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Abstract

We study cyclic polling models with exhaustive service at each queue under a variety of
non-FCFS (first-come—first-served) local service orders, namely last-come—first-served
with and without preemption, random-order-of-service, processor sharing, the multi-
class priority scheduling with and without preemption, shortest-job-first, and the shortest
remaining processing time policy. For each of these policies, we first express the waiting-
time distributions in terms of intervisit-time distributions. Next, we use these expressions
to derive the asymptotic waiting-time distributions under heavy-traffic assumptions, i.e.
when the system tends to saturate. The results show that in all cases the asymptotic
waiting-time distribution at queue i is fully characterized and of the form I'®;, with I'
and ®; independent, and where I" is gamma distributed with known parameters (and the
same for all scheduling policies). We derive the distribution of the random variable ®;
which explicitly expresses the impact of the local service order on the asymptotic waiting-
time distribution. The results provide new fundamental insight into the impact of the
local scheduling policy on the performance of a general class of polling models. The
asymptotic results suggest simple closed-form approximations for the complete waiting-
time distributions for stable systems with arbitrary load values.
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1. Introduction

Polling systems are multi-queue systems in which a single server visits the queues in some
order to serve customers. Polling models find many applications in areas like computer-
communication systems, production systems, manufacturing systems, inventory systems, and
robotics; see [8] for an extensive overview. Motivated by their wide applicability, polling
models have been extensively studied over the past few decades; see [30] for an overview of
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TABLE 1: A brief description of the scheduling policies discussed in this paper.

FCFS First-come—first-served serves jobs in the order of arrival.

LCFS Last-come—first-served serves the job that arrived most recently, without
preemption.

LCFS-PR Last-come—first-served with preemptive resume serves the job that arrived most
recently preempting the job currently in service.

ROS Random-order-of-service randomly selects a job from the jobs that are waiting.

PS Processor sharing serves all jobs simultaneously at the same rate.

NPRIOR n-class priority regime serves jobs within the highest priority class first, continuing

with other priority classes as long as no jobs with higher priority are present. Jobs
within the same priority class are served in the order of arrival.

NPRIOR-PR  n-class priority regime with preemptive resume serves jobs with higher priority first,
preempting jobs with lower priority which are already in service, jobs within the
same priority class are served FCFS.

SJF Shortest-job-first nonpreemptively serves the job in the system with the smallest
original service time.
SRPT Shortest-remaining-processing-time preemptively serves the job with the shortest

remaining processing time.

the state-of-the-art models. For operating a polling system, design choices have to be made
about

1. the order in which the server visits the queues;
2. which customers are served during a visit of the server to a queue;
3. the order in which customers at the same queue are served.

The vast majority of papers in the literature are focused on the first two decisions. In this
paper we address the third decision, by investigating the influence of the local service order
policy on the waiting-time distributions of the customers at each of the queues. To this end,
we study Poisson-driven cyclic polling systems with general service time and switchover time
distributions with exhaustive service at all queues; see [29, Section 11] for a slight relaxation.
We consider the following local service disciplines: last-come—first-served (LCFS) with and
without preemption, random-order-of-service (ROS), local processor sharing (PS), the multi-
class priority scheduling with and without preemption, shortest-job-first (SJF), and shortest
remaining processing time (SRPT); see Table 1 for a brief description. In doing so, we derive
new, exact expressions for the Laplace—Stieltjes transform of the waiting-time distributions.
We use these expressions to find the asymptotic waiting-time distributions under heavy-traffic
(HT) assumptions, i.e. when the load approaches 1.

The motivation for studying the impact of the local service order on the waiting-time
performance is two-fold. First, in many real-life applications the local service order is not
first-come—first-served (FCFS); examples are Bluetooth® and 802.11 protocols, scheduling
policies at routers, and I/O subsystems in web servers [13], [27]. In these cases the workloads
are known to have high variability and priority-based scheduling could therefore be beneficial;
other examples are in the domain of production-inventory control, where local scheduling
proved its worth [2]. Second, gaining fundamental understanding of the implications of the
choice of the local service order on the waiting-time performance of polling systems is of
queueing-theoretical interest.
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There are several good reasons for studying HT asymptotics. First, it is the most important
and challenging regime from a practical point of view, because the proper operation of the
system is particularly critical when the system is heavily loaded. Optimizing the local service
order policy is, therefore, an effective mechanism for improving system performance without
purchasing additional resources. Second, an attractive feature of HT asymptotics is that in many
cases they lead to strikingly simple expressions for the performance measures of interest. This
remarkable simplicity of the HT asymptotics leads to structural insights into the dependence
of the performance measures on the system parameters and gives fundamental understanding
of the behavior of the system in general. Third, HT asymptotics form an excellent basis
for developing simple, accurate approximations of the performance measures (distributions,
moments, tail probabilities) for stable systems.

