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1. Introduction

Given an operator algebra A, abstractly or concretely represented, one of the principal
things to determine about it is its C*-envelope. C*(A), in the sense of Arveson [1]. The
C*-envelope C*(A) codifies the matrix norm structure on A and provides a 'platform'
from which to study the representation theory of the algebra. In [9]. we studied the tensor
algebra. T+(E), over a C*-correspondence E and showed, under very general hypotheses
on E, that the C*-envelope of T+(E) is the Cuntz-Pimsner algebra of E, O{E) [11].
Inspired by this success and the algebraic fact [6] that every finite-dimensional algebra
over C is a quotient of a tensor algebra over the algebra modulo its radical, we have
sought to identify the C*-envelopes of quotients of tensor algebras of the form T+(E).
While our results are conditioned by a number of hypotheses, the class of quotients that
are covered by our analysis covers a broad family of algebras and contains, in particular,
many finite-dimensional algebras of current interest. It is hoped that our results will help
provide a new mechanism for bringing the technology from finite-dimensional algebra,
i.e. ring theory, to bear on problems in operator algebra.

We follow the notation and terminology from [9], but review the salient features that
we need here. A C*-correspondence over a C*-algebra A is a bimodule E over A such that
as a right .A-module, E is a Hilbert C*-module in the commonly accepted sense (see [7]),
and, as a left v4-module, the action of A is given by bounded adjointable operators on
E. That is, the left action is given by a C*-homomorphism <p : A -* C(E). Prom a
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correspondence E one can build another correspondence, T{E), called the (full) Fock
space over E. By definition, T{E) is the direct sum A® E ® E®2 ® E®3 © • • •. The
powers E®n are the internal tensor products of copies of E. Each is a correspondence
over A. For example, at the level 2, the inner product on E®2 is given by the formula

the right action of A is given by the formula (£1 ® £2)0 = £1 <8> (£20); and the left
action is given by the formula y?2(a)(£i <8> £2) = (y(a)£i) ® £2- The higher powers
are defined inductively. We write (foo for the left action of A on J-{E), i.e. (fioo(o.) =
dia.g(tpo(a),<pi(a),(p2{a),...), where ipo(a) is left multiplication by a on A, <pi = ip, etc.

For £ s E, the creation operator determined by £, T ,̂ is given by the formula Tgq = £<8>??,
77 € ^F(E). This operator belongs to C{T{E)), and its adjoint acts on tensors of the form
?7 Cgi C, 77 € E, £ G ^F(E), by the formula TV*77 <g> £ = <Poo((£, »?))C- (Since such tensors span
F{E), Tg is completely determined by this formula.) We extend the definition of T% to
include elements £ <= E®n via the formula T? := T5lT?2 • • • Tin, if £ = £1 <g> £2 <S> • • • ® £«•
The tensor algebra of E, T+{E), is defined to be the norm closed subalgebra of C{T{E))
generated by </><x>(̂4) and the creation operators T^, £ £ E.

We write A for the gauge automorphism group of T+(E). That is, A is given by the for-
mula At(T€) = e'*'T? for £ e E®1 and At l^^ ) = id. Also, we write <£fc = / \t(-)e~uh dt,
so that ^fc is the projection of T+{E) onto {T? : £ e E®k}.

In this note, we focus on ideals 3 in T+(E) that satisfy five hypotheses. First, we shall
assume that

(HI) there is an n (which will be fixed throughout this note) such that Jn C 3 C J1:

w h e r e J k = s p C n { T ? : £ e E ® 1 , l ^ k } .

This hypothesis is motivated by considerations from ring theory. The ideals that appear
in the representation of a finite-dimensional algebra as a quotient of a tensor algebra
have this property. See [8] and our discussion in § 4.

The second hypothesis is:

(H2) 3 is A-invariant.

This hypothesis is not automatically satisfied, even in the finite-dimensional setting.
There are some situations in which it is automatic, however. For example, if E is the
correspondence which is A as a right Hilbert module and where the left action is given by
an automorphism of A, then the ideals oiT+(E) are A-invariant when A is simple and the
Connes spectrum of the automorphism is the full circle [10]. On the other hand, we show
in Example 4.2 that unexpected difficulties arise when it is not assumed. Hypothesis (H2)
implies that 3 is invariant under each of the mappings #fe, and, hence, there are sub-
bimodules Fk C E®k such that

3 = span{T{ : £ € Fk, k> 0}. (1.1)

Since Jn C 3 C J1; Fo = {0} and Fk = E®k for k ^ n. It is also evident from the fact
that 3 is an ideal that Fk®E C Fk+i and E<g>Fk C Fk+i for all k. In fact, whenever we

https://doi.org/10.1017/S0013091500020976 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020976


Quotients and envelopes 363

choose {Fk} satisfying these properties, then 3, defined by (1.1). is a A-invariant ideal
such that Jn C3 C Ji.

Our third hypothesis on the ideals we consider is

(H3) Each Fk is complemented in E®k.

