$$

and (5.8) follows. This proves Theorem 6.
Inequality (5.4) is also best possible in the same sense for the class $\mathscr{\psi}$ for each $p>1$. This can be proved using examples similar to those constructed in the proof of Theorem 6 above. The details are left to the reader.

References

1. P. L. Duren, Thoory of H^{p} spaces (Academic Press, 1970).
2. G. H. Hardy and J. E. Littlewood, Theorems concerning mean acalues of thatytic or harmonic functions, Quart. J. Math. 12 (1941), 221-256.
3. -.-Some properties of fractional integrals II, Math. Z. .; 1931 (1931, 403-439.
4. IV. K. Hayman, On functions with positive real part, J. London Math. Soc. . 36 (1961), 35 -48.
5. F. R. Keogh, Some theorems on conformal mapping of bounded star-shaped domains, Proc. London Math. Soc. ! (1959), 481-491.
6. J. L. Lewis, Note on an arc length problem, J. London Math. Soc. 12 (1976), 469-474.
7. A. J. Macintyre and IV. W. Rugosinski, Some clementary inequalities in funthon theory, Edinburgh Math. Notes 35 (1945), 1-3.
8. J. W. Noonan and I. K. Thomas, The integral means of regular functions, J. Londen Math. Soc. 9 (1975), 557-560.
9. W. Rudin, Real and complex analysis, Second Edition (McGraw-Hill, 1974).
10. R. Salem, On a theorem of Zygmund, Duke Math. J. 10 (1943), 23-31.
11. J. B. Twomey, On bounded slarlike functions, J. Analyse Mathematique 2.4 (1971), 191-204.
12. A. Zygmund, Trigonometric series, Vol. I. (University Press, 1959).

University College,
Cork, Ireland

