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INTEGRAL MEANS OF FUNCTIONS 
WITH POSITIVE REAL PART 

F. HOLLAND AND J. B. TWOMEV 

1. We denote by 3P the class of functions of the form 

oo 

h (z) = 1 + E ^ 
n = l 

that are regular in A = [z:\z\ < 1} and satisfy Re h(z) > 0 there. 
For 0 ^ r < 1, we write 

IP(r) = Ip(r, ft) = - ~ P * \h(rete)\* dO, (p > 0), 
Z7T J 0 

Hr) = / i ( r ) , 

A(r) = 4 ( r , ft) = sup {Re h(z):\z\ = r}, 

Af(r) = M(r, ft) = sup {\h(z)\: \z\ = r\. 

We note that, for ft Ç ^ , the inequality 

1 + r M(r) g 
1 - r 

is classical. 
Let now ft £ ^ and write ft(3) = u(r, 0) + iv(r, 6) for z = reie 6 A. 

Then 

1 f2T 1 f27r 

/ ( ' ) ^ ~ u(r,6)d6 + — \v(r,d)\ 

2TT J o 1 + 7 7 - KM)l«w 

by the normalization /j(0) = 1. Furthermore, by Zygmund's theorem 
[1, P. 58], 

/

' 2TT r 2TT 

|v(r, 0)|d0 g I w(r, 0) log+ w(r, 6)dd + 6ire 
0 ^ 0 

g 27rlog.4(r) + 6-ire, 

since log+w(r, 6) = max{log u(r, 6), 0} S log^4(r), as Air) > 1. We 
have thus proved the first part of our opening theorem. 

Received December 19, 1978. 

1008 

https://doi.org/10.4153/CJM-1980-078-7 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1980-078-7


INTEGRAL MEANS 1009 

T H E O R E M 1. Let h Ç 0* and 0 ^ r < 1. Then 

1(f) ^ log A(r) +B, 

and, for p > 1, 

(1.1) I,(r) £BrA(r)>-i. 

(Throughout this paper B, C, K denote positive absolute constants 
and Bp, Cp denote positive constants which depend only on p, bu t the 
constant denoted by each symbol may differ a t different occurrences.) 

T o prove the second par t of Theorem 1 we need only note that , by 
M. Riesz's theorem [1, p. 54], for p > 1, 

\h(rei6)\pdd ^ Bp I u(r, B)vdd ^ 2irBpA{r)v~\ 
o J o 

For / Î G ^ , therefore, 

(1.2) I(r) = 0(\ogA(r)), 
Iv{r) = 0(A(ry~i),p> 1, 

as r —» 1. For 0 < £ < 1, of course, it is well known tha t 

/ , ( r ) = 0 ( l ) , r - > l , 

for such h. The question now arises whether, in some sense, the relations 
in (1.2) are best possible. One might ask, for instance, whether there is 
a positive function <j> on (0, 1) such tha t if h £ 0* and A(r) — 0(<l>(r)), 
then 

I(r) =o(logA(r)) 

as r —» 1. Using examples constructed by Salem, we prove a general 
theorem which implies tha t the answer to this question is in the negative. 

T H E O R E M 2. Let </> be any positive function continuous and increasing to 
infinity on [0, 1) such that (1 — r) <£ (r) decreases on [0, 1). Then there is a 
function f Ç SP with A(r) = 0(</>(r)), r —-» 1,/or which 

I(r) 
(1.3) lim inf r ~ T 7 T > 0, 

r_>i log 0(r) 

(1.4) l i m i n f - - ^ ( ~ ) 3 T > 0 
r_>i <p(/) 

/or m d p > 1. 

Remark. The hypothesis tha t (1 — r) 0( r ) is decreasing is not an un
natural one here since it can be shown (cf. Lemma 5 below) that , for 
h Ç 0 , (1 — r ) ( l + r)~lA(r) is a decreasing function of r on [0, 1). 
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1010 F. HOLLAND AND J. B. TWOMEY 

The proof of Theorem 2 is given in Sections 2 and 3 but we conclude 
this section by noting that the first part of the theorem extends a recent 
result due to Lewis [6]. This author has shown that, given any number 
€ in (0, 1), there exists a function h Ç .^satisfying M(r) = 0((1 — r)~*) 
for which 

I(r) 
(1.5) lim inf 7—TTrT N > °-

r-,i log 1/(1 ~ r) 
Hayman [4] had earlier established a similar result but with, in (1.5), 
lim sup in place of lim inf. If we take </>(r) = (1 — r)~e above and note 
that A(r) = 0((1 - r)~e) implies M(r) = 0((1 - r)-«) for h £ SP 
(this follows easily from (5.7) below, for example), then we see that (1.5) 
is a special case of (1.3). 