We write Fk for the projection in C(J-{E)) whose range is Fk. Note that if E is self-dual,
then so is every E®k and each sub-bimodule Fk of E®k is complemented. In particular,
this hypothesis is satisfied when E is associated to a finite quiver. (For the relation
between quivers and C*-correspondences (see §4 below and [8,9,15]).)

These three hypotheses guarantee that the quotient algebra T+(E)/3 is completely
isometrically isomorphic to the compression of 7+ (E) to the complement in ^(E) of the
space X̂ fcLo Fk (see Theorem 2.9). The projection, P, onto this space is J2T=o Qk — Fk,
where Qm denotes the projection of T(E) onto E®m. This compression representation,
in turn, depends on a distance formula that we take up in the next section. The fourth
hypothesis that we make is that <p(A) is contained in the compact operators on E, K(E).
This hypothesis is a common one for the theory of tensor algebras. It is satisfied, for
example, if E is a finitely generated projective module over A. In particular, it is satisfied
for the algebras associated to finite quivers. The first four hypotheses, then, imply that
the C*-algebra on PT{E) generated by PT+(E)P is all of K(PT(E)). Finally, our fifth
hypothesis, which is about annihilators of certain submodules of PT(E), is added to
the first four to show that the C*-envelope of T+(E)/3 is K{PT(E)). While the fifth
hypothesis may not be necessary for the C*-envelope of T+(E)/3 to be K{PT{E)), an
example that we give in § 4 shows that certain control of these annihilators is necessary.

2. Distance formulae

As just mentioned, the key to our analysis is to show that under our hypotheses (HI),
(H2) and (H3), the quotient T+(E)/3 is completely isometrically isomorphic to PT+{E)P.
This, in turn, requires being able to calculate the distance d(T, 3) from an operator
T € T+(E) to 3. We begin this calculation with the following lemma.

Lemma 2.1. Let 3 be an ideal in T+(E) satisfying hypotheses (H1)-(H3), and, with
the notation just established, set Ek = Qk — Fk and P = J2^k- Then I — P £ lat T+(E)
and

3={Te T+{E) : PTP = 0} = {T 6 T+{E) : PT = 0}.

Proof. If -q 6 Fk and £, € E®1, then T^rj = £ <g> 77 £ Fk ® E®1 C Fk+i. Hence,
Ti-Fk C Fk+i- Since / - P = £ Fk, I - P € la.t T+{E), and it follows that PTP = PT
for all T E T+{E). It is left to show that

3 = {Te T+(E) : PT = 0}.

Since for every T e T+{E), PT = Em=oP*m(T) (because P(E®k) = (0) for k > n,
where n is fixed in hypothesis (HI)), and since ^m{3) C 3 by hypothesis (HI), it suffices
to show that, for £ e E®m, Tc € 3 if and only if PT€ = 0. But T̂  e 3 if and only if
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£ 6 Fm, and this implies that PT^ = ££fc7> = 0 (as Fm ® E®1 C Fm+l). On the other
hand, PT^ = 0 implies EmT^Q0 = 0, i.e. £ G Fm. D

From now on, P will always denote the projection ^2Ek of the lemma. Our goal,
Theorem 2.9, is to show that T+(E)/3 is completely isometrically isomorphic to PT+(E)P
acting on PT{E). For this purpose, the following distance formula is key.

Theorem 2.2. If 3 is an ideal in 7+(E) satisfying the three hypotheses (H1)-(H3),
then, forT eT+(E),

dist(T,3) = \\PTP\\.

Proof. The proof is broken into several steps and we formalize parts of it in two lem-
mas and a proposition. First, recall that Pk is X];=o Qi anc^ write P^fc' = Pk + Yl^=k+i &j-
Then {P^}f=0 is an increasing sequence of projections in C(T(E)), P ' 0 ' = P and
p(fe) = Pk for k ^ n - 1. Also note that p(fc+1) = P^ + Fk+1. We shall assume
that | |PTP|| = q < 1 and fix e < 1 - q. We shall construct, inductively, a sequence
{Tk}f=Q of operators in T + 3 such that To = T, P^Tj = P^Tk for k ^ j and
||p(*0rfcp(fc) || <j qk < i where qk = 9 + e(Ef=i 2~')- Since To was set to be T, we describe
the inductive step. Hence, we assume that we have already constructed {Tj}^t.o as above
(m > 0).

First, we wish to construct X = Fm+\Tm+\Po. For this we consider the following oper-
ator matrix,

( p(m)rp p p(m)rp /p(m+l) _

Y F T 1 (p(rn+l)

A iv
m+l-'m(,-rv ' —

viewed as an operator from p(-m+1)T{E) = (p(m+1) -P0)T(E)®PQF(E) to
written as p(ra+1)^(£;) = p(m)T{E) ®Fm+1F(E). Note that

00

TmFm+i C T+(E)Fm+1 C ^ F,- C (/ - p(m))^(S).

