
Hemispheric-scale comparison and evaluation of
passive-microwave snow algorithms

Richard L. Armstrong, Mary J. Brodzik
National Snow and Ice Data Center, CIRES, University of Colorado, Boulder, CO 80309-0449, U.S.A.

ABSTRACT. Passive-microwave satellite remote sensing can greatly enhance large-
scale snow measurements based on visible satellite data alone because of the ability to
acquire data through most clouds or during darkness as well as to provide a measure of snow
depth or water equivalent.This study provides preliminary results from the comparisonand
evaluation of several different passive-microwave algorithms. These algorithms represent
examples which include both mid- and high-frequency channels, vertical and horizontal
polarizations and polarization-difference approaches. In our comparisons we utilize larger,
more comprehensive, validation datasets which can be expected to provide a full range of
snow/climate conditions rather than limited data which may only represent a `̀ snapshot’’ in
time and space. Evaluation of snow extent derived from passive-microwave data is under-
taken through comparison with the U.S. National Oceanic and Atmospheric Administra-
tion (NOAA) Northern Hemisphere snow charts which are based on visible-band satellite
data. Results clearly indicate those time periods and geographic regions where the two tech-
niques agree and where they tend to consistently disagree.Validation of snow water equiva-
lent derived from passive-microwave data is undertaken using measurements from snow-
course transects in the former Soviet Union. Preliminary results indicate a general tendency
for nearly all of the algorithms to underestimate snow water equivalent.

INTRODUCTION

Snow cover is an important variable for climate and hydro-
logic models due to its effects on energy and moisture budgets.
Seasonal snow, which can cover >50% of the Northern
Hemisphere land surface during winter (Armstrong and
Brodzik,1999; Frei and Robinson,1999) is responsible for the
largest annual and interannual differences in land surface
albedo. Surface temperature is highly dependent on the pres-
ence or absence of snow cover, and temperature trends have
been shownto be related to changes in snow cover (Groisman
and others, 1994). Realistic simulation of snow cover in
climate models is essential for correct representation of the
surface energy balance, as well as for understanding winter
water storage and predicting year-round runoff. The lack of
meteorological and snowdata to execute, calibrateandvalidate
snow-cover models is a major obstacle to improved simulations
(Barron and others,1999).

When snow covers the ground, some of the microwave
energy emitted by the underlying soil is scattered by the
snow grains. Therefore, when moving from snow-free to
snow-covered land surfaces, a sharp decrease in emissivity
and associated brightness temperatures provides a nearly
unambiguous indicatorof the presence of dry snow (Ma« tzler,
1994). In addition, snow exhibits what is termed a negative
spectral gradient which means that as the microwave fre-
quency increases (e.g. from 19 to 37 GHz), the emissivity
and associated brightness temperatures decrease. Nearly all
other land-surface types exhibit a positive spectral gradient
(Ma« tzler, 1994). Various theoretical and empirical studies
have demonstrated that the amount of scattering can be cor-
related with snow mass and specific wavelength. From this

basic relationship, regional algorithms have been developed
which indicate the presence of snow and compute snowwater
equivalent (SWE) (Chang and others,1987; Goodison,1989;
Nagler,1991; Grody and Basist, 1996; Hiltbrunner,1996;Tait,
1998; Pullainen and Hallikainen, 2001). Nearly all of these
algorithms have been developed and tested for dry-snow
conditions only. SWE cannot be determined when the snow
is wet (i.e. liquid water is present on the snow grain surface)
because wet snow is primarily an emitter with respect to
microwave energy, so the information derived fromthe char-
acteristic scattering signature of dry snow is lost. However, it
is still possible to detect the presence of wet snow due to its
distinct polarization difference (Walker and Goodison,
1993; Ma« tzler,1994).

DATA SOURCES

Brightness temperatures

The U.S. National Oceanic and Atmospheric Administration
(NOAA)/NASA Pathfinder Program was initiated in1993 to
facilitate the application of currently archived satellite data
for global-change research.With support from this program
the National Snow and Ice Data Center (NSIDC) has pro-
duceda 23 year, consistently processed, time series of gridded
satellite passive-microwave data in a common format called
the Equal-Area Scalable Earth Grid (EASE-Grid; see http:
//nsidc.org/NASA/GUIDE/EASE/ease_maps_info.html). This
dataset was developed using Scanning Multichannel Micro-
wave Radiometer (SMMR) data for the period 1978^87,
and Special Sensor Microwave Imager (SSM/I) data for
1987^2000.These EASE-Grid brightness temperatures pro-
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vide the standard input to all algorithms being evaluated in
this study.