2. Proof of theorem 2. In this section we state and prove two lemmas 
that we need. 

LEMMA 1. Let h t & and write u(r, 6) = Re h(reie). Then, for p > 1, 

(2.1) f** u(r, dYdO log | - - ; f** u{r, 0)pdOf 

è (P - 1) I u(r, e)v log u(r, 6)d0 
J o 

for 0 â r < 1. 

Proof. Fix r t [0, 1) and, for /z G ̂ , set 

J7T J o 
/)<& 

for 0 Ç [0, 2T]. Then (j,r is an increasing function of 6 and i±r(2ir) — 
Mr(0) = 1. Hence, if 

/P(r) = ^ " w(r, e)vdd = u(r, 9Y'ld^r(d), 

then [9, p. 73] [JP(r)]l/iP~l) is an increasing function of p in (1, GO). 
Consequently, 

é{^ï l o g y ' ( r ) } è 0 

for p > 1, from which it easily follows that 

f-~ï /p(f) log Jp(r) = dp J"(f) = 2~; J „ "(f) ̂  l0g "(r' 0)^' 
and we have proved Lemma 1. 
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Some preliminaries are necessary before we can s tate our second 
lemma. If h Ç SP, then, by the Herglotz representation theorem, there is 
a function \x increasing on (— GO , oo ) satisfying 

M ( / + 2TT) - M (0 = 1 

for / £ (— co , oo ), such tha t 

(2.2) h(z) = V""^(0 
J o e — z 

for z G A. Then, for 0 ^ r < 1, 

(2.3) Re h(reie) = I P ( r , 0 - / ) ^ ( 0 
^ 0 

where 

p / ,N = LZJL = -Lux 

i _ 2r cos ^ + r2 (1 — r)2 + 4r sin2 J ^ 

is the Poisson kernel. We note that , for \6 — t\ < w and J ^ r < 1, 

(2.4) p(,, „ - o É (r-7?-ii:^(r-7)- ^ r-^r+"i^7)- • 
Finally, for Ô > 0, we write 

co(ô, M) = sup|M(<9 + ô) - M(0) :O g (9 < 2TT} 

so tha t oo (ô, n) is the ' 'modulus of cont inui ty" of /z. 

LEMMA 2. Le/ h Ç ^ and M £>e related as in (2.2). 77^?z 

^4(r, &) g i£co(l - r, M ) / ( l - r) 

for | ^ r < 1. 

Proof. For m = 0, 1, 2, . . . , write 

FTO = i ^ ( r , 0) = [t:m(\ -r)è\0-t\<(m + 1)(1 - r )} . 

Then, for r G [J, 1) and 0 G [0, 2w], 

/

6+ir 

^ (1 — r 
(1 - r) 

(1 _ r)rpyziy*^(0 
dv(t) 

(1 - r ) 2 + (d-~t)2 

< 2TT2CO(1 - r, fi) <y l__ = ^ co(l - r , /n) 
= \ — r ~*0 l + w2 1 — r 

by (2.3) and (2.4). This proves Lemma 2. 
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3 . As we have already said in Section 1, our proof of Theorem 2 is 

based on a result of Salem [10] which we now s ta te as 

LEMMA 3. Let the function \p be defined and increasing on (0, oo ) and 
satisfy \p(ô)/ô —•» oo as 5 —» 0. Suppose also that, for every integer n > 1 
and 8 £ (0, oo ), \p(nb) rg nxj/ib). Then there exists a function F defined and 
increasing in ( — 00 ,00) with F(t + 2w) — F(t) = 1 for t £ ( — 00, 00) 
whose modulus of continuity 00 (8, F) satisfies 

(3.1) w(ô, F) g ^ ( ô ) , 0 < <5 g 2TT, 

awd SWCÂ / to if 

cn = I e-intdF(t)} n^h 
J o 

n > 1. (3.2) i : |C,|2 ^ GV^U) , 

Suppose now tha t 4> is the function defined in Theorem 2 and set 

.,.. i8<t>(l - « ) , 0 < « < 1, 
m = l « * ( 0 ) . Ô è i . 