Hence, p(m)Tm(P(m+1) - Po) = p(m)Tm(P(m) - Po). Thus, the first row of 5 can be
viewed as the operator P(m^TmP(m). By induction, its norm is dominated by qm. Next,
consider the second column of 5. Here, note that Tm(P(m+1> - P0)(f(E)) C (/ -
PQ)(F(E)). Hence, the second column is ( P ^ 1 ) - P0)Tm{P(m+V - Po).

Lemma 2.3. ||(p("l+1) - P0)T(P(m+1) -P o ) | | ^ ||p(m)TP(m)|| for all m, T € 7^(£).

Proof. If m ^ n - 1 , p(OT+1) = P m + 1 and P ( m ) = Pm. Since we may identify (Pm+i -
PoX-T^-E)) with Pm{T(E)) ® £ and the identification carries (Pm+i - P0)T(Pm+i - Po)
into PmTPm ® /fi) the inequality in this case is clear. Now assume that m < n - 1. We
have

n-2

j=m+l
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and
n —1

Also: / - P(m> + En_! G lat7^-(£). Consequently, we have (P<m) - £n_i)T = (P(m> -
£n_i)T(P(m)-.En_i). We may then view (P<m> - i?n_i)T as an operator on Pn-2{P{E))
and (P( m ) - En^i)T ® J£ is an operator on Pn_i.F(£) (identifying Pn-2(f(E))®E with
Pn-iT{E) 0 P0^r(£:)). The computation above shows that

_ po)[(p<»0 _

But the latter is (p(m+x) - P0)T(P(m+1) - Po). Hence,

+V - po)|| 4 | | (pM - En-X

- Po)

_ p0).

D

Returning to our matrix (equation (2.1)), note that P(m)TmP0 lies in K(A,
p(m)Tm(P(m+1) - P o ) lies in /sT((P(m+1) -P0)^(£;),P(m)jF(£;)) and Fm+1Tm(P(m+1> -
Po) lies in K((P(-m+1^ — P0)Fm+i). We can, therefore, apply the following lemma, which
is a C*-version of a well-known fact from operator theory [3, Lemma 9.1] (see also [4])
to find X £ K(A,Fm+i) such that ||5|| ^ qm+\ < 1 (recall that qm < gm+1 < 1).

Lemma 2.4. Let A be a C*-algebra, let p\ and p[ be two projections in the multiplier
algebra of A, M(A), let p2 = 1 - p\, and let p'2 = 1 — p{. If a £ p[Api, b G p[Ap2, and
c G p'2Ap2 are such that max{||a + 6||, ||a + c||} = q\ < q2 < 1, then there is an x € p'2Ap2

such that \\a + b + c + x\\ ^ q2.

Proof. It is helpful to think in terms of matrices, for then it is possible to follow the
proof in [3, Lemma 9.1] almost word for word. We wish to find an a; 6 p'2Ap2 that makes
the norm of the matrix

f b
T =

fa
cC X

viewed as a transformation from p\A®p2A to p[A®p'2A, less than or equal to q2 under
the assumption that

92

(The strict inequality, qi < 1, is essential for the general C*-algebra setting. For operators
on Hilbert space, one can get away with 91 = 1.) From the inequality

< 92
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we conclude that

q\ • 1 > q\ • 1 = a*a + c*c.

Thus, q\ — a*a > c*c and q\ — a*a is invertible. Therefore, so is 1 — a\a\, where a\ = q^a
(because q\ — a*a = gf (1 ~ a-i^i))- Since g|(l ~ a*®i) ^ c*c, q\ ^ (1 — a*ai)-1/2c*c(l —
a\ai)~1/2. Consequently, if we set I = c(l — a\a{)~1/2, then this inequality shows that
ll̂ ll ^ 92- Similarly, we conclude that bb* ̂  q\ — aa*, with q\ — aa* invertible. Now we
set k := q^"16*(l — aiaj)"1/2 . Calculating as before, we see that ||fc|| ^ 1. Then, for
x = —la\k*, we see that

T =
a b
c x

ft 1 0
0 I \

1 0
0 k*

The first matrix in the product has norm at most q2 • The inner matrix is unitary, as a
straightforward calculation shows. Finally, the third matrix has norm at most 1. Thus,
||T|| ^ q2, as required. •

In our case the algebra A is if(p("l+1) ?{E)), pi = p(m+x) - Po, and p[ = P<m). Since
the X we are seeking lies in K(A, F m + i ) , it is associated with a unique vector r\ 6 Fm+i-
Then Tv e 3 (by the definition of F m + 1 ) . There is a vector g e £"®(m+1) such that
$m+i(Tm)=Tg. Set

-* m+l = J- m L p + Tv.

Then

l-m+1

(by theSince P ^ X j = 0 for all £ G Fm+l and A; < m, P(fc)Tm+1 =
induction hypothesis).

