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Singular Integrals on Product Spaces
Related to the Carleson Operator

Elena Prestini

Abstract. We prove Lp(T
2) boundedness, 1 < p ≤ 2, of variable coefficients singular integrals that

generalize the double Hilbert transform and present two phases that may be of very rough nature.

These operators are involved in problems of a.e. convergence of double Fourier series, likely in the role

played by the Hilbert transform in the proofs of a.e. convergence of one dimensional Fourier series.

The proof due to C.Fefferman provides a basis for our method.

1 Introduction

After the initial papers [7, 8], the theory of singular integrals on product spaces
Rn × Rm received further contributions [15, 17, 19, 20]. R. Fefferman and E. M.

Stein [8], motivated by some boundary-value problems, introduced singular inte-
grals whose kernel K(x ′, y ′) cannot be written in the form K1(x ′)K2(y ′) so that their
Lp boundedness cannot be obtained immediately by an iteration argument. As an
example we mention the singular integral

∫∫

D

1

x ′

1

y ′
f (x − x ′, y − y ′) dx ′dy ′

in case D is a subset of R2 symmetric with respect to the origin, but not a rectangle, as

defined, for instance, by |y ′| > |x ′|.Under some smoothness conditions on K(x ′, y ′)
— in our example this means some regularity on the cutoff associated with the set
D — they proved Lp boundedness, 1 < p < ∞, of the singular integrals as well as
maximal inequalities.

Open problems of convergence almost everywhere of double Fourier series are the
motivation of this paper. Let us mention the a.e. convergence of the square partial
sums SNN for Walsh series [11] and of the rectangular partial sums SNN2 , for Fourier
series [2, 4] and Walsh series as well, acting on Lp(T2) spaces, 1 < p < 2. We will

introduce operators that belong to the family of singular integrals with variable coef-
ficients and generalize the double Hilbert transform in a radical new way. Their main
feature is a variable phase possibly of very rough nature.

The a.e. convergence of the partial sums SN f for one-dimensional Fourier series of

Lp functions, 1 < p <∞, has been obtained by proving Lp estimates for the maximal
partial sums operator supN |SN f (x)|. This is controlled by the Carleson operator,
which shows a bounded integer valued phase n(x) as follows

C f (x) =

∫ π

−π

ein(x)x ′

x ′
f (x − x ′) dx ′,
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provided the Lp estimates are independent on n(x) and its L∞ norm. The proofs
[1, 5, 12, 16] rely on the maximal Hilbert transform, with the Hilbert transform itself

defined for any real number ξ0, as follows:

H1 f (x) =

∫ π

−π

eiξ0x ′

x ′
f (x − x ′) dx ′.

This operator, being equal to eiξ0xH(eiξ0x ′

f (x ′))(x), is immediately reduced to the
standard Hilbert transform H. Let us observe that H1 is just the Carleson operator in
the special case in which n(x) is replaced by a constant.

We are concerned with singular integrals that in two dimensions, relative to the
open problems mentioned above, appear to play the basic role that the Hilbert trans-
form H1 plays in the one dimensional proofs. As one might expect, the Carleson
operator will be involved.

Let us consider initially the square partial sums. The operator supN |SNN f (x, y)|
leads to the following singular integral

∫ π

−π

∫ π

−π

eiN(x,y)x ′

x ′

eiN(x,y)y ′

y ′
f (x − x ′, y − y ′) dx ′dy ′

with N(x, y) any bounded integer valued function. Let us replace the phase N(x, y)
by a function depending on one variable only. We denote such a function by M(x).
If the order of integration is as follows

∫ π

−π

eiM(x)y ′

y ′

(∫ π

−π

eiM(x)x ′

x ′
f (x − x ′, y − y ′) dx ′

)
dy ′,

the operator is seen to be equal to eiM(x)yHy ′(e−iM(x)y ′

Cx ′ f (x, y ′))(y). Hence it re-
duces to the Carleson operator C acting on the variable x ′ followed the Hilbert trans-
form H acting on the variable y ′. The order of integration ought to be reversed to
decode the above operator, if N(x, y) were replaced by a function R(y).

Now we observe that it is only natural to split (smoothly) the domain of integra-
tion into two regions |y ′| > |x ′| and |y ′| < |x ′|, giving rise to two similar operators.
All this led us to study the following singular integral

(1)

∫ π

−π

eiM(x)y ′

y ′

(∫

|x ′|<|y ′|

eiM(x)x ′

x ′
f (x − x ′, y − y ′) dx ′

)
dy ′.

We prove its Lp(T2) boundedness, 1 < p ≤ 2, with norm independent on M(x) and
its L∞ norm. If the phase N(x, y) were replaced by R(y) our proof will run similarly,
with the order of integrations reversed.

We also consider the rectangular partial sums SNN2 f . In this case the singular
integral to which we are led has the phases changed accordingly and the domain of
integration split differently. The natural (smooth) subdivision is still along a straight
line, though its slope depends on M(x) as follows

(2)

∫ π

−π

eiM2(x)y ′

y ′

(∫

|x ′|<M(x)|y ′|

eiM(x)x ′

x ′
f (x − x ′, y − y ′) dx ′

)
dy ′.
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We shall also prove maximal inequalities relatively to (1) and (2). In [21] these results
will find a first application to the mentioned a.e. convergence problems.

Our method which makes use of the full structure of the proof of the a.e. conver-
gence of Fourier series given in [5] requires, in turn, the boundedness of the operators

obtained by replacing all phases in (1) and (2) by constants. Singular integrals with
domains of integration depending on one space variable — the x variable in (2) —
and constant phases were studied in [17] to be applied in [18].

2 Notations and Statement of Results

To smoothly define our kernels, we need a smooth partition of unity. We decompose
the kernel 1

x ′ by writing ψk(x ′) = 2kψ(2kx ′), ψ(x ′) being a C∞ function supported
on {|x ′ |≤ 2π} such that 1

x ′ =
∑∞

k=0 ψk(x ′) for |x ′| ≤ π.

For i = 1, 2, 3 we shall consider the operators Pi , defined in principal value, as
follows

P1 f (x, y) =

∞∑

h=0

eiM(x)y ′

ψh(y ′)
∑

k≥h

eiM(x)x ′

ψk(x ′) ∗ f (x, y),

P2 f (x, y) =

∞∑

h=0

eiαM(x)y ′

ψh(y ′)
∑

2−k≤(2−hα,1)

eiM(x)x ′

ψk(x ′) ∗ f (x, y),

P3 f (x, y) =

∞∑

h=0

eiM2(x)y ′

ψh(y ′)
∑

2−k≤(2−h4M(x),1)

eiM(x)x ′

ψk(x ′) ∗ f (x, y),

where we assume α ≥ 1, M(x) ≥ 1 and denote by (β, γ) = min[β, γ]. We shall

prove the following:

Theorem 1 Let M(x) be a bounded real valued function greater or equal to one. Then

the operators Pi f , i = 1, 2, 3 defined above, are bounded from Lr(T2) to Lp(T2), 1 <
p < r ≤ 2, with norm independent of f , α, M(x) and its L∞ norm.

Maximal inequalities, as well as a stronger result in L2, hold. In [20] we proved
the following theorem relative to even more general operators.

Theorem 2 Let M1(x) and M2(x) be bounded real valued functions. Then the opera-

tor

P0 f (x, y) =

∞∑

h=0

eiM2(x)y ′

ψh(y ′)
∑

2−k≤r(h,x)

eiM1(x)x ′

ψk(x ′) ∗ f (x, y)

is bounded from L2(T2) to itself with norm independent of any measurable 0 <
r(h, x) ≤ 1, of the phases M1(x),M2(x) and their L∞ norms. Moreover the maximal
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operator P̃0 satisfies the following pointwise inequality

P̃0 f (x, y) = sup
h0

∣∣∣∣
∑

h≤h0

eiM2(x)y ′

ψh(y ′)
∑

2−k≤r(h,x)

eiM1(x)x ′

ψk(x ′) ∗ f (x, y)

∣∣∣∣

≤ c{My ′C̃x ′ f (x, y) + My ′P0 f (x, y)}.