In the literature, many papers focus either on the analysis of polling systems or on scheduling
policies for single-queue systems, but the combination of the two has received very little
attention. More precisely, almost all theoretical studies of scheduling policies are performed in
single-queue settings such as the M/G/1 and GI/G/1 queue with only a few exceptions studying
the effect of local scheduling in multi-queue polling systems. For cyclic polling systems with
gated and exhaustive service, Wierman et al. [31] used the mean value analysis framework [32]
to derive the mean delay at each of the queues for various scheduling disciplines such as FCFS,
LCFS, foreground-background, PS, SJF, and fixed priorities. Boxma et al. [10] obtained the
waiting-time distribution in cyclic (globally-)gated polling systems for various local service
orders. Bekker et al. [4] derived HT limits of the waiting-time distributions in cyclic polling
models with gated and globally-gated service for the LCFS, ROS, PS, and SJF local service
orders. In this paper we extend the results to the case of exhaustive service at each of the queues,
which is fundamentally more complicated than the gated and globally-gated case (as also stated
in [10]). The additional complexity of the exhaustive-service model compared to the (globally-
)gated model is that customers that arrive during a visit of the server at a queue may intervene
with the customers that were present at the beginning of that visit period. Nonetheless, recent
progress for exhaustive models has been made. Boon et al. [7] studied the waiting-time distri-
bution in a two-queue polling model with either the exhaustive, gated, or globally-gated service
discipline, where the first of these two queues contained customers of two priority classes. In
[6] these results were generalized to a polling model with N queues and K; priority levels in
queue i. Moreover, for the case of exponential service times at each queue, Ayesta et al. [1]
derived the sojourn-time distribution in polling systems with exhaustive service and where the
local scheduling policy is PS. For a general service requirement distribution, the analysis is
restricted to the mean sojourn time.

In this paper we show that for all considered cases the asymptotic waiting-time distribution
at queue i can be expressed as the product of two independent random variables I and ®;,
where I' is gamma-distributed with known parameters that are independent of the scheduling
policy. Moreover, we derive the distribution of the random variable ®;, which expresses the
impact of the local service order on the asymptotic waiting-time distribution. The results are
exact and give a full characterization of the limiting behavior of the system, and as such provide
new fundamental insight into the influence of the local scheduling policy on the waiting-time
performance of polling models. As a by-product, the HT limits suggest simple closed-form
approximations for the complete waiting-time distributions for stable systems with arbitrary
load values strictly less than 1. The accuracy of the approximations is evaluated by several
numerical examples, which can be found in [29].
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2. Notation and model description

In this section we introduce the notation and give a description of the model. To start, we
denote by fx (-), Fx(-), X*(-), and E[ X] the probability density function (PDF), cumulative dis-
tribution function (CDF), Laplace—Stieltjes transform (LST), and expected value, respectively,
of a one-dimensional absolutely-continuous random variable (RV) X.

The model is as follows. We consider a system of N > 2 infinite-buffer queues, Q1, ..., On,
and a single server that visits and serves the queues in cyclic order. At each queue, the service
discipline is exhaustive; that is, the server proceeds to the next queue when the queue is empty.
Customers arrive at Q; according to a Poisson process {N;(t), t € Re} with rate A;. These
customers are referred to as type-i customers. The total arrival rate is denoted by A = ZlNz 1A
The service time of a type-i customer is a RV B;. The kth moment of the service time of an
arbitrary customer is denoted by E[BX] = ZLN=1 AiE[Bf]/A, k =1,2,.... The load offered
to Q; is p; = A;E[B;] and the total load offered to the system can be expressed as p = ZlNzl Di-
A necessary and sufficient condition for stability of the system is p < 1. The switchover time
required by the server to proceed from Q; to Q;4+1 isa RV S;. We let § = ZlNzlSi denote
the total switchover time in a cycle. The RV C; describes the cycle time of the server, defined
as the time between two successive departures of the server from Q;. The mean cycle time is
known to be the same for all queues, and is given by E[C;] = E[C] = E[S]/(1 — p). Denote
by V; the visit time at Q;, defined as the time elapsed between a polling instant at Q; (i.e. the
moment the server arrives at the queue) and the server’s successive departure from Q;. Denote
by I; the intervisit time of Q;, defined as the time elapsed between a departure of the server
from Q; and the successive polling instant at Q;. Note that C; = I; + V; fori = 1,..., N.