It is left to show that | |P ( m + 1 ) T m + iP ( m + 1 ) | | < qm+\- For this we need to show that
S = P(m + 1)Tm + 1P(m + 1) . It is easy to check that for every £ € Fm+l we have P^T^PQ =
p(m)T^p(m+i) _ pQ) = p m + 1 r € (P( m + 1 ) - Po) = 0. Hence, three entries of S agree
with those of P(m+1*>Tm+1P(m+1\ Finally, since it is easy to see that Fm+1TmP0 =
Fm+iTpm igPo, the desired equality is proved.

We summarize formally what we have done so far in the following proposition.

Proposition 2.5. Assume T € T+{E) satisfies | |PrP | | < 1 and write q = \\PTP\\.
Fix 0 < £ < 1 — q and set qk = q + e(2Zf=i 2~')- Then we can construct a sequence of
operators {Tk : 0 ^ k} in T + 3 satisfying:

(1) To = T;

(2) for k < j , j = pWTk; and

(3) for all k,
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To complete the proof that dist(T, 3) < 1. we introduce the following notation. For
m ^ 0, we write km for the mth Fejer kernel and for R e T+{E), we set

km*R = Jkm{t)Xt{R)dt.

Then

j=0 m

With q and e as in the proposition, write q' = q + e (< 1) and fix m > n such that
(n2/m) <l-q'. Set

Then we have

j=o

and

j=o

Consequently, C - T m e 3 and C £ T m +3 = T + 3. Since \\PnTmPn\\ = \\P^TmP^\\ =
||p(n)Tnp(n)|| ^ ? n ! i t e a s i l y fonows t n a t | | ^ ( r m ) | | ^ qn for all 0 < j ^ n. (This follows

from the inequality | | ^ ( T m ) | | = \\Qj$i(T™)Qo\\ = \\QjTmQo\\ < \\PnTmPn\\.) Hence,

||G — k
j=0

n2

j = 0

Recall that for every j > rn, PmTj = PmTm by item (2) of Proposition 2.5. Hence,
<Pk(Tm) = $k(Tj) for all 0 < k < m, and so km*Tm = km* Tj for all j > m. We find,
then, that

Pj(km * Tm) = Pj{km * Tj)Pj = km * (Pj-rjP,-)

and

It follows that ||fcm *Tm\\ ^ q' and

l\\C -kntTmW + WkntTrr.
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Since C 6 T + 3, this proves that dist(T, 3) < 1, and, hence, that dist(T, 3) < 1. Thus,

dist(T,3) < ||PTP||. The opposite inequality follows from the fact that for every B €3,

\\PTP\\ = \\P(T + B)P\\ ^ \\T + B\\,

and so, by taking the infimum,

This completes the proof of the theorem. •

Theorem 2.2 shows that, under hypotheses (H1)-(H3) made on 3, the map T H-> PTP
induces an isometric isomorphism between T+(E)/3 and PT+{E)P. We wish to show
that this map is, in fact, a complete isometry. For this it is enough to show that, for
n G N, T+(Mn(E)) ^ Mn(T+{E)) and that the ideal Mn(3) in Mn(T+(E)) satisfies
hypotheses (H1)-(H3).

To this end, we write Mn(E), 1 ^ n ^ oo, for the C*-module Mn(C) ®e E, where <8>e

is the exterior tensor product of the Mn(C)-module Mn(C) and the A-module E, and
where MOO(C) is interpreted as K(l<i). Hence, Mn(E) is a right Hilbert C*-module over
Mn (A). One can easily check that the inner product is

k

and that right action of Mn(A) is given by the formula

The module Mn(E) also comes equipped with a left action of Mn(A) given by the equa-
tion:

k

This makes Mn{E) into a C*-correspondence over Mn(A). Consequently, we may form
F{Mn(E)) and T+(Mn(E)).

Lemma 2.6. For C*-correspondences E and F (over A):

Mn(E) ®Mn{A) Mn{F) ~ Mn{E ®A F).

Proof. This is a consequence of the following well-known more-general fact. Suppose
E is a Hilbert A module, that F is a Hilbert A' module, and that ip is a *-homomorphism
from A to C(F). Then, for any C*-algebra B, we have (B ®e E) ®\A®V {B ®e F) ~
B®e {E®^ F), where <g)e denotes the external tensor product as above and <g>id tg)v> and 0^,
denote internal tensor products. (This follows easily from the development of the external
tensor product given in [7, pp. 34-39].) In the present setting, A = A' and B = Mn(C).
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So {B®eE)®id^(B®eF) = Mn(E)®Mn{A)Mn(F) and B®e(E®vF) = Mn(E®AF).
It is also useful to note, and easy to check, that the formula

(eij) 6 Mn(E), (fij) e Mn(F), defines the desired isomorphism. We omit further details,
which are quite straightforward. •

Proposition 2.7. The isomorphism of Lemma 2.6 extends to a C*-correspondence
isomorphism

V : HMn(E)) -> Mn{T(E)).