Validation data

For the validation of snow-covered area, we compare micro-
wave snow-extent maps with the EASE-Grid version (Arm-
strong and Brodzik, 1998) of the NOAA Northern
Hemisphere weekly snow charts (Robinson and others, 1993).
The original NOAA charts were derived from the manual
interpretation of Advanced Very High-Resolution Radiom-
eter (AVHRR), Geostationary Operational Environmental
Satellite (GOES) and other visible satellite data.With regard
to SWE, we focus on the robust nature of the larger validation
datasets which can be expected to provide a full seasonal to
annual range of snow/climate conditions, rather than on
smaller datasets which may only represent a `̀ snapshot’’ in
time and space. The validation dataset being used in the
current phase of our study is the `̀ Former Soviet Union
Hydrological Surveys’’ (FSUHS) (Haggerty and Armstrong,
1996).These data represent aunique and invaluable source for
algorithm validation as they include not only SWE values but
additional informationpertaining to snow structure, extent of
snow cover within the surrounding terrain, as well as forest
type and percentage forest cover from a 50 km diameter area
surrounding the station.These data are available during both
the SMMR and SSM/I periods (through1990) and comprise
the average of measurements along transects 1.0^2.0 km in
length with measurements every 100^200m. These surveys
were undertaken on the10th, 20th and 30th day of the month.
Future work will include additional validation data from
Canada and the United States.

COMPARISON OF MICROWAVE AND VISIBLE
SNOW DATA

In this phase of our study we evaluate the overall capability
of the passive-microwave data to map snow-covered area
through comparison with the EASE-Grid version of the
NOAA Northern Hemisphere snow-extent data. This in-
volves the comparison of data derived from two completely
different sensor systems and analysis techniques. The
NOAA dataset is the result of the manual interpretation of
visible satellite data, while the microwave data are the result

of the consistent application of individual numerical algo-
rithms throughout the brightness-temperature time series.

For the period 1978^99, both passive-microwave and vis-
ible datasets show a similar pattern of interannual variability,
and both indicate maximum extents consistently exceeding
406106 km2 (Fig. 1). The visible data typically show higher
variability in the departures from the monthly means, while
the long-term trends based on the departures indicate similar
decreases in Northern Hemisphere snow extent of approxi-
mately 0.25% per year (NOAA) and 0.13% per year (passive
microwave) (Fig. 2). In order to provide a single example for
initial illustration, the Chang and others (1987) algorithm has
been used to compute snow-covered area for the SMMR
period, and a modified version of this same algorithm has
been used during the SSM/I period in Figures 1^3. In this
example, and throughout this study, only brightness tempera-
tures from `̀cold’’ orbits (night or early morning) are used as
input to the algorithms, in order to reduce the probability that
the microwave sensor will be viewing a wet-snow surface.

When the monthly climatologies are compared (Fig.3) it
becomes clear that the agreement between the two tech-
niques varies depending on the time of the year. During
the shallow-snow conditions of early winter (October^
December) the algorithms tested consistently indicate less
snow-covered area than the visible data.This underestimate
of snow extent most likely results from the fact that shallow
snow cover (less than about 5.0 cm) does not provide a scat-
tering signal of sufficient strength to be detected by this and
other algorithms which rely primarily on the19 and 37 GHz
channels. Robinson and others (1993) and Brown (2000)
indicate that the threshold for snow detection in the NOAA
dataset is approximately 2.0 cm. In addition, because visible
data are better suited to detecting shallow snow, they also
monitor the fluctuating snow-extent edge more precisely,
resulting in greater spatial variability over time, as shown
in Figure 2a.The inclusion of the 85 GHz channel, as shown
below, with the associated enhanced scattering response,
improves the microwave capability to map shallow snow.
Although the 85 GHz channel is affected by atmospheric
conditions, a cloud-clearing filter can be applied which
selects the day with the clearest atmosphere during the
monitoring period (Nagler,1991) or which screens out precipi-
tating clouds (Grody and Basist,1996).

As the snow cover continues to build during January^
March, as well as on into the melt season, agreement

Fig. 1. Northern Hemisphere snow-covered area derived from visible (NOAA) and passive-microwave (SMMR and SSM/I)
satellite data, 1978^99.
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between the two data types improves (Fig. 3). Algorithms
utilizing vertical polarizations frequently indicate the pres-
ence of snow over some snow-free desert soils, apparently due
to the enhanced scattering response of the vertical channels.
However, in this typical example shown in Figure 3, the
microwave data indicate statistically significantly less snow-
covered area than the visible data for all months except
April, with a mean difference for the monthly climatologies
of 2.76106 km2, ranging from 8.06106 km2 in November to
0.46106 km2 in August.