Above we denote the Hardy–Littlewood maximal function acting on the variable y ′

by My ′ and the maximal Carleson operator acting on x ′ [14, 17] by C̃x ′ .
The paper is organized as follows: (a) Decomposition; (b) Admissible pairs;

(c) Incomparable pairs; (d) Trees and branches B1 and B2; (e) Main lemmas for B2;
(f) Main lemmas for B1; (g) Proof of Theorem 1.

We shall prove Theorem 1 for the operator P = P1 and give indications of the
changes to be made for P2 and P3. The proof proceeds by showing appropriate two

dimensional analogues of Lemma 0–5 of [5], whose ending combinatorics are used
unaltered. The study of trees and branches is based on the Lp boundedness, 1 < p <
∞, of P0 in case of constant phases M1(x) and M2(x), proved in [17].

3 Decomposition

To a pair p = [ω, I] consisting of dyadic intervals ω ⊆ R and I ⊆ T, |I| = 2−k (the
Lebesgue measure on T is normalized to dx

2π ) and |ω| = |I|−1, with the associated

set Ep = {x ∈ I|M(x) ∈ ω}, in [5] there corresponds the one-dimensional oper-

ator Tpg(x) = [eiM(x)x ′

ψk(x ′) ∗ g(x)]χEp
(x) and in our paper the two-dimensional

operator

Sp f (x, y) =

[∑

h≤k

eiM(x)y ′

ψh(y ′)eiM(x)x ′

ψk(x ′) ∗ f (x, y)
]
χEp×T(x, y).

It is easily seen that

(3) Sp f (x, y) = eiM(x)yHy ′(e−iM(x)y ′

Tp f (x, y ′))(y)

for every y ∈ T, where Hy ′ denotes a truncated Hilbert trasform. To complete the
understanding of Sp f recall that |Tpg(x)| ≤ c(AvI∗ |g|)χEp

(x) where I∗ is the double

of I and AvI∗ |g| =
1

|I∗|

∫
I∗
|g(x ′)|dx ′.

Then
P f (x, y) =

∑

p∈B

Sp f (x, y),

where B denotes the set of all pairs p = [ω, I].
Pairs will be subdivided into collections Fn = {p ∈ B | 2−n−1 < A(p) ≤ 2−n}

depending upon the number

A(p) = sup
p ′

=[ω ′,I ′]

I⊆I ′

|Ep ′ |

|I ′|

( distance (ω, ω ′) + |ω|

|ω|

)−2000
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manifestly related to ||Tp||
2
2
∼=

|Ep|
|I| . Then B =

⋃∞
n=0 Fn.

A partial order is defined among pairs, namely p ≺ p ′ if and only if I ⊆ I ′ and

ω ⊇ ω ′.

4 Admissible Pairs

For any dyadic interval ω ⊆ R, let ω̃ be the next larger dyadic interval containing ω,

and let ω∗ be the double of ω. We say that ω is central if ω∗ ⊆ ˜̃ω and that [ω, I] ∈ B

is admissible if ω is central.

In [5], by means of Lemma 0, it has been proved that it suffices to study

∑

p∈B

padmissible

Tpg(x)

in place of
∑

p∈B
Tpg(x). Similarly we have

Lemma 4.1 P f (x, y) = 2 limN→∞
1

2N

∫ N

−N
Pξ f (x, y)dξ where Pξ is defined, with

respect to a new dyadic grid Gξ centered at ξ, as P is defined with respect to the dyadic

grid G centered at ξ = 0.

Therefore we are allowed to consider only admissible pairs p. Henceforth, we will

denote by

P f (x, y) =

∑

p∈B

p admissible

Sp f (x, y)

5 Incomparable Pairs

Given any collection Q of pairs, no two of which are comparable under ≺ (therefore
the Tpg(x)’s live on two by two disjoint sets Ep) and such that A(p) ≤ δ for all p ∈ Q ,
it is proved in [5] that

(4)
∥∥∥

∑

p∈Q

Tpg(x)
∥∥∥

r
≤ cη,rδ

1

2r ′
−η‖g‖r (any η > 0)

where 1
r

+ 1
r ′

= 1 and 1 < r ≤ 2. (See Lemma 2 of [5] and Lemma 2 ′ of [6]).

Similarly we are going to prove that

Lemma 5.1 Let Q be a set of pairs no two of which are comparable under ≺. Assume

A(p) ≤ δ for all p ∈ Q . Then for 1 < r ≤ 2,

∥∥∥
∑

p∈Q

Sp f (x, y)
∥∥∥

r
≤ cη,rδ

1

2r ′
−η‖ f ‖r (any η > 0).
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Proof The operators Sp f (x, y) live on two by two disjoint sets Ep × T. Therefore

∥∥∥
∑

p∈Q

Sp f (x, y)
∥∥∥

r

r
=

∑

p∈Q

‖Sp f (x, y)‖r
r.

By (3) and the boundedness of the truncated Hilbert transform Hy ′ ,

∑

p∈Q

‖Sp f (x, y)‖r
Lr (dxdy) ≤ cr

∑

p∈Q

‖Tp f (x, y ′)‖r
Lr(dxdy ′)

for almost every x fixed. Then the lemma is proved by exchanging the order of inte-
gration at the right-hand side and applying (4).

Remark 5.2 Lemma 5.1 holds as well for P2 f (x, y). The only change has to do
with the truncation of Hy ′ : for a fixed p = [ω, I], |I| = 2−k, the truncation will be at

2−h ≥ 2−k

α instead of 2−h ≥ 2−k.

Remark 5.3 Lemma 5.1 holds as well for P3 f (x, y). Because of Remark 5.2 the

truncation of Hy ′ is fixed at 2−h ≥ 2−k

4M(x)
, since x is fixed due the chosen order of

integration.

6 Trees and Branches

Recall that a tree P with top p0
= [ω0, I0] is defined to be a set of pairs with the

properties

(a) p ≺ p ′ ≺ p ′ ′, p ′ admissible and p, p ′′ ∈ P imply p ′ ∈ P;

(b) p ≺ p0 for all p ∈ P.

The corresponding operator, supported on E =
⋃

p∈P Ep, is

Tg(x) =

∑

K0(x)≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ g(x),

where D = {k ≥ 0 | ω(k) is central}. Let us state Lemma 3 of [5] and the relevant
features of its proof.

Lemma 6.1 ( [5, Lemma 3]) Let P be a tree with top p0
= [ω0, I0] and suppose

A(p) ≤ δ for all p ∈ P. Then ‖T‖r ≤ crδ
1
r , 1 < r ≤ 2.

Proof The proof is based on the following decomposition of T where ξ0, the mid-
point of ω0, is assumed to be zero without loss of generality and where

(5) |eiM(x)x ′

− 1| ≤ |M(x)||x ′| < 2K0(x)|x ′| ≤ 1.
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Then
(6)

|Tg(x)| ≤

∣∣∣∣
∑

K0(x)≤k≤K1(x)
k∈D

ψk(x ′) ∗ g(x)

∣∣∣∣

+

∣∣∣∣
∑

K0(x)≤k≤K1(x)
k∈D

(eiM(x)x ′

− 1)ψk(x ′) ∗ g(x)

∣∣∣∣

≤ c
[

sup
σ≥2−K1(x)

( 1

2σ

∫ σ

−σ

|R ∗ g(x + z)| dz
)

+ sup
σ≥2−K1(x)

( 1

2σ

∫ σ

−σ

|g(x + z)| dz
)

+ 2K0(x)χ|x ′|≤2−K0(x) (x ′) ∗ |g|(x)
]

≤ cM0g(x) + cM0(R ∗ g)(x)

where R(x ′) =
∑

k∈D ψk(x ′).

Denote by {Is} the maximal dyadic subintervals of I0, such that
|E(ωI ,I)|

|I| > δ. Set

Ẽs = E(ωĨs
, Ĩs) and Es = Ẽs ∩ Is. Then {Is} is a non-trivial partition of I0,

|Es|
|Is|

≤ cδ,

and if [ω, I] ∈ P, I ∩ Is 6= ∅ then Ĩs ⊆ I and Ep ∩ Is ⊆ Es. We define, for x ∈
Is, M0g(x) = supIs⊆I

1
|I|

∫
I
|g(x ′)|dx ′ if x ∈ Es and M0g(x) = 0 if x /∈ Es. Therefore

||M0||r ≤ crδ
1
r (see also [5, (9)]). This proves the lemma.