Further, via conjugation, see see that V induces a C*-isomorphism & : C(J-(Mn(E))) -4
Mn{C{T{E))), V{T) = VTV-1 for T e C{T{Mn{E))), such that V{T+{Mn(E))) =
Mn(T+(E)) and such that if \[n) denotes the gauge action on T+{Mn(E)) and if(Tij) 6
Mn(T+(E)), then

Proof. Let £ = (&_,-) E Mn(E) and let rj e Mn(T(E)) be of the form rj = (rnj), where

_ Jo, if (i,j) ^ {io,jo),

\e\ <g>e2® •••®ek, if (i, j) = (io,jo)

(such elements span Mn{J-{E))). Then

V-lr) = eiEioio <g> e2Eioio ® • • • ® ekEiojo,

where eEir denotes the element of Mn(E) whose l,r entry is e and whose other entries
are zeros, and

Hence,

VT^V-lr) = J2&0 ® ei ® • • • ® ekEljo.
i

On the other hand.

(T€o )t} = (T€y )(ex ® • • • ® cO^ioio = Yl £"o ® ci ® • • • ® ekEijo =

Hence, !^(TC) = (T?jj), where ^ = (&_,•). The fact that !̂  carries TJ.(Mn(£;)) onto
Mn(T+(E)) is now clear. The fact that 9 intertwines the gauge actions is also clear
from the formula

HTi) = {Tiii).

D
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Corollary 2.8. If 3 C T+{E) is a \-invariant ideal, then Mn(3) C Mn(T+(E)) is
mapped by $~l onto a A^"'-invariant ideal in T+(Mn(E)).

Suppose that 3 satisfies hypotheses (H1)-(H3). Let Fk be the associated submodules
(Fk C E®k) with corresponding projections Fk e C(E®k). Then, for f e Mn(E)®k =

If Sfc is the orthogonal complement of Fk (in E®k), then Mn(Ek) is the orthogonal
complement of Mn{Fk) and V - 1 (Mn(Ek)) is the orthogonal complement of V~1(Mn(Ffc))
in Mn{E)®k. Hence, *r~1(Mn(3)) satisfies hypotheses (H1)-(H3), and so Theorem 2.2
allows us to conclude that for (Tij) £ Mn(T+(E)),

dist((Tij),Mn(3)) = \\P(Tij)P\\,

where P € £(Mn(Jr(£'))) is the projection corresponding to Mn(3). However, P =
diag(P,P, . . . , P ) . Hence

Since

||(2ij + CJ)||Mn(r+(£)/D) = \\{Tij) + M
= dist((Tij),Mn(3)),

we conclude that the following theorem holds.

Theorem 2.9. Let 3 C T+{E) be an ideal satisfying hypotheses (H1)-(H3). Then the
map

T+{E) BT^PTP

(with P = J2k Qk ~ Fk) induces a completely isometric isomorphism ofT+{E)/3 onto
PT+{E)P.

3. C*-envelopes

The fourth hypothesis we place on our correspondence E is

(H4) the range of <p is contained in K(E).

As we mentioned at the outset, this condition is common in the theory. It is satisfied
when E is finitely generated and projective.

Proposition 3.1. With the notation already established, under hypothesis (H4), the
algebra PT+{E)P is contained in K(PT(E)) and generates K(PT{E)) as a C*-algebra.
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Proof. Since V(A) C K{E), we also have K{E®k)®IE C K(£®(fc+1)) (see [11]).
For £ G £ and fc > 1, ||T? - T ^ t e a ) ! ! = ||T€_€eJ| ^ ||£ - £ea\\ -> 0 when {eQ} is a
contractive approximate identity in A. Since the restriction of T^<px(ea) to jE8fc lies in
K(E*k,E*W>) (as ^(eaJIfis* = Mea) G ^(E®*)), rc|B»fc € K(E®k,E^k+V). It
then follows that PT+{E)P C tf(P(.F(JE;))). NOW write C for the C*-algebra generated
by PT+{E)P in K(PJ:(E)). We shall show that for 0 < i < j ^ n - 1, C contains
K(Ei,Ej). As P = J2&i t n i s w m complete the proof. In fact, we show, by induction
on k, that for every 0 < m ^ n — 1 and 0 < k ^ n — 1, K{Em-k,En-k-\) C C.
Suppose /c = 0 and note that C contains PT^PT*P for every f s En-i, r\ £ Em. But
PT^PT^P = E^^EoT^Em = En-iT^Em. Varying £ and r? gives tf(£m, £n_i) C C.
For the inductive step take £, € En-k-i, r\ € Em-k- Then C contains PT^PT*P =
J2^=0En-j-iT^T*Em-j. Using the induction hypothesis,

fc-i fc-i

Y.En-j-lT^Em-i € YtK&rn-i^-j-!) C C.
j=0 j=0

Hence, En-k-iT^Em.k € C for all such £, 77. Hence, K(Em-k, En-k-i) QC. D

While hypothesis (H4) guarantees that the C*-algebra generated by PT+{E)P is
K(PF(E)), in general, this is not its C*-envelope. The following theorem presents a
general sufficient condition for the C*-envelope of PT+{E)P to be K{PT{E)). Before
we state the theorem we need some notation. For a C*-correspondence F (over A) we
write

ann(F) = {a G A : Fa = 0}

and

k(F) = {aeA: <p(a)F = 0} .