The local service order policy of a queue determines the order in which the customers are
served during a visit period of the server at that queue. Throughout this paper we consider
the local service order policies given in Table 1. We only consider work-conserving policies.
For policy P € {FCFS, LCFS, LCFS-PR, ROS, PS, NPRIOR, NPRIOR-PR, SJF, SRPT}, we
denote i € P if Q; receives scheduling policy P; for example, FCF'S is the (index) set of
queues that are served on an FCFS basis.

In this paper we mainly focus on HT limits, i.e. the limiting behavior as p approaches 1.
The HT limits, denoted by p 1 1, taken in this paper are defined such that the arrival rates are
increased, while keeping both the service-time and switchover time distributions and the ratios
between the arrival rates fixed. The notation ‘=’ means convergence in distribution. For each
variable x that is a function of p, we denote its value evaluated at p = 1 by x.

Let 7; denote the sojourn time of an arbitrary customer at Q;, defined as the time between
the moment of arrival of a customer and the moment at which the customer departs from the
system. The waiting time W; of an arbitrary customer at Q; is defined as the sojourn time minus
the service requirement. When p 4 1, all queues become unstable; therefore, the focus lies on
the limiting distribution for p 1 1 of the RVs Wi :=(1—p)W; and T; := (1 — p)T;, referred
to as the scaled waiting times and sojourn times at Q;, respectively. We denote by I'(o, 1) a
gamma-distributed RV with shape and rate parameters o and u, respectively. Moreover, we
denote by Ula, b], with a < b, a RV that is uniformly distributed over the interval [a, b]. For
later reference, note that the LST of the RV Ula, b]T" (¢ + 1, ), where Ula, b] and ' (@ + 1, )
are independent, is given by

o o
Efe—sUla bl @+l _ M H® B R 0. (.1
le | as(b—a) |\ u+sa wu+sb ’ ¢ = @D
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3. Preliminaries and method outline

In this section we formulate a number of known preliminary results that serve as a reference
for the remaining sections. Moreover, we provide an outline of the method that we apply here
to FCFS. In Section 3.1 we give expressions for the asymptotic distributions of the cycle and
intervisit times under HT assumptions. In Section 3.2 we use these results to give an expression
for the LST of the waiting-time distribution for the case of FCFS service. We refer the reader
to [24] for rigorous proofs of these results. In Section 3.3 we provide intuition for the main
result based on a heavy traffic averaging principle. Such intuition can be useful for interpreting
the waiting-time distributions for the other service disciplines as well.

3.1. Cycle and intervisit times

To start, let us consider the distribution of the cycle time C;. A simple but important
observation is that the distribution of C; does not depend on the local scheduling policy, provided
that the policy is work-conserving. This means that we can use the results for the cycle times
and also for the intervisit times throughout the rest of this paper. The following result gives a
characterization of the limiting behavior of the scaled cycle-time distributions.

Proposition 3.1. (Convergence of cycle times.) Define C~',- = (1—p)Cj, thenfori =1,..., N,
asp 1,

G 3T,

where T has a gamma distribution with parameters

N
E[S]8 8 , , E[B?]
= , = —, th = 1-— 3.1
« o2 po=5, w0 ; pi(l=p)). (3.1

Note that the distribution of the cycle time C; is related to the intervisit time /; in the
following way (see, e.g. [5]):

E[l;]1= (1 —p)E[Ci],  Elexp(—(s + (1 — E[e*5) ;)] = E[e ], (3.2)

where &; is the busy period of a regular M/G/1 queue with arrival rate A; and service time B;.
Note that (3.2) can easily be obtained by simple branching arguments. The next proposition
characterizes the scaled intervisit times.

Proposition 3.2. (Convergence of intervisit times.) Define I := (1 — p)l;, then fori =
1,...,N,asp 11,

b =
Ii — Fl‘,
where T'; has a gamma distribution with parameters

_E[S]8 N
T M=t

(3.3)

o

where 8 and o* are given in (3.1).