Remark 6.2 Equation (6) also holds for

∑

h≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ g(x),

any K0(x) ≤ h ≤ K1(x), since |M(x)||x ′| ≤ 2K0(x)2−h ≤ 1. Therefore

sup
K0(x)≤h≤K1(x)

∣∣∣∣
∑

h≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ g(x)

∣∣∣∣ ≤ cM0g(x) + cM0(R ∗ g)(x).

Associated to a tree P we are going to consider the two-dimensional operator

B f (x, y) =

∞∑

h=0

eiM(x)y ′

ψh(y ′)
∑

K0(x)≤k≤K1(x)
k∈D
k≥h

eiM(x)x ′

ψk(x ′) ∗ f (x, y)

if (x, y) ∈ E × T; B f (x, y) = 0 otherwise. We split B into two branches B1 f (x, y)
and B2 f (x, y) that live on E × T where

B1 f (x, y) =

∑

K0(x)≤h≤K1(x)

eiM(x)y ′

ψh(y ′)
∑

h≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ f (x, y)
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and

B2 f (x, y) =

∑

h≤K0(x)

eiM(x)y ′

ψh(y ′)
∑

K0(x)≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ f (x, y).

B2 is the easiest since its domain of integration is a rectangle. Clearly B = B1 + B2.

We are going to prove

Lemma 6.3 If P is a tree and A(p) ≤ δ for all p ∈ P then ‖B‖r ≤ crδ
1
r , 1 < r ≤ 2.

Proof We have (see also (3))

(7) B2 f (x, y) = eiM(x)yHy ′(e−iM(x)y ′

T f (x, y ′))(y),

where Hy ′ denotes here the Hilbert transform truncated at 2−K0(x), a fixed truncation
since x is fixed. Therefore for almost every x fixed

‖B2 f (x, y)‖Lr (dy) ≤ cr‖T f (x, y ′)‖Lr (dy ′).

Now integrating in dx both sides, exchanging the order of integration on the right-
hand side and applying Lemma 6.1 we obtain

(8) |B2 f ‖r ≤ crδ
1
r ‖ f ‖r.

We are left to prove

(9) ‖B1 f ‖r ≤ crδ
1
r ‖ f ‖r.

This will be done by writing B1 f (x, y) as a sum of two terms

B1 f (x, y) = main f (x, y) + error f (x, y)

defined in (10) and (13) below. We are assuming ξ0 midpoint of ω0, to be equal to
zero without loss of generality. Then

(10) main f (x, y) =

∑

K0(x)≤h≤K1(x)

ψh(y ′)
∑

K0(x)≤h≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ f (x, y)

=

∑

h≤K1(x)

ψh(y ′)
∑

K0(x)≤h≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ f (x, y)

−
∑

h≤K0(x)

ψh(y ′)
∑

K0(x)≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ f (x, y).
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The second term, somewhat simpler than B2, satisfies (8). For the first term we prove
that

(11)∣∣∣∣
∑

h≤K1(x)

ψh(y ′) ∗
∑

K0(x)≤h≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ f (x, y)

− θK1(x)(y ′) ∗

∞∑

h=0

ψh(y ′) ∗
∑

K0(x)≤h≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ f (x, y)

∣∣∣∣

≤ c2−K1(x)χ|y ′|<2−K1(x) (y ′) ∗ sup
K0(x)≤h≤K1(x)

∣∣∣∣
∑

h≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ f (x, y ′)

∣∣∣∣ (y)

+ c2−K1(x)χ| ȳ|<2−K1(x) (ȳ) ∗

∣∣∣∣
∞∑

h=0

ψh(y ′) ∗
∑

K0(x)≤h≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ f (x, ȳ)

∣∣∣∣ (y)

+ c
2−K1(x)

(y ′)2 + 2−2K1(x)
∗ sup

K0(x)≤h≤K1(x)

∣∣∣∣
∑

h≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ f (x, y ′)

∣∣∣∣ (y)

where θ(y ′) is a positive C∞ function supported on {|y ′ |≤ 1} such that

∫ 1

−1

θ(y ′) dy ′
= 1 and θh(y ′) = 2hθ(2h y ′).

For if |y ′| ≤ 1002−K1(x), then
∑

h≤K1(x) |ψh(y ′)| ≤ c2K1(x) and also ‖θ̌K1(x)‖1 ≤

c2K1(x). If |y ′| > 1002−K1(x), then
∑∞

h=0 ψh(y ′) =
∑

h≤K1(x) ψh(y ′) and therefore

∣∣∣
∑

h≤K1(x)

ψh(y ′) − θK1(x)(y ′) ∗

∞∑

h=0

ψh(y ′)
∣∣∣

=

∣∣∣
∫ ∑

h≤K1(x)

(ψh(y ′) − ψh(y ′ − y ′ ′))θK1(x)(y ′ ′) dy ′′
∣∣∣

≤ c

∫ ∑

h≤K1(x)

|ψ ′
h(ỹ)|2−K1(x)θK1(x)(y ′ ′) dy ′′

≤ c
2−K1(x)

(y ′)2

for a suitable ỹ = ỹ(y ′ ′). Now (11) implies the following inequality for the first term
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on the right-hand side of (10)

(12)
∣∣∣

∑

h≤K1(x)

ψh(y ′) ∗
∑

K0(x)≤h≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ f (x, y)
∣∣∣

≤ cMy ′ sup
K0(x)≤h≤K1(x)

∣∣∣∣
∑

h≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ f (x, y ′)

∣∣∣∣ (y)

+ My ′

( ∞∑

h=0

ψh(y ′) ∗
∑

K0(x)≤h≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ f (x, y ′)
)

(y).

Both terms on the right-hand side of (12) satisfy (9), as we shall prove, due to their
action on the x ′ variable. For the first of the two, this is Remark 6.2, since

sup
K0(x)≤h≤K1(x)

∣∣∣∣
∑

h≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ f (x, y ′)

∣∣∣∣

≤ sup
K0(x)≤h≤K1(x)

[
cM0 f (x, y ′) + cM0(R ∗ f )(x, y ′)

+ 2hχ|x ′|≤2−h (x ′) ∗ f (x, y ′)
]

≤ cM0 f (x, y ′) + cM0(R ∗ f )(x, y ′).

For the second term, we set

H3 f (x, y) =

∞∑

h=0

ψh(y ′) ∗
∑

K0(x)≤h≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ f (x, y).

H3 can be studied as in [17, Theorem 3]. We gain a factor of δ
1
r , needed for (9), by

pointing out that every time the maximal function Mx ′ appears in the proof of [17,
Theorem 3], we can write M0 in the present case. We sketch this.

For almost every x fixed,

‖H3 f (x, y)‖Lr (dy)
∼=

∥∥∥
(∑

J

|S JH3 f (x, y)|2
) 1

2
∥∥∥

Lr(dy)

by an application of the classical Littlewood–Paley S-function acting on the variable

y ′. With J = [2h̄, 2h̄+1), h ⋚ 0 (and then J = (−2h̄+1,−2h̄]),

|S JH3 f (x, y)| =

∣∣∣
∫

J

eiηy
∑

h

{∫ η

2h̄

(ψ̂h) ′(t) dt + ψ̂h(2h̄)
}

×
∑

K0(x)≤h≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ f̂ (x, η) dη
∣∣∣

≤ |S(1)
J H3 f (x, y)| + |S(2)

J H3 f (x, y)|
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where

|S(2)
J H3 f (x, y)| ≤

∞∑

h=0

|ψ̂h(2h̄)| sup
K0(x)≤h≤K1(x)

∣∣∣∣
∑

h≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ S J f (x, y)

∣∣∣∣

≤ cM0S J f (x, y) + M0(C ∗ S J) f (x, y)

by exchanging the order of integration, with Cg(x) =
∑

k∈D eiM(x)x ′

ψk(x ′) ∗ g(x)

denoting a kind of Carleson operator [22]. We have used the inequality C̃g(x) ≤
Mg(x) + MCg(x) for the Carleson maximal operator. By vector valued estimates for
the maximal function and for the Carleson operator itself [9, Theorem 6.4, p. 519],

we have

∥∥∥
(∑

J

|S(2)
J H3 f (x, y)|2

) 1
2
∥∥∥

r

Lr(dxdy)
≤ cδ

∥∥∥
(∑

J

|S J f (x ′, y)|2
) 1

2
∥∥∥

r

Lr(dx ′dy)

≤ δ‖ f ‖r
Lr(dx ′dy ′).