With P = X)felo £fc ^ a b o v e w e w r i t e

fcm = k{Em).

Our fifth hypothesis, then, is

(H5) The intersection

a,rm(En-\) C\ ann(jBn_2A;i) (~l ann(£'n_3/i;iA;2) D • • • D ann(fci • • • /cn_i)

vanishes.

Theorem 3.2. If 3 is an ideal in T+{E) satisfying hypotheses (H1)-(H5), then the
C*-envelope ofT+(E)/3 is K{PT{E)).
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Proof. Recall that if A is an operator algebra generating a C*-algebra B (as a C*-
algebra), then an ideal X in B is called a boundary ideal for A in case the quotient map
q : B —> B/X is completely isometric when restricted to .4. The C*-algebra B is the C*-
envelope of A precisely when only the zero ideal in B is a boundary ideal (see [1]). Thus,
to show that K(PJ7(E)) is the C*-envelope of 7+(£0/3, which is completely isometrically
isomorphic to P7+(E)P, it suffices to show that under hypotheses (H4) and (H5), every
non-zero ideal of K(PJr(E)) intersects PT+{E)P non-trivially.

Note first that every ideal of K{PJr{E)) is of the form K(PT{E)30), where 30 is an
ideal in A [14]. So we fix a non-zero ideal Jo in A a nd prove

0) n PT+(E)P ± {0}.

Since 30 ^ 0, there is an m, 1 ^ m < n. such that

(for m = 1, ki • • • fcm_i is replaced by ^4). Hence, there is an a € 3o such that

En-mki • • • /cm_ia ^ 0.

Fix £ e En-m and b € k\ • • • /cTO_i such that £ba ^ 0. Then

e fci • • • fcm_i.

Thus, <fij((£ba, £ba))r) = 0 for all rj 6 Ej, 1 ^ j ^ m — 1, and, therefore,

£,ba <8> rj = 0, for all r) 6 Ej, 1 < j ^ m — 1,

i.e.
T^ba\Ex-\ \-Bm-i = 0.

We have
m - l

PT^baP = / j Ej+n-mT^aEj = En-mT^baEo = En-mT^ba-
j=0

Since £6a ^ 0 and Tiba $. 3 because £6a G En-m, PTibaP ¥" 0. Also, Tib\A € K(A, En-m)
and

We now check that, whenever a' 6 3o,

En-mK{A,En-m){'P0o{o!)\A) Q

For this take 6<S)b* G K(A, En-m) (since such elements span a dense subset of K(A, En-m)
it is enough to consider these) and compute, for c £ A.

(a')\A)(c)=En-m(6®b*)(a'c)

= En-m0b*a'c

= lim En-mOb*eaa!'c,
a
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where {ea} is a contractive approximate identity in 30- Hence,

En-m(0 ® b*)(yx(a')\A) = \im(En_mOb*eQ) ® (a'*)*
a

lies in /^(Uoj-En-m^o)- This proves that PT^a'P is a non-zero element in PT+(E)P D
K(PJr(E)30) and completes the proof. •

Corollary 3.3. If E is a C*-correspondence satisfying hypothesis (H4) and if E is full
(i.e. if (E, E) = A) and essential as a left A-module (i.e. if <p(A)E = E), then for every
n > 1,

C*(T+(E)/Jn) ~

Proof. Here, 3 = Jn satisfies hypotheses (H1)-(H3), trivially. Hypothesis (H4) is
part of the hypotheses of the corollary. We shall show that fullness and essentiality imply
hypothesis (H5). Note that P = Pn and Ej = E®j for 0 < j < n - 1. We will show, by
induction, that each E®n is full and essential. This will imply that &nn(E®n) = 0 for all
ra ^ 1. (In fact, if a G ann(£®n), so that E®na = 0, then (E®n, E®n)a = (E®n, E®na) =
0. Hence, if E®n is full, then ann^®") = 0.) Theorem 3.2 then implies that the C*-
envelope of T+(E)/Jn is K(PT(E)).

For the induction, assume that £;®(™~1) is essential and full. Then

(E®n,E®n) =

Hence, E®n is full. (In this string of equations, we used the fullness of E and the fullness
and essentiality of £®("-x).) Since tp(A)E®n = {<p(A)E) ® £«("-!) = E®n, it is evident
that E®n is essential. D

Example 4.1, below, shows that if the intersection of annihilators is non-zero, then the
C*-envelope of T+(E)/3 can be a proper quotient of K{P!F{E)).

4. Quivers

In this section we present a brief discussion of quivers and their algebras for the purposes
of giving some examples and of putting the preceding results into perspective.

