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Introduction. Let D be a domain in Euclidean space of d dimensions and K a
compact subset of D. The well known Harnack inequality assures the existence of a
positive constant A depending only on D and K such that (1/A)u(x)=<u(y)=< Au(x) for
all x and y in K and all positive harmonic functions u on D. In this we obtain a global
integral version of this inequality under geometrical conditions on the domain. The result
is the following: suppose D is a Lipschitz domain satisfying the uniform exterior sphere
condition—stated in Section 2. If u is harmonic in D with continuous boundary data f
then

L ] (x) dx = CLD 1Al ds

where ds is the d — 1 dimensional Hausdorff measure on the boundary aD. A large class of
domains satisfy this condition. Examples are C?-domains, convex domains, etc.

The lemma on which we base our proof states: For bounded domains satisfying the
uniform exterior sphere condition solution of the Poisson equation with Dirichlet bound-
ary conditions and constant forcing term has bounded gradient.

1. Generalities. Let D be a bounded domain in Euclidean space of d =3 dimen-
sions. G will denote its Green function: For all x, y

G(x, y)=K(x, y)—H(x, y) (1.1)

where K(x, y)=|x—y|™®*? and H(x, y) is the solution of the Dirichlet problem for D with
boundary data K(-, y). Write

o(x)= jG(x, y) dy, (1.2)

Then o satisfies the Poisson equation
Aoc=-A,
o =0 at regular points of ad.
where A, =(d—2)2nY*T(d/2).
For any positive Radon measure m on D the function § G(x, y)m(dy) is locally

integrable in D if it is finite at one point. Such a function is called a potential.
With the above notation and terminology we have

(1.3)

Proposrrion 1.1. Let z be an arbitrary but fixed point in D. All potentials in D are
integrable on D iff there is a constant A depending only on z and D such that

a(y)=AG(z,y), yeD. (1.4)
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Proof. Suppose all potentials in D are integrable. If the assertion were false we could
find a sequence y, such that o(y,)=n?G(z, y,). If m is the measure giving mass o (y,)™"
to y, we have | G(z, y)m(dy)<». So m determines a potential and this potential is
integrable by assumption. However the integral of this potential is { o(y)m(dy)=o. A
contradiction.

Conversely suppose (1.4) is valid. Let p be the potential of the measure m. We have

Ip(x) dx = j(r(x) dm(x)=Ap(z).

so that if p(z) <o we are done. If p(z) = * we proceed as follows: Take a ball contained in
D and containing z. The balayage q of p on the complement of B is finite at z. q is thus
integrable. Since p is locally integrable and equals q off B we find p is integrable. The
proof is complete.

CoroLLarY 1.2. If all potentials on a domain D are integrable so are all positive
harmonic functions.

Proof. Let z be any point in D. From Proposition 1.1 there is a constant A such that
o(y)=AG(z, y). Let u be positive harmonic. For any compact subdomain E, the reduit of
u on E is a potential. The last inequality shows that the integral of this potential is
bounded by Au(z). As E expands to D, these reduits increase to u. That completes the
proof.

ProposiTioN 1.3. Let D be a bounded domain. For x € D let

d(x)=dist(x, sD).
Then
|lgrad o(x)| = (d/d(x))a(x) (1.5)

where d = dimension of space.
Proof. o satisfies the Poisson equation (see (1.3))
Aoc=-C

with Dirichlet boundary conditions. It follows that grad o is harmonic in D. Let x € D and
B the ball centre x and radius d(x). By the mean value property

1
grad o(x) = @ j grad o(y) dy
B

3
== d
Bl L,

where |B| denotes volume of B; the last equality above being a consequence of the
divergence theorem. Continuing

d
|grad o(x)] S‘—}?‘ I ods s@ o(x)

because ¢ is superharmonic. The proof is complete.
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CoROLLARY 1.4. Let D be a bounded domain such that all points of 0D are regular.
Then grad o is bounded in D iff

o(x)=const d(x) (1.6)
where d(x) as in Proposition 1.3 denotes distance to the boundary.

Proof. Let grad o be bounded, xe D and z €8D satisfying |x —z|=d(x). The line
joining x and z is in D; z being regular o(z)=0. We have
1

o(x)= J’ % o(z+t(x—2z))dt

1
=J (x—2z).grad o dt
0

=|x—z||lgrad o|\..

PRrOPOSITION 1.5. Let D be a bounded domain, f measurable with |fl<1. Then

|grad Gf(x)| SE%S G \f| (x) + const 1.7n

where const is independent of f. In particular if grad o is bounded and all points of dD
regular then ||grad Gfl|l..=<M where M is independent of f and depends only on the dimension
and volume of D.