Next is

|S(1)
J H3 f (x, y)|

≤

∫

J

∞∑

h=0

|(ψ̂h) ′(t)| sup
K0(x)≤h≤K1(x)

∣∣∣∣
∑

h≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ St S J f (x, y)

∣∣∣∣ dt

≤ c

∫

J

∞∑

h=0

|(ψ̂h) ′(t)|
[
M0St S J f (x, y) + similar term

]
dt

≤ c

(∫

J

|M0St S J f (x, y)|2 dγ(t)

) 1
2

+ similar term

by exchanging the order of integration again. Here dγ(t) =
∑

h |(ψ̂h) ′(t)| and St

denotes the multiplier transformation corresponding to the interval [t, 2h̄+1).

Then by a continuous version of vector valued estimates for the maximal function
we obtain

∥∥∥
(∑

J

|S JH3 f (x, y)|2
) 1

2
∥∥∥

r

Lr(dxdy)
≤ cr

∥∥∥
(∫ ∞

0

|M0St S J f (x, y)|2 dγ(t)
) 1

2
∥∥∥

r

Lr (dxdy)

≤ crδ
∥∥∥

(∫ ∞

0

|St S J f (x ′, y)|2 dγ(t)
) 1

2
∥∥∥

r

Lr(dx ′dy)

≤ crδ
∥∥∥

(∑

J

∫

J

|S J f (x ′, y)|2 dγ(t)
) 1

2
∥∥∥

r

Lr (dx ′dy)
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≤ crδ
∥∥∥

(∑

J

|S J f (x ′, y)|2
) 1

2
∥∥∥

r

Lr (dx ′dy)

≤ crδ‖ f ‖r
Lr (dx ′dy ′)

by [23, Theorem 4 ′′, p. 103], by the fact
∫

J
dγ(t) ≤ c and by Littlewood–Paley

theorem again. This concludes the proof of ‖ main ‖r ≤ crδ
1
r .

Next is
(13)

error f (x, y) =

∑

K0(x)≤h≤K1(x)

(
eiM(x)y ′

− 1
)
ψh(y ′)

∑

h≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ f (x, y).

By (5) and (6)

|error f (x, y)|

≤
∑

K0(x)≤h≤K1(x)

|eiM(x)y ′

− 1||ψh(y ′)|

∣∣∣∣
∑

h≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ f (x, y)

∣∣∣∣

≤ c
∑

K0(x)≤h≤K1(x)

|eiM(x)y ′

− 1||ψh(y ′)|[M0 f (x, y ′) + M0(R ∗ f )(x, y ′)]

≤ c2K0(x)χ|y ′|≤2−K0(x) (y ′) ∗ [M0 f (x, y ′) + M0(R ∗ f )(x, y ′)](y)

≤ cMy ′M0 f (x, y) + cMy ′M0(R ∗ f )(x, y)

Therefore ‖error‖r ≤ crδ
1
r because this estimate holds for M0. Thus (9) is proved

and therefore Lemma 6.3.

In the above proof, the role of Carleson operator could be taken by the Hilbert
transform: it suffices also to replace the other occurrence of M(x) in the definition

of main f , by the very same constant ξ0 (that was assumed to be zero). More error
terms correspond to this choice.

Remark 6.4 The analogue of Lemma 6.3 holds for P = P2 as well. Clearly (7)
holds the corresponding B2, namely

∑

2−h≥ 2−K0(x)

α

eiαM(x)y ′

ψh(y ′)
∑

K0(x)≤k≤K1(x)
k∈D

eiM(x)x ′

ψk(x ′) ∗ f (x, y)

and similarly for the main term of the corresponding B1 defined in (10). For instance
the first term, on the right-hand side in the analogue of (10), satisfies the correspond-
ing estimate (12). Therefore its Lr norm is dominated by crδ

1
r since

sup
2−K1(x)

α ≤2−h≤ 2−K0(x)

α

∣∣∣∣
∑

2−K1(x)≤2−k≤α2−h

k∈D

eiM(x)x ′

ψk(x ′) ∗ f (x, y ′)

∣∣∣∣

≤ cM0 f (x, y ′) + cM0(C ∗ f )(x, y ′)
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For the “error term” in the analogue of (13) it suffices to observe that

∑

2−K1(x)

α ≤2−h≤ 2−K0(x)

α

|eiαM(x)y ′

− 1||ψh(y ′)|

≤ α|M(x)| |y ′|
∑

2−K1(x)

α ≤2−h≤ 2−K0(x)

α

|ψh(y ′)|

≤ α2K0(x)χ
|y ′|≤ 2−K0(x)

α

(y ′)

Therefore the corresponding operator is dominated by My ′ .

Remark 6.5 Lemma 6.3 holds for P = P3 as well. Regarding H3, the summation

over k now becomes 2−K1(x) ≤ 2−k ≤ 2−h4M(x) ≤ 2−K0(x) and the estimates involv-
ing the maximal function M0 still hold, since M0 is related to the unaffected lower
bound 2−K1(x).

Regarding (13) we write the error term of the present case with ξ0 generic and
observe that the estimate now involves

∑

2−K1(x)

4M(x)
≤2−h≤ 2−K0(x)

4M(x)

|eiM2(x,y)y ′

− e−iξ2
0 y ′

| |ψh(y ′)|,

which is still dominated by My ′ since

|M2(x) − ξ2
0 | |y

′| < 4M(x)|M(x) − ξ0| |y
′| ≤ 1.

7 Main Lemmas for B2

Since B2 has been decoded in (7), we can imediately state

Main Lemma 1 Let {P j} be a family of trees with tops [ω0
j , I

0
j ]. Assume that

[ω0
j , I

0
j ] ∈ P j for each j and that

(a) A(p) < δ for any p ∈ P j ;

(b) p 
 p ′ for any p ∈ P j , p ′ ∈ P j ′ , j 6= j ′;

(c) no point of [0, 2π] belongs to more than Kδ−20 of the I0
j .

Then there exists a set F ⊂ [0, 2π], |F| ≤ c δ
100

K
, with the property

∥∥∥
∑

j

B
P j

2 f (x, y)
∥∥∥

L2(cF×T)
≤ cη(lg K)δ

1
4
−η‖ f ‖L2(T2) (any η > 0)

for all f ∈ L2(T2) and every K > 10.
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Proof Due to property (b) the operators TP j g(x) live on two by two disjoint sets E j .
Therefore

∥∥∥
∑

j

TP j g(x)
∥∥∥

2

L2(cF )
=

∑

j

∥∥TP j g(x)
∥∥ 2

L2(cF )

≤ cη(lg K)2δ
1
2
−η‖g‖2

2

by [5, Main Lemma]. Therefore by (7) the B
P j

2 f (x, y) live on two by two disjoint sets
E j × T and

∥∥∥
∑

j

B
P j

2 f (x, y)
∥∥∥

2

L2(cF×T)
=

∑

j

∥∥B
P j

2 f (x, y)
∥∥ 2

L2(cF×T)

≤
∑

j

∥∥TP j f (x, y ′)
∥∥ 2

L2(cF×T)
≤ cη(lg K)2δ

1
2
−η‖ f ‖2

2

by the boundedness of the Hilbert transform Hy ′ .

Now precisely as in [5, p. 570], the Main Lemma in Lr, 1 < r < 2, follows.

Main Lemma 2 Let 1 < r < 2. Under the above assumptions (a), (b) and

(d) no point of [0, 2π] belongs to more than Kδ−1+ρ of the I0
j , where ρ = ρ(r) > 0 is a

small number.