Then it is easily verified tha t \p satisfies the conditions of Lemma 3. Let 
F he the corresponding function obtained in the lemma and write 

-rr±-dF(t) = l + 2Zcnz
n\ z^ A. 

o e — z w==i 

T h e n / Ç ^ and, by Lemma 2 and (3.1), 

(3.3) A (rj) £ K niLUlIl £ K iSLzli = K<t>(r) 
1 — r I — r 

for \ ^ r < 1. We show next t ha t 

(3.4) h(r,f) ^ B4>(r),% S r < 1. 

Let r Ç [ i 1) and let n be the integer that 1 — \/n ^ r < 1 — 
l / (n + 1). Then, using Parseval's theorem and (3.2), 

oo TO+1 / -j \ 2m n+1 

/2(r,/) = 1 + 4 2 : kml2»-4™ ^ 4 Z M 2 i - - è ^ Z M 2 

ra=l ra=l \ ^ / w = l 

since </> is increasing. This proves (3.4), and (1.4) follows for the case 
p = 2. 
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We next use (3.4) to establish (1.4) for arbi t rary p > 1. By Holder 's 
inequality, with 1/q = 1 — l/p and p > 1, we have 

h(r) g Ip(ry*IQ(ry« 

and so, by (3.4), (1.1) and (3.3), 

Bcf>(r) £ Ip{rY'vCpct>(r)l/v 

i.e., 

Iv{r) ^ BMr)1"1 

for ^ ^ r < 1. This clearly gives (1.4). 
I t remains only to show tha t (1.3) holds. Wri te u(r, 6) = R e / ( z ) for 

z = reid Ç A. Then by (2.1), with p = 2, (3.4) and (3.3), 

/

' 2 T T 

M(r, 0)2logz*(r, 0)CW 
o 

/

'2TT /*27r 

u(r, df log+ «(r, 0)d<9 g Z 0 ( r ) I w(r, 0) log+ «(r, 0)d0, 
0 «^ 0 

t ha t is, 

/

' 2 T T 

•w(r, 6») log+ w(r, 0)^0 è C log 5 0 (r), 
o 

for J ^ r < 1. But, by a converse [1, p. 60] to the theorem of Zygmund 
used in Section 1, it follows that , s i n c e / £ 0*, 

/

' 2TT r 2TT 

w(r, 0) log+ u(r, 6)d6 g ~ \lmf(reie)\d6 + K 
0 & • ' 0 

for 0 ^ r < 1, and this, together with (3.5), clearly implies (1.3). The 
proof of Theorem 2 is now complete. 

4. Some refinements of theorems 1 and 2. The function F con 
structed by Salem in [10] to establish Lemma 3 is a singular function, so 
it is natural to ask whether Theorem 2 can be proved with a function 
/ Ç & which is ' generated' , according to (2.2), by an increasing function 
\x which is absolutely continuous. The subclass of SP of such functions will 
be denoted by ^ a c . T h a t the answer to the question is in the negative, 
a t least in a special case, has already been proved by Keogh [5] who has 
shown, essentially, t ha t if h Ç ^ a c , then 

/ ( f ) = Hlogr=7) 
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1014 F. HOLLAND AND J. B. TWOMEY 

as r —> 1. We prove here the following more complete result. 
THEOREM 3. Let h £ ^ a c and suppose that A (r, h) —> oo as r —> 1. Then, 

as r —> 1, 

(4.1) I(r, h) = o(log^(r , fe)) 

and, for each p > 1, 

(4.2) 7p(r, A) = o(,4 (r, ft)*-1). 