In what follows, we repeatedly use Propositions 3.1 and 3.2 to derive expressions for the
asymptotic scaled waiting-time distribution associated with each of the service disciplines
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considered herein. For each policy we use a two-step approach:

(a) derive an expression for the LST of the steady-state waiting-time distribution in terms of
the cycle- or intervisit-time distribution;

(b) we combine this expression with Proposition 3.1 and/or Proposition 3.2 to obtain an
expression for the LST of the waiting-time distribution in HT and interpret the resulting
LST.

3.2. First-come-first-served

Here we illustrate the two-step approach described above for FCES service. Regarding the
first step, the following result gives an expression for the LST of the waiting time W; in terms
of the distribution of the intervisit time 7; (cf. [21]).

Proposition 3.3. (Waiting times in terms of intervisit times.) For Re(s) > O and p < 1,

(I—p)s 1= I}Gs)

Wi (s) = s — a1 — Bl.*(s)) sE[1;]

, i e FCFS.

Next, as outlined in step (b), combining Propositions 3.2 and 3.3, the expression for E[C;], and
taking limits, we obtain, for Re(s) > 0,

) o
Wi (s) = lim Wy s~ p) = Hi ) } i € FCFS.
o

1
I
(1 = p)E[S]s { (Mi +

Using (2.1), this leads to the following characterization of the limiting behavior of the scaled
waiting-time distribution derived in [26].

Proposition 3.4. (Convergence of the waiting times.) For p 1 1,
WiiUiii, iGFCFS,

where U; is a uniformly distributed RV on [0, 1], and I i has a gamma distribution with
parameters o + 1 and ju;, where o and [u; are given in (3.3).

Note that I; is the length-biased counterpart of I, a gamma distributed RV with parameters
a and p; as in (3.3). Given the arrival of a particular customer, the cycle time is known to be
biased and is given as the sum of the age and residual cycle time at the moment of arrival; see,
e.g. [10] and the references therein. It is well known that if a gamma RV has parameters o and
Wi, then its length-biased version has parameters o + 1 and w;.

3.3. Intuition by the heavy traffic averaging principle

Proposition 3.4 states that the limiting behavior of W; is of the form UL, where U is
uniformly distributed on the interval [0, 1]. An intuitive explanation for this follows from the
heavy traffic averaging principle (HTAP) combined with a fluid model; see [11], [12], [18].
Loosely speaking, the HTAP states that the work in each queue is emptied and refilled at a rate
that is much faster than the rate at which the total workload is changing. This implies that the
total workload can be considered as a constant during the course of a cycle, while the loads of
the individual queues fluctuate like a fluid model.

In Figure 1 we provide a graphical representation of the fluid model. On the horizontal axis,
the course of a cycle with fixed length c is plotted. The cycle is divided into two parts, the
intervisit time I; with length (1 — p;)c and the visit time V; with length p;c. On the vertical axis,
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pi (1 — pi)c

(I = pi)e pic

FIGURE 1: Fluid limits in heavy traffic; the amount of fluid in Q; is plotted over the course of a cycle.

the workload in Q; is plotted. The cycle starts at the completion of a visit to Q;. Throughout
the cycle, work arrives with intensity 1 and a fraction p; is directed to Q;. During the visit time
V; work flows out of Q; with rate 1 until the queue is empty.

Let the uniform RV U on [0,1] denote the fraction of the cycle c that has elapsed at the arrival
epoch of an arbitrary particle. The particle has to wait for the remaining length of the cycle
(1 — U)c except for the amount of work that arrives at Q; during the cycle after the arrival of
the particle. As work to Q; arrives at rate g;, the latter can be expressed as p; (1 — U)c. Hence,
the waiting time can be expressed as (1 — U)c — p;(1 — U)c = (1 — U)(1 — p;)c. Using
the fact that U[0, 1] is in distribution equal to 1 — U[0, 1] and I; = (1 — p;)c, we conclude
that W; is uniformly distributed on [0, 1]/;. This interpretation gives much insight into the HT
asymptotics.

For the other service disciplines, HTAP and the cycle time, represented by I', are unaffected.
To interpret the results in the light of HTAP, we need to study the fluid model for each discipline.
For compactness of this paper the details are omitted. We refer the reader to [29] for the HTAP
intuitions for the other service disciplines.

4. Last-come-first-served

In this section we consider the LCFS service discipline. In Section 4.1 we derive the results
for LCFS without preemption and in Section 4.2 we look at queues with LCFS preemptive
resume (LCFS-PR) service. In both sections we first provide a derivation of the LST of W; for
all p < 1, giving insight into the terms contributing to the delay. Then we study the behavior
of W; in the HT regime. Since we are interested in deriving the waiting-time distributions of
customers that arrive in steady state, it is convenient to define stationary versions of the arrival
processes on the entire real line. Hence, each arrival process N; consists of points {7} ,},ez,
where T; 0 < 0 < T; 1. Associated with each point is the busy period &; , generated by the
arriving customer. The points (7; ,, & ) define a marked Poisson process on ReZ.