Then there exists a set F ⊆ [0, 2π], |F| ≤ c δρ

KM , any M > 10 and K > K0(r,M) such

that ∥∥∥
∑

j

B
P j

2 f (x, y)
∥∥∥

Lr (cF×T)
≤ cr,ηKa(r)δσ(r)‖ f ‖Lr(T2) (any η > 0)

for all f ∈ Lr(T2), where 0 < a(r) < 1 and σ = σ(r) > 0.

Remark 7.1 The above Main Lemmas hold for the operator P2, by Remark 5.2.

Remark 7.2 The above Main Lemmas hold for the operator P3, by Remark 5.3.

8 Main Lemmas for B1

The goal here is to prove the Main Lemmas, of the preceding section, for B1, also.
Main Lemma 1 requires two-dimensional analogues of Lemma 4 and Lemma 5 of [5].

We recall the definition of normal tree and separated trees, [5, p. 562].
Fix numbers δ > 0 and K > 10. A tree P with top [ω0, I0] is normal if for

[ω, I] ∈ P we have |I| ≤ δ1000

K
|I0|, dist(I, ∂I0) > 3 δ

100

K
|I0| (∂I0is the boundary of I0).

Then TP∗h(x) lives on {x ∈ I0 | dist(x, ∂I0) > 2 δ
100

K
}.

Two trees P with top [ω0, I0] and P ′ with top [ω1, I1] are separated if either
I0∪I1

= ∅ or else

(α) [ω, I] ∈ P, I ⊆ I1 imply dist(ω, ω1) > δ−1|ω|,
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and

(β) [ω ′, I ′] ∈ P ′, I ′ ⊆ I0 imply dist(ω ′, ω0) > δ−1|ω ′|.

Then the following holds:

Lemma 8.1 Let P with top [ω0, I0] and P ′ with top [ω1, I0] be separated trees. Then

‖BP ′

1 BP∗
1 ‖2 ≤ cMδ

M (any M > 0).

Equivalently, |(BP∗
1 f ,BP ′∗

1 g)| ≤ cMδ
M‖ f ‖2‖g‖2 for any f , g ∈ L2(T2).

Proof We are going to show that

BP∗
1 f = Φ ∗ (BP∗

1 f ) + E( f ),(14)

BP ′∗
1 g = Φ

′ ∗ (BP ′∗
1 g) + E

′(g),(15)

where ‖E‖2 ≤ cMδ
M and ‖E ′‖2 ≤ cMδ

M for suitable bump functions Φ and Φ
′.

Define Φ(x ′, y ′) = ϕ(x ′)ϕ(y ′) where ϕ is as in [5], that is ϕ(x ′) is a C∞ function on
R satisfying

(i) ϕ is supported on {|x ′| ≤ δ
1
2 d}, ‖ϕ‖1 ≤ cM ;

(ii) |ϕ̂(ξ)| ≤ cM(δ
1
2 d|ξ−ξ0|)

−2M for all ξ, in particular for |ξ−ξ0| > δ−
1
2 d−1(ξ0 =

midpoint of ω0);
(iii) |ϕ̂(ξ) − 1| ≤ cM(δ

1
2 d|ξ − ξ0|)

2M for all ξ with |ξ − ξ0| ≤ δ−
1
2 d−1, where

d = min{|I| | [ω, I] ∈ P}.

Then Φ(x ′, y ′) is C∞(R2) and it satisfies

(i ′) Φ is supported in {|x ′|, |y ′| ≤ δ
1
2 d} and ‖Φ‖1 ≤ cM ;

(ii ′) |Φ̂(ξ, η)| ≤ cM(δ
1
2 d|ξ − ξ0|)

−2M for all ξ with |ξ − ξ0| > δ−
1
2 d−1 and all η;

(iii ′) |Φ̂(ξ, η)| ≤ cM(δ
1
2 d|η − ξ0|)

−2M for all η with |η − ξ0| > δ−
1
2 d−1 and all ξ;

(iv ′) |Φ̂(ξ, η) − 1| ≤ cM[(δ
1
2 d|ξ − ξ0|)

2M + (δ
1
2 d|η − ξ0|)

2M] for all ξ and η with

|ξ − ξ0| ≤ δ−
1
2 d−1, |η − ξ0| ≤ δ−

1
2 d−1.

Similarly define d ′
= min{|I ′| | [ω ′, I ′] ∈ P ′}, pick ϕ ′ corresponding to P ′ and

consider Φ
′(x ′, y ′). Then

(16) ‖Φ̂ · Φ̂ ′‖L∞(R2) ≤ cMδ
M .

In fact ‖ϕ̂(ξ)ϕ̂ ′(ξ)‖∞ ≤ cMδ
M because P and P ′ are separated.
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To prove (14) we verify the dual statement

E
∗ f (x, y) = BP

1 f (x, y) − BP
1 (Φ ∗ f )(x, y)

=

∑

K0(x)≤h≤K1(x)

(
eiM(x)y ′

ψh(y ′)
)
∗

∑

h≤k≤K1(x)
k∈D

(
eiM(x)x ′

ψk(x ′)
)
∗ f (x, y)

−
∑

K0(x)≤h≤K1(x)

(
eiM(x)y ′

ψh(y ′)
)
∗

(
ϕ ∗

∑

h≤k≤K1(x)
k∈D

(
eiM(x)x ′

ψk(x ′)
)
∗ (ϕ ∗ f )(x, y ′)

)
(y)

for (x, y) ∈ E × T, where E∗ lives. Then, by adding and subtracting the same term,

we write E∗ f = E∗
1 f + E∗

2 f defined in (17) and (19) below.
(17)

E
∗
1 f (x, y) =

∑

K0(x)≤h≤K1(x)

eiM(x)y ′

ψh(y ′)∗

∑

h≤k≤K1(x)
k∈D

[
eiM(x)x ′

ψk(x ′) −
(

eiM(x)x ′

ψk(x ′)
)
∗ ϕ(x ′)

]
∗ f (x, y).

By exchanging the order of summation we obtain

|E∗
1 f (x, y)| ≤

∑

K0(x)≤k≤K1(x)
k∈D

∣∣∣
∑

K0(x)≤h≤k

eiM(x)y ′

ψh(y ′) ∗ Fk(x, y ′)(y)
∣∣∣

≤
∑

2k≤d−1

∣∣ H̃y ′

(
e−iM(x)y ′

Fk(x, y ′)
)

(y)
∣∣ ,

where H̃y ′ denotes the maximal Hilbert transform and

Fk(x, y ′) =
[

eiM(x)x ′

ψk(x ′) −
(

eiM(x)x ′

ψk(x ′)
)
∗ ϕ(x ′)

]
∗ f (x, y ′).

Then obviously
(18)

‖E∗
1 f (x, y)‖L2(dxdy) ≤

∑

2−k≤d−1

‖H̃y ′

(
e−iM(x)y ′

Fk(x, y ′)
)

(y)‖L2(dxdy)

≤ c
∑

2−k≤d−1

‖Fk(x, y ′)‖L2(dxdy ′)

≤
∑

2−k≤d−1

cM(δ
1
2 2kd)2M‖2kχ[−2−k,2−k](x ′) ∗ f (x, y ′)‖L2(dxdy ′)

≤ cMδ
M‖ f ‖L2(dx ′dy ′)
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by the boundedness of H̃y ′ and [5, (20)].
Next we consider

(19)
E2 f (x, y) =

∑

K0(x)≤h≤K1(x)

(eiM(x)y ′

ψh(y ′)) ∗
∑

h≤k≤K1(x)
k∈D

(eiM(x)x ′

ψk(x ′)) ∗ ϕ(x ′) ∗ f (x, y)

−
∑

K0(x)≤h≤K1(x)

(eiM(x)y ′

ψh(y ′)∗

(
ϕ ∗

∑

h≤k≤K1(x)
k∈D

(eiM(x)x ′

ψk(x ′)) ∗ (ϕ ∗ f )(x, y ′)

)
(y).