Proof. To prove (4.1) it is enough, by Zygmund's theorem again, to 
show that 

' 2 7 T 

** 0 
w (r, 0) log+ w (r, 0)d0 = o (log 4 (r, A) ), 

where u(r, 6) — Re h(reid). Let /* be the absolutely continuous increasing 
function related to h by (2.2). Then (as in Section 2) 

/

' 2TT / » 2TT 

P(r, 0 - *)<*M(0 = I PCr. « - t)g{t)dt, 
0 «^ 0 

for some g £ £[0, 27r], and it is familiar from harmonic function theory 
that we then have 

(4.3) Yimr^u{r,6) = g(6) 

a.e. in [0, 2ir]. We write next 

/

' 2TT / • 2TT 

u(r, 6) \og+u(r, 6)d0 = I [log+ u(r, d)]g(6)dd 
o •/ o 

/
'2TT 

[iog+ttM)]{«(M) -g(e)}de 
o 

+ 
0 = J i + 72, say. 

Now log+ u(r, #){log A (r)}~1 is uniformly bounded in A and, because of 
(4.3), tends to 0 a.e. in [0, 2T] as r —> 1. Hence, by Lebesgue's dominated 
convergence theorem, 

J1{\ogA(r)}-l-^0 as r - > 1. 

Also 

(4.4) MlogAir)}-1 ^BT* \u{r, 0) - g(d)\dd 
J o 

and, since, trivially, 

J
1
 2TT / » 2TT 

u(r,0)d6-> I g(Q)dd a s r - > 1, 
o •/ o 

it follows from (4.3) (see, for example, [1, p. 21]) that the integral on the 
right of (4.4) tends to 0 as r —» 1. This completes the proof of (4.1). 
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T h e relation (4.2) can be obtained by a similar argument or it can be 
deduced from (4.1) by means of Lemma 1; in either case the details are 
easy and are left to the reader. 

Both (4.1) and (4.2) are best possible bu t before proving this we men
tion another result of Keogh [loc. cit .] . T h e result is s tated by the author 
in terms of starlike functions bu t it can be given an equivalent formula
tion for ^ a c as follows: given any positive function 77, defined in [0, 1) 
with rj(r) —> 0 (r —» 1), there exists h £ ^ a c such tha t 

sup | 

and 

frReh(pei9) - 1 , 1 iec À 
• dp \ : z = re G A ( 

J o p i ; 

:z = re € A f < oo 

lim sup —rri 7—y r > 0. 
r_>i ^ 77(f) log 1/(1 - r) 

We strengthen and extend this result by proving 

T H E O R E M 4. Let 4> be as in Theorem 2 and let rj be any positive function 
defined in [0, 1) with 77(f) —» 0(r —> 1). Then for p ^ 1, there are functions 
gv £ ^ a c satisfying A (r, gv) = 0 ( 0 (r)) , f —> 1, swcfe £ t o 

(4.5) liminf-7^fll-1i?-T>0 

r_>i 17 (r) log 0(f) 
and 

(4.6) l i m i n f - ^ - ( ^ 3 T > 0 

for each p > 1. 

This theorem will be shown to be a consequence of Lemma 3 and the 
following lemma. 

LEMMA 4. Letf{z) = 1 + 2 ^ ï = i cnz
n Ç P and /e£ (Xn)0

œ, w/£efe X0 = 1, 
be a convex sequence of positive numbers which converges to 0. Let 

00 

g(z) = 1 + 2 ^ \ncnz\ z 6 A. 

rfte» g G ^ a c and ^ (f, g) ^ 4 (f, / ) for 0 S f < 1. 

Proof. Since, for 0 ^ r < 1, (X„fn)o°° is a convex sequence which con
verges to 0, it follows [12, p. 183] tha t 

Re{i + ËAn*n|è0 

for z = r^^ G A. Hence, by (2.2), 

/

' 2 T T 

n 
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for some function n increasing on [0, 2-K] with M(2TT) — /u(0) = 1. Thus, 
for 2 6 A, 

g(z) = P ' { l + 2 Ê v ' e i " ( » - ' ) L ( ) = f*'fire'V-^dnit) 
J 0 V n = l / «^ 0 

and so g Ç ^ and A(r, g) ^ 4 ( r , / ). We next use the fact [12, p. 179] 
that if | a 0 + 22? (an c o s nx + ^ s m ^ x ) *s a Fourier-Stieltjes series and 
(Xn)o

œ is a convex sequence tending to 0, then |aoX0 + X J ° (aw c o s w x + 
bns'm nx)\n is a Fourier series. This result implies here that there is a 
function G G L[0, 27r] such that 

1 f27r 
Attc» = ô~ e-mtG(t)dt (n è 0) 

(where Co = 1), from which we obtain 

^ 7 T J o e — Z 

Since 

G(/) = l im^! Reg(reu) ^ 0 

a.e. on [0, 2TT], it follows that g (E ^ a c - This completes the proof of the 
lemma. 