A quiver is simply a finite directed graph (Q,V,r,s), where r and s are functions
from Q, the space of edges or arrows, to V, the space of vertices. The maps r and s are
called the range and source maps of the quiver, respectively, and one says that a € Q
is an arrow from s(a) to r(a). Quivers are implicit in [6] and appeared sporadically in
the ring-theory literature subsequently until 1972, when they were used with spectacular
success by Gabriel. Since then, quivers have played an essential role in ring theory. For
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an encyclopaedic survey of their role in the representation theory of algebras see [5].
Given (Q,V,r,s), let A be the finite-dimensional C*-algebra consisting of all C-valued
functions on V and let EQ be the space of all C-valued functions on Q. Then EQ has
the structure of a C*-correspondence over A. The right and left actions of A on EQ are
given by

£ • f(a) := Z(a)f(s(a)),

£ € EQ, f 6 A, a € Q. The A-valued inner product on EQ is given by the formula:
(£> v) (v) = Es(o)=» £(a)v(a) • I* is then easy to see that EQ71 is just the space of functions
on the fibred product Q^ = {(an ,an_i , . . . ,ai) | s(aj+i) = '"(at)} which, in turn, is
called the space of paths of length n, a tuple being a path. Each Q^ has an obvious pair
of maps to V, which we also denote by r and s, and the correspondence structure on EQ71

is given in terms of them: r(an , a n _ i , . . . ,ai) = r(an) and s(an, a n _ i , . . . ,ai) = s(ai).
The disjoint union 7-* = I J ^ o 2 ^ > where Q^ := V is a small category called the path
category of the quiver. The objects are just the vertices V, and the morphisms from
vi 6 V to v2 € V are just the paths with source v\ and range v2; composition of paths
is just concatenation. The Fock space J-(EQ) may be realized as a completion of the
space of all finitely supported functions on V endowed with the ^-valued inner product:
(£,rj)(v) = Y2s(a)=v^(—)rl(—)^ where now the a come from V. The path algebra of Q,
CV, is simply the space of all finitely supported functions on V, where the product is
given by the formula

f*g(l)=

The map A denned by the formula X(f)g = f*g, f € CV, but with g viewed as an element
of ^(EQ), is a representation of CV with values in C(J-{EQ)). In fact, for functions £
supported on QCV,Ti= A(£), and T+{EQ) is the closure of \{CV) in C{T{EQ)). One
of the principal results of [9] is that if the maps r and s in the quiver are surjective,
then the C*-envelope of T+{EQ) in this case is a Cuntz-Krieger algebra, OA, where the
incidence matrix A is constructed in a natural way from Q.

A relation on the quiver (Q, V, r, s) is a finite C-linear combination paths cij +C27, +
\- chlk, 7- € V (possibly of different lengths), such that the paths in the combination

have the same source and the same range. An ideal 3 in CV is called admissible in case
it is generated by a finite number of relations and is nested between J\ and Jn, for some
finite n, where Jk consists of all functions in CV that are supported on Uĵ fc Q^• For
our purposes, one of the basic theorems about finite-dimensional algebras over C is that
every such algebra is (algebraically) Morita equivalent to a quotient CV/J, where CV
is the path algebra of a suitable quiver and 3 C CV is an admissible ideal. Since we
are dealing with finite-dimensional objects, this fact may also be stated: every finite-
dimensional operator algebra is cfr-Morita equivalent, in the sense of [2], to T+{EQ)/3

for a suitable quiver Q and admissible ideal 3 C CV, where 3 is the closure of 3 in
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T+(EQ). Thus, quotients of tensor algebras of C*-correspondences contain models for all
finite-dimensional operator algebras.

Observe that (the closures of) admissible ideals satisfy hypotheses (HI) and (H3)
above. They need not satisfy hypothesis (H2), however. An admissible ideal will satisfy
this hypothesis provided it is spanned by the homogeneous relations it contains. (A
relation is homogeneous if the paths entering into it all have the same length.) Assuming
this, then since hypothesis (H4) is automatic, we see that the C*-envelope OIT+{EQ)/3

is calculated by our theorem if the intersection of the annihilators in hypothesis (H5)
vanishes. This can, in principle, be decided for each prescribed quiver.

Better still, even if the annihilation condition is not satisfied, one can still calculate
the Shilov boundary ideal, and, ultimately, the C*-envelope of the quotient T+(EQ)/3,

assuming homogeneity of 3. This is quite complicated to articulate in general, but it is
illustrated by the following example, which also shows that conditions on the annihilators
are necessary in order to calculate C*-envelopes of the quotients we are contemplating.

Example 4.1. Continuing with the notation just established, observe that every ideal
in A is given by a projection in A. The annihilator of EQ, ann(i?q), consists of those
functions on V that are supported in the complement of the range of s. Assume this com-
plement is non-empty and write ann(-Eq) = FA, where F is its characteristic function.
Also, assume that k(Eo) is proper and write k{Eo) = GA, where G is the characteris-
tic function of the complement of r(Q). For our ideal 3 in the tensor algebra T+{EQ),

simply take 3 = J2. Hypotheses (H1)-(H3) are satisfied immediately. Hypothesis (H4) is
satisfied because EQ is finite dimensional. What is at issue is hypothesis (H5).