MICROWAVE ALGORITHM COMPARISONS

In this phase of the study we apply digital image comparison
techniques to a multi-year, time-series analysis of several dif-
ferent algorithms. The ultimate goal of this study is to deter-
mine when the differences between the algorithm output and

the validationdata are random and whenthey are systematic.
In the case of systematic differences, the patterns are being
correlated with the specific effects of land-cover type, atmos-
pheric conditions and snow structure. Because we compare
algorithm output with continuous records of station data, we
are able to identify any seasonal or interannual patterns in
the accuracy of the algorithms.

Snow-covered area

The following is a brief overview of our current algorithm-
comparison study for snow extent. Figure 4 contains compar-
isons of the NOAA weekly snow extent and four passive-
microwave algorithms (Chang and others, 1987; Goodison,
1989; Nagler,1991; Grody and Basist,1996). It should be noted
that none of these algorithms was originally developed for
hemispheric-scale application, and reference to the algo-
rithms by author name is for convenience only. However,
because these algorithms individually represent examples
which include both mid- and high-frequency channels, verti-
cal and horizontal polarizations and polarization-difference
approaches, they allow us to evaluate the relative merits of
these different approaches at the hemispheric scale.

In Figure 4, the dotted line in the NOAA images repre-
sents the area within which the surface temperatures (NCEP
(U.S. National Centers for Environmental Prediction)
Re-analysis data) at the approximate time of the satellite
overpass had not been above freezing for the week. This
information allows us to focus our analysis on those regions
where a sub-freezing snow cover can be expected.The black
line in the passive-microwave images corresponds to the
NOAA snow extent for that week. While each season is
represented by only one example week, these are typical of
the results which we obtained from comparisons covering
several years, as is shown later in Figure 5.

Fig. 2. (a) Visible-derived (NOAA) and (b) passive-microwave-derived (SMMR and SSM/I) snow-covered area departures
from monthly means for Northern Hemisphere, 1978^99.

Fig. 3. Northern Hemisphere mean monthly snow-covered
area derived from visible (NOAA) and passive microwave
(SMMR and SSM/I), and the difference between the two
(visible minus passive microwave), 1978^99.
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Fall comparison ^ Fig. 4a (8^14 November 1993)

The underestimate in the presence of shallow snow by the
Chang and Goodison algorithms is apparent in both North
America and Eurasia. The Nagler and Grody algorithms
provide a better estimate as a result of the inclusion of the
85 GHz channel. However, during fall, and throughout the
winter, the Nagler and Grody algorithms also tend to overes-
timate the snow extent in some locations (e.g. in the high-
elevation deserts of central Asia). The Goodison algorithm
appears to also overestimate snow over some desert-soils
regions such as the Tibetan Plateau, probably due to the
enhanced spectral gradient of the vertical-polarization chan-
nel in the presence of frozen ground (Ma« tzler, 1994). The

Chang and Goodison algorithms falsely indicate snow cover
in the presence of storms with high-cloud liquidwater, as seen
in the southern United States, while these storms are filtered
out in the Nagler and Grody algorithms.

Winter comparison ^ Fig. 4b (16^22 January 1995)

As snow-cover depth increases, all algorithms show improved
estimates of snow extent. A short-duration storm leaving
shallow snow in the south-central United States is not
detected by Chang or Goodison but is partially detected by
Nagler and Grody. Because of the short duration of this snow
cover, combined with the fact that these datasets merely char-
acterize weekly time periods, a precise match of the datasets

Fig. 4.Typical seasonal comparisons ((a) fall, (b) winter, (c) spring) of NOAA weekly snow extent and four passive-micro-
wave algorithms. Light grey areas in each image represent snow-covered area.The dotted line in the NOAA images represents the
area within which the surface temperatures at the time of the satellite overpass had not been above freezing for the week.The heavy
black line in the passive-microwave images is the boundary of the NOAA snow extent for the week.
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is not to be expected. Goodison appears to continue to over-
estimate in the Tibetan Plateau, while Grody and Nagler
show even larger overestimates in this region and in the Gobi
Desert region, east of theTibetan Plateau.

Spring comparison ^ Fig. 4c (2^8 March 1992)

As the snow becomes deeper and the layered structure more
complex, the negative spectral gradient driving the algo-

rithms is enhanced (Ma« tzler,1994). As a result, all algorithms
continue to show improved agreement with the NOAA data,
with the exception of the apparent overestimates in the high
deserts ofcentralandeastern Asiaby theverticalpolarizations
used in the Goodison algorithm andthe 85 GHz channel used
in the Grody and Nagler algorithms. All algorithms correctly
depict theTaklimakanDesert, northof theTibetan Plateau,as
snow-free. Again, warm storms across the southern United
States are filtered outby the Naglerand Grody algorithms.