We clearly have

|E∗
2 f (x, y)| ≤

∑

K0(x)≤h≤K1(x)

∣∣ eiM(x)y ′

ψh(y ′) − (eiM(x)y ′

ψh(y ′)) ∗ ϕ(y ′)
∣∣∗

∣∣∣∣
∑

h≤k≤K1(x)
k∈D

(eiM(x)x ′

ψk(x ′)) ∗ (ϕ ∗ f )(x, y ′)

∣∣∣∣ (y)

≤
∑

2h≤d−1

∣∣ eiM(x)y ′

ψh(y ′) − (eiM(x)y ′

ψh(y ′)) ∗ ϕ(y ′)
∣∣∗

C̃x ′(ϕ ∗ f )(x, y ′)(y),

where C̃x ′ denotes Carleson maximal operator [13].

Then by [5, (20)] we obtain

(20) ‖E∗
2 f (x, y)‖L2(dxdy) ≤

∑

2h≤d−1

cM(δ
1
2 2hd)2M‖2hχ[−2−h,2−h](y ′)∗

C̃x ′(ϕ ∗ f )(x, y ′)(y)‖L2(dxdy)

≤ cMδ
M‖C̃x ′(ϕ ∗ f )(x, y ′)‖L2(dxdy ′) ≤ cMδ

M‖ f ‖L2(dx ′dy ′)

by the boundedness of C̃x ′ and of the convolution with ϕ(x ′).
Now

(BP∗
1 f ,BP ′∗

1 g) = (Φ ∗ (BP∗
1 f ),Φ ′ ∗ (BP ′∗

1 g))

+ (E( f ),Φ ′ ∗ (BP ′∗
1 g)) + (Φ ∗ (BP∗

1 f ),E ′(g))

+ (E( f ),E(g))

The first term on the right-hand side is dominated by

‖Φ̂ ′ · Φ̂‖∞‖BP∗
1 f ‖2‖BP ′∗

1 g‖2 ≤ cMδ
M‖ f ‖2‖g‖2
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by (16) and (9) with δ = 1. The remaining terms satisfy the same estimate by (18)
and (20).

Remark 8.2 Lemma 8.1 holds for P = P2 as well. B1 = Bα1 is now defined by

∑

2−K1(x)

α ≤2−h≤ 2−K0(x)

α

eiαM(x)y ′

ψh(y ′)
∑

2−K1(x)≤2−k≤α2−h

k∈D

eiM(x)x ′

ψk(x ′) ∗ f (x, y).

Clearly (18) holds for the analogous E∗
1 . The analogous E∗

2 is dominated by

∑

2−K1(x)

α ≤2−h≤ 2−K0(x)

α

∣∣ eiαM(x)y ′

ψh(y ′) −
(

eiαM(x)y ′

ψh(y ′)
)
∗ ϕα(y ′)

∣∣∗

∣∣∣∣
∑

2−K1(x)≤2−k≤α2−h

k∈D

(eiM(x)x ′

ψk(x ′)) ∗ (ϕ ∗ f )(x, y ′)

∣∣∣∣ (y),

where ϕα(y ′) is supported on {|y ′| ≤ δ
1
2

d
α}, ‖ϕα‖1 ≤ cM and ϕ̂α(η) is concentrated

around αξ0, namely

(ii ′)

|ϕ̂α(η)| ≤ cM

( δ 1
2 d

α
|η − αξ0|

)−2M

for |η − αξ0| >
( δ 1

2 d

α

)−1

;

(iii ′)

|ϕ̂α(η) − 1| ≤ cM

( δ 1
2 d

α
|η − αξ0|

) 2M

for |η − αξ0| ≤
( δ 1

2 d

α

)−1

.

Then

|eiαM(x)y ′

ψh(y ′) − (eiαM(x)y ′

ψh(y ′)) ∗ ϕα(y ′)|

≤ ‖ψ̂h(η − αM(x))[1 − ϕ̂α(η)]‖1χ|y ′|
≤2−h

(y ′)

≤ cM

(
δ

1
2

d

α
2h

) 2M

2hχ|y ′|≤2−h (y ′).

Therefore in the analogue of (20) we shall have

∑

2h≤αd−1

cM

(
δ

1
2

d

α
2h

) 2M
≤ cMδ

M .

Remark 8.3 Lemma 8.1 holds for P = P3 as well. The ω’s being central, it follows
that for every pair [ω, I] ∈ P, the interval ω ⊂ [2µ, 2µ+1] with µ ≥ 0 an integer. Let
α = 2µ. Now if

M(x) ∈ ω = [n2k, (n + 1)2k),
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then
M2(x) ∈ ω2

= [n222k, (n + 1)222k).

The interval ω2, not any longer dyadic as far as size and location, is comparable with
αω = [αn2k, α(n + 1)2k). This is indeed the meaning of the elementary inequalities

2|αω| ≤ |ω2| ≤ 4|αω| and dist(αω, 0) ≤ dist(ω2, 0) ≤ 2 dist(αω, 0).

Similarly for all [ω ′, I ′] ∈ P ′, the interval ω ′ ⊆ [2ν , 2ν+1]. Let β = 2ν and assume
α ≤ β. We are going to show that the collections

{[ω2, I]}[ω,I]∈P and {[(ω ′)2, I ′]}[ω ′,I ′]∈P ′

satisfy a separation property analogous to (α) and (β). Denote by |B − A| the length

of the interval [A,B] with B > A > 0. Then |B−A| = dist(ω ′, ω0) > δ−1|ω| (by the
assumption (β)), so we have

dist((ω ′)2, (ω0)2) = |B2 − A2| > (B + A)δ−1|ω ′| > βδ−1|ω ′| ≥
δ−1

4
|(ω ′)2|.

Similarly

dist(ω2, (ω1)2) > βδ−1|ω| ≥ αδ−1|ω| ≥
δ−1

4
|ω2|.

If we choose ϕ(y ′) = ϕ4α(y ′) supported on

{
|y ′| ≤

δ
1
2 d

4α

}
,

‖ϕ4α‖1 ≤ cM such that ϕ̂ is concentrated around ξ0, the center of ω2
0 , then we obtain

‖E∗
2 f ‖2 ≤ cMδ

M‖.

Similarly with ϕ ′(y ′), replacing α by β, d by d ′ and ξ0 by ξ
′

0.

On the other hand (16) still holds.

Lemma 8.4 Let a row R be a union of normal trees Pk with tops [ωk
0, I

k
0] where the

{Ik
0} are pairwise disjoint. Let P ′ be a tree with top [ω ′

0, I
′
0] and suppose, for each k, that

Ik
0 ⊆ I ′0 and Pk, P

′ are separated. Then ‖BP ′

1 BR∗
1 ‖2 ≤ cMδ

M (any M > 10).

Proof We ought to prove |
∑

k(BP ′∗
1 g,BPk∗

1 f )| ≤ cMδ
M‖ f ‖2‖g‖2. We will examine

one term at the time and write

BP ′

1 f = B
P ′

k

1 f + B
P ′ ′

k

1 f + B
P ′ ′ ′

k

1 f

following the decomposition P ′
= P ′

k ∪ P ′ ′
k ∪ P ′ ′ ′

k of P ′ relative to Pk [5]. Recall that

P ′ ′ ′
k =

{
[ω ′, I ′] ∈ P ′ | |I ′| <

δ1000

10K
|I0

k | and dist(I ′, ∂I0
k ) ≤

δ100

K
|I0

k | or I ′∩I0
k = ∅

}
.
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Since Pk is a normal tree, then

(21)
(

B
P ′ ′ ′

k

1 g,BPk∗
1 f

)
= 0

the two factors having disjoint supports in the x variable. For, TPk h applies to h(x ′),

x ′ ∈ A = {x ′ ∈ Ik
0 | dist(x ′, ∂Ik

0) > 2 δ
100

K
|Ik

0 |} and BPk∗
1 f (x, y) lives on A × T. Next

recall that

P ′
k =

{
[ω ′, I ′] ∈ P ′ | |I ′| ≤

δ1000

10K
|I0

k |, I
′ ⊆ I0

k and dist(I ′, ∂I0
k ) >

δ100

K
|Ik

0|
}
.