In our setting, P = P2 and K{PT{EQ)) = K(A © EQ). Hypothesis (H5) becomes
FG1- = 0. So, in general, the C*-envelope of T+{EQ)/3 might differ from K{A © EQ).
In fact, it is our aim here to show that the C*-envelope is always K(A{1—FG1-)®EQ). For
this we set 3\ = AFG1- (C A) and show that K{PT{EQ)3\) is the maximal boundary
ideal (i.e. the Shilov ideal) in K{PF{EQ)) for PT+(EQ)P.

First note that ann(£lg)nann(/c(£'e)) = AFG1- (= Ji) and it follows from the proof of
Theorem 3.2 that for every non-zero ideal 30 C A with Jo $£ 3i, K(PJT(EQ)3Q) is not a
boundary ideal. Hence, it suffices to show that K(PT{EQ)3{) is a boundary ideal. Let Q
be the projection onto A{I-FGL)@EQ. Note that K(PT(EQ)3i) = K((A®EQ)31) =
K((A © EQ)AFG-L) = KiAFG1). Hence, the quotient K(PJr(EQ))/K(PJr(EQ)3i)
can be identified with K(QF(EQ)), and the quotient map becomes the compression by
Q, using this identification.

It suffices to prove that the map PTP i-t QTQ, T € T+(EQ), is a complete isometry.
Since this map is multiplicative on K(A © EQ), it follows that

(P-Q)T(P-Q), TeT+(EQ),

and it is enough to show that the map

QTQ .—> (P - Q)T(P -Q), Te T+(EQ),

is completely contractive.
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Note that P - Q is the projection onto AFG-1 and that AFGL ®A EQ = AF®A EQ ^
<P(AF)EQ. If we write R for the projection onto <P(AF)EQ we can, for T 6 T+(EQ),

identify (P - Q)T(P - Q) <g> I E Q with RTR and, thus, the map

(P - Q)T(P - Q) ^ RTR, TeT+(EQ),

is a complete isometry. As /? < Q, the map

QTQ —> (P - Q)T(P - Q), TeT+(EQ),

is completely contractive. This completes the proof. D

The heart of any study of an algebra of the form T+{E)/3 (indeed of any abstractly
presented operator algebra in general) is to find an effective means of realizing it com-
pletely isometrically in some C*-algebra. That is the role of hypotheses (H1)-(H3) in this
paper. One might ask, however, if perhaps the following straightforward, naive approach
might work. Simply identify 3 with {£ € F(E) | T5 € 3}, form its closure in T{E), and
compress to its orthogonal complement, assuming the closure is complemented. This sug-
gestion was made in [8, p. 349]. We conclude with an example that shows this approach
to be ineffective in general, and, therefore, that some hypotheses are needed to imbed
T+(E)/3 nicely in a C*-algebra. We chose the ones that we did because of their connec-
tion with the finite-dimensional, purely algebraic situation.

Example 4.2. Let (Q,V,r,s) be the quiver with but one vertex v and two arrows
ai and a2 from v to v. Then A = C and EQ is two-dimensional Hilbert space, but
with the inner product conjugate linear in the second variable. Then T+(EQ) is the non-
commutative disc algebra studied by Popescu in [13]. The path space V is simply the
free monoid on the two generators, a.\ and 0:2, with v serving as the identity. The Fock
space correspondence ^{EQ) is simply (.2{V) and has an orthonormal basis consisting of
the characteristic functions of the words in a\ and 0:2 and the function 1{V}-

The map that sends a\ to the matrix unit e\2 in M2(C) and sends «2 to e2i extends
to a completely contractive representation p of T+(EQ) onto M2(C). (The fact that
p is completely contractive follows from the fact that p(a\)p(a{)* + p(a2)p{a2)* =
ei2e*2 + £i\z\\ = 1 and Popescu's dilation theorem [12] (see also [9, Theorem 3.9 and
Corollary 3.15]).) Let 3 be the kernel of this representation. We aim to show that 3 is
dense in £2(P). For £ € (.2(V), we write £,(w) for the Fourier coefficient determined by
w € V, i.e. £(w) = (1{W),£), where 1^} is the characteristic function of {w}. Suppose
that £ is orthogonal to 3 and observe that if w is any non-empty word ending, say. in
ai , then 1{^} — I{w(a2ai)n} n e s m 3 f°r a u n^ 0. Likewise, if w ends in a2, then 1{W} —
l{™(aia2)"} € 3 f°r a n n ^ 0. Since £ 1 3, we have £(w) = £(u>(a2ai)™) -> 0, if w ends
in a i , and this implies that £(w) = 0. Likewise, i(w) = 0, if w ends in Q2. That leaves us
to show i(v) = 0. However, since p(lv) = 1 = ei2e*2 + e^eli = p(l{Qia2}) +p(l{a2ai})>
we see that 1,, - (l{QlQ2(Qla2)"} + l{a2ai(a2ai)">}) S 3 for all rn,n ^ 0; and again we
conclude that £(v) = 0. D
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