Fig. 5. (a) Time-series comparison of snow extent from NOAA vs Chang (SMMR, 1978^87) and NSIDC1 (SSM/I, 1987^
99) passive-microwave algorithms. (b) Time series of areas of disagreement between NOAA snow extent and the respective
microwave algorithms. In each plot, the dashed line represents the area identified as snow by NOAA but missed by the microwave
algorithm.The solid line represents the area identified as snow by the microwave but missed by NOAA. 85 GHz data (required by
Nagler and Grody algorithms) are not available from SSM/I from 1989 to 1991.
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Figure1 showed how the passive-microwave and the vis-
ible data provide a similar pattern of interannualvariability.
Figure 5a and b look at this relationship in more detail by
providing a time series of the area of agreement and dis-
agreement between NOAA snow extent and the respective
microwave algorithms. Figure 5a contains the full time-
series (SMMR and SSM/I) comparison of snow extent from
the NOAA data and from one example (Chang) algorithm.
The occurrence of the particular seasonal examples shown
in Figure 4 is indicated in the time series. Figure 5b, which is
limited to the SSM/I period and shows areas of disagree-
ment only, includes the comparisonwith all four algorithms.
In this figure it can be seen that the specific examples of dis-
agreement described in Figure 4 persist as general patterns
throughout the time series. For example, the greater area of
snow detected by the NOAA data in the fall is apparent, as
well as the improved agreement as the winter progresses
and the apparent overestimate in some locations throughout
the winter by the Nagler and Grody algorithms.

SWE

In this phase of the study a topographicallyconsistent subset
of the FSUHS data was selected for the validation.This sub-
set (45^60³N, 25^45³E) has the highest station density
(approximately one transect per 100 km gridcell) and is pri-
marily composed of non-complex terrain (grassland steppe)
with maximum elevation differences of <500 m. We have
developed a processing environment and output format to
compare the various algorithms with the station SWE data.
For each station file this involves the combination of the daily

brightness-temperature files for the observation date and for
the previous 2 days to provide complete spatial coverage for
the satellite data. SWE for all pixels containing at least one
transect measurement is compared with the output from the
respective algorithms. Figure 6 shows a time-series compar-
ison of station data with a single algorithm (Chang and
others, 1987) averaged over the total study area for a 12 year
period. Figure 7 shows a single-year comparison of three dif-
ferent algorithms. (During1989, 85V data were not available
after 31January, hence output from the Nagler algorithm ter-
minates on that date.) These preliminary results represent
only the initial phase of our efforts to evaluate the accuracy
of the microwave SWE algorithms.

CONCLUSIONS AND FUTURE WORK

Results from the current phase of our study indicate that hori-
zontal polarization-based algorithms (e.g. Chang), while
apparently underestimating snow extent during early winter,
appear to provide the best overall estimates as winter pro-
gresses.Vertical-polarization-based algorithms (e.g. Goodison)
provide similar results but with the tendency to overestimate
snowextent inthe presence of desert soils and/or frozenground.
Algorithms which include the 85GHz channel (e.g. Grody and
Nagler) are capable of detecting shallow snow but in their
current form may frequently overestimate snow extent. As the
snow cover becomes deeper and the layered structure more
complex, all algorithmstend to show improvedagreement with
the NOAA data.

With respect to SWE, results indicate a general tendency
for the algorithms tested thus far to underestimate values

Fig. 6. Average of total study-area (FSUHS subset) SWE vs passive-microwave SWE using horizontally polarized difference
algorithm, 1978^90.

Fig. 7. Average of total study area (FSUHS subset) SWE vs passive-microwave SWE from three algorithms, 1988^89.
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obtained from surface station measurements. Unlike snow
extent, differences between the validation data and the
microwave algorithms appear to be generally consistent
throughout the winter season. Underestimates of SWE
increase significantly as the forest-cover density begins to
exceed 30^40%. Because of the detailed land-cover data
available for this validation area, we will be able to evaluate
the results of algorithm adjustments based on fractional for-
est cover as proposed earlier by Chang and others (1996). In
addition to the time-series comparisons shown in Figures 6
and 7, our analysis is also based on image-subtraction time-
series comparisons which allow evaluation of both temporal
and spatial differences. Coupled with additional data on
topography, vegetation cover, surface air temperature and
snow structure, these spatial comparisons viewed through-
out the winter season will provide valuable insight into the
actual causes of the observed differences. Future analysis
will continue the comprehensive multi-year comparison of
at least these four algorithms with the FSUHS data, as well
as other surface station measurements in the United States
and Canada, and the development of a methodology that
will combine visible and passive-microwave data to provide
an optimal satellite-derived snow product.
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