Since P ′
k and Pk have the same top space I0

k and are separated by assumption, by
Lemma 8.1 we have

(22) |(B
P ′

k ∗
1 g,BPk∗

1 f )| ≤ cMδ
M‖ f ‖L2(I0

k
×T)‖g‖L2(I0

k
×T).

We are left with

P ′ ′
k =

{
[ω ′, I ′] ∈ P ′ | |I ′| >

δ1000

10K
|I0

k |
}
.

We construct Φk and Ek as in the proof of Lemma 8.1 using Pk for P, then ‖Ek‖2 ≤
cMδ

M . In addition to (i)–(iii) above, we can assume

(iv) ϕ̂k(ξ ′0) = 0, where ξ ′0 is the midpoint of ω ′
0.

Thus

(23) (B
P ′ ′

k ∗
1 g,BPk∗

1 f ) = (BP ′∗
1 g,Ek( f )) − (B

P ′
k ∗

1 g,Ek( f ))

− (B
P
′ ′ ′

k ∗
1 g,Ek( f )) + (B

P ′ ′
k ∗

1 g,Φk ∗ BPk∗
1 f ).

The first three terms are easy. We have

(24)
∣∣ (BP ′∗

1 g,Ek( f )
∣∣ ≤ cMδ

M‖BP ′∗
1 g‖L2(I0

k
×T)‖ f ‖L2(I0

k
×T),

since Ek f (x, y) lives on I0
k ×T, being Pk a normal tree. Since in addition P ′

k is a normal
tree we obtain

(25)
∣∣ (B

P ′
k ∗

1 g,Ek( f ))
∣∣ ≤ cMδ

M‖g‖L2(I0
k
×T)‖ f ‖L2(I0

k
×T).

Finally since the two factors have disjoint supports, we have

(26) (B
P ′ ′ ′

k ∗
1 g,Ek( f )) = 0.

We are reduced to estimate

(27)
(

B
P ′′

k ∗
1 g,Φk ∗ BPk∗

1 f
)

=
(

g,B
P ′′

k

1 (Φk ∗ Fk)
)
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where Fk = BPk∗
1 f . Let us write explicitly

B
P ′ ′

k

1 (Φk ∗ Fk)(x, y) =

∑

K0(x)≤h≤K1(x)

eiM(x)y ′

ψh(y ′)

∑

h≤ j≤K1(x)
j∈D

(eiM(x)x ′

ψ j(x ′)) ∗ Φk ∗ Fk(x, y)

for suitable K0(x) and K1(x). By definition of P ′ ′
k we have 2−K1(x) > δ1000

10K
|I0

k |. Also

recall that Φk(x ′, y ′) = ϕk(x ′)ϕk(y ′) with ϕk(x ′) supported on

{|x ′| ≤ δ
1
2 dk}, dk = min

[ω,I]∈Pk

|I|

and so dk <
δ1000

K
|I0

k |, being Pk a normal tree. With d ′ ′
k similarly defined with respect

to P ′ ′
k we then observe that

∣∣B
P ′′

k

1 (Φk ∗ Fk)(x, y)
∣∣ ≤

∑

2 j ,2h≤(d ′′
k

)−1

∣∣ (eiM(x)y ′

ψh(y ′)) ∗ ϕk(y ′)
∣∣∗

∣∣ (eiM(x)x ′

ψ j(x ′)) ∗ ϕk(x ′)
∣∣ ∗ |Fk|(x, y).

Now [5, (24)] states

∑

2 j≤(d ′ ′
k

)−1

∣∣ (eiM(x)x ′

ψ j(x ′)) ∗ ϕk(z)
∣∣ ≤ cMδ

M
∑

2 j≤(d ′ ′
k

)−1

dk22 jχ|z|<2− j (z)

≤ cMδ
M d ′ ′

k

|z|2 + (d ′ ′
k )2

= cMδ
MUk(z).

The above estimate is based an the following facts

|M(x) − ξ ′0| ≤ |I ′|−1
= 2 j ≤ (d ′ ′

k )−1,

∣∣∣
∂

∂ξ
ϕ̂k(ξ ′0)

∣∣∣ ≤ cM(δ
1
2 dk)(δ

1
2 dk|ξ

′
0 − ξ0|)

−2M ≤ cM(δ
1
2 dk)δM ,

‖(eiM(x)x ′

ψ j(x ′)) ∗ ϕk(z)‖∞ ≤ ‖ψ̂ j(ξ − M(x))ϕ̂k(ξ)‖1 ≤ cM(δ
1
2 dk)δM22 j ,

supp((eiM(x)x ′

ψ j(x ′)) ∗ ϕk(z)) ⊆ {|z| ≤ 2− j}.

Since the index h spans the same set of the index j, it is also true that

∑

2h≤(d ′ ′
k

)−1

∣∣ (eiM(x)y ′

ψh(y ′)) ∗ ϕk(w)
∣∣ ≤ cMδ

MUk(w).
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Thus, going back to (27), we have

∣∣∣
(

B
P ′ ′

k ∗
1 g,Φk ∗ BPk∗

1 f
)∣∣∣ ≤

(
|g|,

∣∣B
P ′ ′

k

1 (Φk ∗ Fk)
∣∣
)

≤ cMδ
2M(|g|,Uk(w)Uk(z) ∗ |Fk|)

≤ cMδ
2M(Uk(z)Uk(w) ∗ |g|, |Fk|)

≤ cMδ
2M‖g∗‖L2(I0

k
×T)‖ f ‖L2(I0

k
×T),

where g∗ denotes the two dimensional maximal function of g. Then, as in [5], Lemma

8.4 follows by an application of Schwartz’s inequality and Lemma 6.3 with δ = 1.

Remark 8.5 Lemma 8.4 holds for P = P2 as well. Relatively to (27), only the

summation over h changes. Specifically, assuming ϕ̂αk (αξ ′0) = 0, we have

∑

2h≤α(d ′ ′
k

)−1

∣∣ eiαM(x)y ′

ψh(y ′) ∗ ϕαk (w)
∣∣ ≤

∑

2h≤α(d ′ ′
k

)−1

cMδ
M d ′ ′

k

α
22hχ|w|<2−h (w)

≤ cMδ
M d ′ ′

k /α

w2 + (d ′ ′
k /α)2

.

Remark 8.6 Lemma 8.4 holds for P = P3 as well. Relatively to (27) what has now
to be estimated is

Q(w) =

∑

2h≤4β(d ′ ′
k

)−1

∣∣ eiM2(x)y ′

ψh(y ′) ∗ ϕαk (w)
∣∣ ,

where ϕαk (y ′) is supported on
{
|y ′| ≤ δ

1
2 dk

4αk

}
and αk = M(x) relatively to Pk, simi-

larly β = M(x) relatively to P ′ as in Remark 8.3.

First assume d ′ ′
k /β ≥ δ

1
2 dk/αk. Denoting by ξ

′

0 the midpoint of (ω ′
0)2, we may as-

sume d
dη ϕ̂

αk (η)|η=ξ ′0
= 0. Then similarly to the proof of Lemma 8.4 we have

supp{eiM2(x)y ′

ψh(y ′) ∗ ϕαk (w)} ⊆ {|w| ≤ 2−h},

and
∥∥ ψ̂h(η − M2(x)) · ϕ̂αk (η)

∥∥
1
≤ cMδ

M
( δ 1

2 dk

4αk

)
22h,

since the main contribution to the above integral comes from the size of ϕ̂αk on the
essential support of ψ̂h. Therefore

Q(w) ≤ cMδ
M d ′ ′

k /4β

w2 + (d ′ ′
k /4β)2

.
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If instead d ′ ′
k /β < δ

1
2 dk/αk, then it remains to estimate

Q(w) =

∑

(δ
1
2 dk)−14αk≤2h≤(d ′ ′

k
)−14β

∣∣ eiM2(x)y ′

ψh(y ′) ∗ ϕαk (w)
∣∣ .