Proof of Theorem 4. For n ^ 1, let 

en = sup{7?(r)1/2:l - l / « g r g 1 - l/(w + 1)}. 

Then e„—> 0 as n —» oo . Let (Xjo00 be a convex decreasing sequence such 
that X^+i ^ en ( w M ) and Xn —> 0. (Such a sequence is easily con
structed.) Let/(2;) = 1 + 2]£cw2;w be the function defined in the proof of 
Theorem 2 and let 

g(z) = 1 + 2 ^ / / , s G A. 
1 

Then, by Lemma 4, ^ (r, g) g 4 ( r , / ) = 0(«(r)) and g G ^ a c . Now fix 
r Ç (0, 1) and choose n such that 1 — 1/n < r ^ 1 — l/(n + 1). By 
the argument used to prove (3.4), 

h(r,g) è 5\J+ 10(r) ^ Bv(r)<t>(r) 

and it is clear that (4.6) follows in the case p = 2 on taking g2 = g. 
The method used in Section 3 to deduce (1.4) from (3.4) now gives 

IP(r, g2) è 3 ^ ( r ) W 1 ( U K 1 ) 

for every £ > 1, and it is clear from this that & gv KL &\c exists for which 
(4.6) holds for all such p. 
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Finally, by the argument used to prove (1.3), 

I(r,g2) è Cv(r)log[Bv(r)<l>(r)] 

and assuming, as we may, that 77(f) ^ i£</>(r)~1/2, say, for all r sufficiently 
near 1, we immediately deduce (4.5) with gi = g2. This completes the 
proof of Theorem 4. 

5. The maximum modulus. As a consequence of Theorem 1 we have, 
for 4 ^ , 

I(r) g log M(r) + A 

and 

IP(r) Û BpM(ry^ (p > 1) 

for 0 ^ r < 1. We now turn our attention, in this final section, to the 
problem of obtaining lower estimates for the integral means in terms of 
the maximum modulus. We begin by deriving a simple inequality of this 
type for functions that are merely regular in A. 

Suppose, initially, that/(2) = X^T anz
n is regular in A and continuous 

in the closure Â. For 0 ^ r < 1, we have 

/ œ \ l / 2 / co \ l / 2 

M(r,f)èZK\rnS[ZK\2) [Zr2n) 

and so, by Parseval's theorem, 

(1 - r2)M(r,ff ^ - - V* \f(eie)\*d6. 
Z7T «/ 0 

Fix now r f (0, 1) and let g be a function regular in A. Let the zeros of g 
in \z: \z\ S A be, with due account of multiplicity, zu 22, . . . z„. and write 

Bn(z) = ft ~f; , ^S , 
fc=i 1 — zkz 

Then | ^ ( s ) ; < 1 for z G A and \Bn(z)\ = 1 when |z| = 1. Now write 

F(z) = g(rz)Bn(z)~\ z G A. 

Then F is regular and non-zero in A and continuous in A and so, given 
any p > 0, we can define a regular branch of Fp/2 in A which is also con
tinuous on A. Hence, using (5.1) wi th / = Fp/2, 

1 C2lr 

(1 - r2)M(r\ gf S (1 - r2)M(r, F*'2)2 g -~- \F(ei6)\pd6 
Zir J 0 

= ~ f 2 ' k ( r e " ) l ^ , 
Z7T t / 0 
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t ha t is, 

(5.2) (1 -r*)M(r\gY g IP(r, g) 

for p > 0. 
This inequali ty is sharp for each p > 0, as the example g(z) = 

(1 — s ) _ 2 / p shows, and is essentially a known result. T h e case p = 1, 
for instance, is proved in [7] and the general result, in however a less 
precise form, is obtained in [2]. Although (5.2) is sharp, it can be im
proved in one direction to yield the following more delicate result: if g 
is regular in A, then 

J o 
(5.3) M(t,gYdt^rirIp(r,R) 

J 0 

for p > 0. A proof of this result can be found in [8] ; bu t see also [3]. We 
note also tha t if, for some p > 0, g belongs to the H a r d y class Hp, i.e., if 

sup0^r<i IP(r, g) < co, 

then it is known [3], and is, in fact, an easy consequence of (5.3), t ha t in 
this case (5.2) can be improved to 

(5.4) M(r, g) = o((l - r )~ 1 / p ) , r -> 1. 