Proof. Assume f vanishes outside D and put ¢ = Kf. ¢ is continuously differentiable

[1] and
Gf=d¢-u (1.8)
where u is the Dirichlet solution with boundary data ¢. Let us estimate the gradients of ¢
and u.
Writing a=|x—y|, b=|z—y|,
1 1

|K(x, y)—K(z, y)|=

ad—2 bd—2

=la-b] Y 1a'd
i+j=d—1
For i+j=d—1, a” b7 =a™¥*'+ b ?*'. We can continue from above
|K(x, y)— K(z, y)|=<|x—z| d[1/a* '+ 1/b47}]. (1.9)
|fl=| and the integral

1 _ d
L 1€—yl*™ dy=wi™ (-1

where |D| is the volume of D, w the surface area of unit sphere and d is the dimension.

|| (1.10)
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Integrating (1.9) and using (1.10)
|6(&)—dp(n)|=A |€—n| (1.11)

where A depends only on the volume of D and the dimension. We use (1.11) to estimate
the gradient of u.

u being harmonic in D, so is grad u. Let xe D and B the ball with centre x and
radius d(x). By the mean value property

grad u(x) = J grad u(y) dy

I un ds
9B

by the divergence theorem. Let z €D such that |x — z| = d(x). Continuing from above

w|~ m|~

|grad u(x)| = ‘l—llg-l IB un ds
1
-5 [ (u(y)~ b(2))m ds (1.12)

=5 | lm-s@ia

Let 7(y) be a point on D satisfying
ly = 7(y)| = dist(y, 8D)
z being in 4D,
ly=7(|=ly-z|=2d(x)
lr(y)—zl=ly -7yl +|y—z|=4 d(x)
Continuing from (1.12):

(1.13)

jarad u(x)| = ‘BJ ()~ o(r(y))] ds

sz | 186)-st)l ds

(1.8), (1.11) and (1.13) can be used to estimate the integrands above

lu()=rN=G Il () +1d(y) - (r()
=Glfl(y+2Ad(x)

l(r(y) - ¢(2)| =4A d(x)
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Using these and continuing from (1.14) and remembering that G |f| (y) is superharmonic

|grad u(x)| Sd—?x_) Glfl(x)+6DA (1.15)
Finally using (1.8), (1.11) and (1.15) we get (1.7). Since G [f| (x)=o(x), the second
statement of the proposition follows from Corollary 1.4.

2. Domain condition. In this section we assume that the domain D is nice enough
to satisfy the uniform R-sphere condition:

There exists R>0 such that for each ze€dD corresponds a point { such that
|—z|=R and the open ball with centre { and radius R is completely contained in the
complement of D.

This is a well known condition. See for example Courant-Hilbert [1]. Examples of
such domains are domains with c>-boundaries convex domains etc.

ProposITION 2.1. Let D be a domain satisfying the uniform R-sphere condition. Let o
be as in (1.2). Then for xe D

|grad o(x)|=M 2.1)
where M depends only the diameter of D, the dimension of space and R.

Proof. Let xe D and z€dD such that |z —x|=d(x). By assumption there is a ball
B(¢, R) in the complement of D and |{—z|= R. The function

1 1

Rd—l |{_ yld—l

is positive and superharmonic in the complement of B({, R). And for all ye D
Ad(y)=—(d-D|g—y[*'=~(d-DA+R)™!

where A =diameter of D. Since by (1.3) Aec=-A, in D, N¢ with N=
Ay(A+R)*'/d—1) satisfies A(N¢p—o)=0 in D. This means that N¢ — o is superhar-
monic in D and since =0 on 4D, N¢p—o=0 on dD. By the boundary minimum
principle N¢ = ¢ in D. Because ¢(x)=<R™?|z—x| we obtain

o(x)=R“N|z—x|

o(y)=

Proposition (1.3) then gives (2.1).

THEOREM 2.2 (Harnack inequality). Let D be a bounded Lipschitz domain satisfying
the uniform exterior R-sphere condition. If u is harmonic in D with boundary data f=0

J‘udxsl\z/[djfds

where ds is the (d — 1) dimensional Hausdorff measure on D, M and A, are given in (2.1)
and (1.3).
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Proof. Let A be a smooth subdomain of D and F=0 smooth on R4 Then

1
F+Xd L G(x,y)AF(y)dy=u 2.2)

where u is the harmonic function in D with boundary data F. Using Green’s identity for
A and from (1.3)

I O'AF+Adj F=I Uﬂ:—j Fg(—r
A A ba 0N Ja  OM

In this last equality if we let A increase to D, and note that o =0 on aD:
d
[ aAF+A,,j F=—lim I FZ 2.3)
D D ba  OM
Integrate both sides of (2.2) on D, compare with (2.3) and use (2.1) to get

j uSMJ Fds (2.4)

d
where ds is the Hausdorff dimensional measure on ¢D.
REMARK. An easy conclusion from (2.4) is that for each x € D the harmonic measure
at x is absolutely continuous relative to ds and has bounded density. Indeed let m(x, dz)

denote the harmonic measure at x and put m(dz)=fpm(x, dz) dx. If u and F are as
above

I u=J‘ Fdm
D aD

and (2.4) immediately tells us that m is absolutely continuous relative to ds and has
density bounded by M/A,. On the other hand if f € L'(m), then necessarily fe L'(m(x, -))
for each x € D i.e. for each x € D, m(x, -) has bounded density relative to m. In particular
m(x, -) has bounded density relative to ds as claimed.
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