Now

supp{eiM2(x)y ′

ψh(y ′) ∗ ϕαk (w)} ⊆
{
|w| ≤

δ
1
2 dk

4αk

}

and

∑

(δ
1
2 dk)−14αk≤2h≤(d ′ ′

k
)−14β

‖ψ̂h(η − M2(x)) · ϕ̂αk (η)‖1 ≤ cMδ
M

( δ 1
2 dk

4αk

)−1

,

since, due to the separation property, the main contribution to the above summation

comes from the term corresponding to 2h
= (d ′ ′

k )−14β and is determined by the size

of ψ̂h on the essential support of ϕ̂αk .

Therefore the factor cMδ
M is gained and, aside from that, Q(w) is dominated op-

eratorwise by an average.

From now on the proof is the same as in [5] for P = P1,P2,P3. We sketch it.

Corollary 8.7 Let R = P1 ∪ P2 ∪ · · · and R ′
= P ′

1 ∪ P ′
2 ∪ · · · be rows with tops

[ω0
k , I

0
k ] for Pk and [ω1

k ′ , I1
k ′] for P ′

k. Suppose that each I0
k is contained in an I1

k ′ with Pk

and P ′
k ′ separated. Then

∥∥BR
′

1 BR∗
1

∥∥
2
≤ cMδ

M (any M > 10).

Also observe that if A(p) ≤ δ for p ∈ R above, then ‖BR
1 ‖r ≤ crδ

1
r by Lemma 6.3.

Main Lemma 3 Let {P j} be a family of trees with tops [ω0
j , I

0
j ]. Assume that

[ω0
j , I

0
j ] ∈ P j for each j and that

(a) A(p) < δ for any p ∈ P j ;

(b) p 
 p ′ for any p ∈ P j , p ′ ∈ P j ′ , j 6= j ′;

(c) no point of [0, 2π] belongs to more than Kδ−20 of the I0
j .

Then there exists a set F ⊂ [0, 2π], |F| ≤ c δ
100

K
, with the property

∥∥∥
∑

j

B
P j

1 f (x, y)
∥∥∥

L2(cF×T)
≤ cη(lg K)δ

1
4
−η‖ f ‖L2(T2) (any η > 0)

for all f ∈ L2(T2) and every K > 10.

Proof The proof of [5, Main Lemma] follows from Lemmas 2, 3, 4 and 5. Of those
lemmas we proved analogues in Lemmas 5.1, 6.3, 8.1, and 8.4.
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Main Lemma 4 Let 1 < r < 2. Assume (a) and (b) of Main Lemma 3 and also

(d) no point of [0, 2π] belongs to more than Kδ−1+ρ of the I0
j , where ρ = ρ(r) > 0 is a

small number.

Then there exists a set F ⊆ [0, 2π], |F| ≤ c δρ

KM , any M > 10 and K > K0(r,M) such

that ∥∥∥
∑

j

B
P j

1 f (x, y)
∥∥∥

Lr (cF×T)
≤ cr,ηKa(r)δσ(r)‖ f ‖Lr(T2) (any η > 0)

for all f ∈ Lr(T2), where 0 < a(r) < 1 and σ = σ(r) > 0.

Proof Increasing the length of the chains, to be skimmed off from the top C+ and
from the bottom C−, to

lg(eKa

δ−10000) ≤ cεδ
−εKa, 0 < a < 1, (any ε > 0).

by Lemma 5.1 we have for 1 < r ≤ 2

(28) ‖BC
+

1 ‖r, ‖BC
−

1 ‖r ≤ cr,ε,ηKaδ
1

2r ′
−η−ε.

The remaining pairs [ω, I] of the trimmed trees P0
j satisfy

|I| ≤
δ10000

eKa |I0
j | ≤

δ10000

KM+1
|I0

j |, K ≥ K0(a,M)

and the P0
j ’s are separated, with δ in (α) and (β) replaced by δ ′ = K−(M+1)δ1000, K ≥

K0(a,M). Defining the exceptional sets

F j =
{

x ∈ I0
j | dist(x, ∂I0

j ) ≤ 10
δ200

KM+1
|I0

j |
}

and disregarding, as we may, the pairs in Pb
j = {[ω, I] ∈ P0

j | I ⊆ F j}, we are left

with normal trees P#
j = P0

j\Pb
j . Therefore for every row R, it holds ‖BR

1 ‖r ≤ crδ
1
r

and so
∥∥∥

Kδ−1+ρ∑

j=1

B
R j

1 f
∥∥∥

Lr (cF×T)
≤ crδ

1
r
−1+ρK‖ f ‖r, 1 < r < 2.

For r = 1 + ǫ we choose ρ such that 1
r
− 1 + ρ = 0. Moreover,

∥∥∥
Kδ−1+ρ∑

j=1

B
R j

1 f
∥∥∥

L2(cF×T)
≤ cδ

1
2 ‖ f ‖2

by Cotlar’s lemma [5, p. 567]. Thus by interpolation

(29)
∥∥∥

Kδ−1+ρ∑

j=1

B
R j

1

∥∥∥
Lr (cF×T)

≤ crδ
σ(r)Ka(r)‖ f ‖r

for 1 < r < 2, where σ(r) > 0 and 0 < a(r) < 1. Now (28) and (29) imply the

lemma.
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9 Proof of Theorem 1

As a consequence of the Main Lemma 1–4,

Corollary 9.1 Let F be a set of pairs. Assume

(a) A(p) ≤ δ for all p ∈ F;

(b) if p, p ′′ belong to F and p < p ′ < p ′′ then p ′ ∈ F;

(c) if p, p ′, p ′′ ∈ F and p < p ′, p < p ′ ′ then either p ′ < p ′′ or p ′′ < p ′;

(d) for any point x ∈ [0, 2π] there are at most Kδ−1+ρ(r) mutually incomparable

[ωi , Ii] ∈ F with x ∈ Ii .

Then there exists F ⊂ [0, 2π] with |F| < c δ
ρ(r)

KM ,K > K0(r,M)( any M > 10) such that

∥∥BF f (x, y)
∥∥

Lr(cF×T)
≤ cr,ηKa(r)δσ(r)−η‖ f ‖Lr(T2)

for all f ∈ Lr(T2), with 0 < a(r) < 1 and σ(r) > 0.

A set F satisfying Corollary 9.1(a)–(d) above is called a forest. In [5] the collection
Fn = {p ∈ B | 2−n−1 < A(p) ≤ 2−n} has been skimmed off at the top by removing

ascending chains of length (n + 2). By Lemma 5.1 the corresponding estimate in Lr is

cη,r(n + 1)2−n( 1

2r ′
−η).

Then considering {p̄ j}, p̄ j = [ω̄ j , Ī j], the set of maximal pairs such that
|E(ω,I)|

|I| ≥

2−n−1, another exceptional set is introduced, namely

Gn = {x ∈ [0, 2π] | x is contained in more than (K/2)22nof the Ī j}

such that |Gn| ≤ c 2−n

KM for K > K0(M), any M > 10 ( [5, pp.568–570]). Removing all
pairs p = [ω, I] ∈ Fn such that I ⊆ Gn, we are left with a collection, denoted by F#

n,

that decomposes as a disjoint union of at most 2n(lg K) + 1 forests {Fn,s}s. Therefore
by the Corollary 9.1

∥∥BF
#
n f

∥∥
Lr(cFn×T)

≤ cr,η(n + 1)Ka(r)(lg K)2−n[σ(r)−η]‖ f ‖r

with |Fn| ≤ | ∪s Fn,s| ≤ c(n + 1) 2−nρ(r)

KM lg K.
Finally defining En = Fn ∪ Gn and E =

⋃
n En we obtain

‖P f ‖Lr(cE×T) ≤ crK
a(r) lg K‖ f ‖r

with |E| ≤ cr
lg K
KM for K > K0(r,M) and any M > 10. Therefore

∣∣{(x, y) | |P f (x, y)| > α}
∣∣ ≤

‖P f ‖r
Lr (cE×T)

αr
+ |E|

≤ cr(lg K)rKra(r) ‖ f ‖r

αr
+ cr

lg K

KM
≤ cr,ε

(
‖ f ‖r

α

)r−ε

for any ε > 0, having chosen K so to minimize the right-hand side. Thus ‖P f ‖p ≤
cp,r‖ f ‖r for any p < r.
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