For the class £P, of course, inequalities (5.2) and (5.4) are of interest 
only when p ^ 1, since (as already noted in Section 1) h G 0* implies 
M(r, h) = 0 ( ( 1 - r)~1)), r - » 1. In the case p = 1 both (5.2) and (5.4) 
can be improved for the class &, as we now show. 

T H E O R E M 5. Let K ^ . Then, for O < r < 1, 

/ r r , , , , 7 N . 2rirl(r, h) 
5.5 M(r, h) S 7i v i T T n T • 

(1 - r) log 1/(1 - r) 
If, further, h £ Hl, then 

1 
(5.6) M(r,h) = oi (1 - r) log x _ r 1. 

We show tha t this theorem is a consequence of inequali ty (5.3) and 
the following lemma. 

LEMMA 5. Let h Ç ëP. Then 

\~M{r,h) 

is a decreasing function of r on [0, 1). 

Proof. For h £ 0 , 

(5.7) |A'(s)| ^ j - ^ 2 Re/*(*), s G A. 
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(This classical inequality follows easily from (2.2)). Fix 6 G [0, 2T]. 
Then, for 0 < r < 1, 

d l - r | 7 / id,l \ — r ,7 / M / D zh'(Z) 2r \ . id 

— ^ r e ) = A(sm Re-77-7- - 7 2f (2 = ^ ) 
dr 1 + r r{\ + r) I /&(z) \ — r 1 

^ 0 by (5.7). Hence [(1 — r)/(l + r)] | /*(re^)| decreases on [0, 1) for each 
fixed 0 G [0, 2w]. Let now 0 < rY < r2 < 1 and choose 60 such tha t 

Then 

\h(r2
ie°)\ = M(r2,h). 

i ~T V2 1 -\- r2 1 T n 

1 + n 
and we have established Lemma 5. 

We now prove Theorem 5. By (5.3), with p = 1, 

r7r/(r, A.) ^ I Af (/, Â)<& è i - ~ ~ M(r, h) I ^-—^ rf/ 
t/ 0 1 + r <̂ o 1 - f 

è è ( l - r)Af (r, A) log 

where we have used Lemma 5. This proves (5.5). 
If h £ Hl then, by (5.3) again, 

1 

/ , 

1 

M(r, h)dr < 00 

and an obvious refinement of the above argument gives (5.6). We omit 
the details but remark tha t they can be found in [11] where similar 
arguments have been used. 

Our last theorem shows tha t (5.6) is, in a certain sense, best possible. 

T H E O R E M 6. Let eir) be any positive function defined on [0, 1) such that 
e(r) —> 0 (r —> 1). Then there exists a function h Ç & such that h G H1 and 

(5.8) lim sup (L^JÙMMï^Lll^zA > 0 . 

(A lim inf result is clearly not possible in general here because of (5.3).) 

Proof. Let (rn) be a sequence of positive real numbers increasing to 1 
such tha t 

00 

X<K^) < 00. 
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Let 

and set 

X „ = ^e(rn)l log— ~ — I , n ^ 1, 
\ i f ïj / 

so that £ \ „ = 1. For z Ç A, we now define 

Then A 6 ^ and, for 0 ^ r < 1, 

so that h G i?1. Finally, for n è 1, 

M(r„, A) è Re A(rn) è X„ f ± - ^ è ^ 4 ^ 7 7 1 V . 
1 - rw 2(1 - rw) log 1/(1 - rrt) 

and (5.8) follows. This proves Theorem 6. 

Inequality (5.4) is also best possible in the same sense for the class & 
for each p > 1. This can be proved using examples similar to those con
structed in the proof of Theorem 6 above. The details are left to the 
reader. 
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