4.1. Nonpreemptive LCFS

The LST for LCFS with rest periods was found in [19]; replacing the rest periods with
intervisit times and adding the subscript i to the queue-dependent variables yields the following
proposition. We refer the reader to [29] for a more direct derivation.
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Proposition 4.1. For p < 1, Re(s) > 0,

W s) = o 1 — E[e™*%]
() =p (s + A, (1 — E[e=s%])E[B;]
_ —sC;
+ (1 — pi) 1-Ele” ] i e LCFS. 4.1)

(s + 2 (1 = E[e=5)E[CI(A — p;)’

Note that the first term appears in the LST of the waiting time in an M/G/1 queue with LCFS
service order; see, e.g. [23, p. 357].

The following result gives an expression for the asymptotic waiting-time distribution for
LCEFS service in heavy traffic.

Theorem 4.1. For p 1 1,

i€ LCFS,

W, LY 0 ) wzthprobizblllty (w.p.) 0i,
UC; wp. 1-p;,

where U; is a uniformly distributed RV on the interval [0, 1] and c i has a gamma distribution

with parameters o + 1 and , where « and  are given in (3.1).

Proof. Combining Proposition 4.1 with Proposition 3.1 gives the following expressions for
the LST of the (scaled) waiting-time distribution. Fori € LCFS, Re(s) > 0,

W (s) = lim W (s(1 — p))
11

. 1 — ]E[efs(lfp)%'i]
o <”" (s(1 = p) + i (1 — E[e=(0=P&1))E[B]
] 1— E[e—s(l—p)C;] 49
o T ) ¥ M — Bl —P& ) EICI(] — pi)) @2

Let us initially consider the first term on the right-hand side of (4.2):

i 1 — E[e—sU-p4&
o117 (s(1 = p) + Ai(1 — E[e (P& ))E[B;]
(1 —E[e=s"=P%])/(1 — p)
= lim p;
pt17 SE[Bi] + pi (1 — E[e—sU=P%&]) /(1 — p))
' E[&i]s
"E[Bils + piEl&]s

I
>

I
>

In the second equality, we use 1'Hopital’s rule and the fact that the derivative of E[e 5~
at s(1 — p) = 0 can be expressed as —[E[&;]. For the third equality, we apply the well-known
result E[§;] = E[B;]/(1 — p;).
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Now consider the second term on the right-hand side of (4.2):

o 1 — E[e—S(l—p)Ci]
o P BT = (L= p) + 7 (1 = Ele 05 ]))
I —(u/(n+s)?
ES)(I — pi)(s + A (1 — E[e S0P ) /(1 — p))
o 1= () (e + ))°
=1 -p) .
ES1(1 — pr)s(1 + AEE])

- o (Y 43
= _p’)E[S]s{ _(u+s> } @3

Combining the above, we have

= lim(1 — p;
pl?ll( 0i)

- 1 U «
Wi(s) = pi + (1 — p 1-— , i € LCFS, 44
i () =pi +( 'Ol)E[S]s{ <P«+S> } l 4.4
where « and p are given in (3.1). Note that (4.4) corresponds to the LST of a RV that is equal
to 0 with probability p; and to a uniform RV on [0, 1] multiplied by a gamma distribution with
probability 1 — p;. This completes the proof.

4.2. LCFS with preemptive resume

We derive the LST of the waiting time of a tagged customer 7 that arrives at queue i in steady
state. Without loss of generality, we assume that 7 arrives at time 0. We have to distinguish
between the case where T arrives during an intervisit time (case 1), and the case where T arrives
during a visit time (case 2).

Case 1. When an arrival occurs during an intervisit time, the waiting time of the customer
consists of the busy periods generated by the customers arriving during the service of the tagged
customer, the residual intervisit time and the busy periods generated by the customers arriving
during the residual intervisit time. Fori € LCFS-PR,

W; (given T arrives during intervisit time) = Z Eig+ I+ Z Eix. 4.5)
T;1€(0,B;) T; 1 €(0,11%%)

Case 2. When the arrival occurs during a visit period, the waiting time of T consists of the
busy period generated by customers arriving during the service of the tagged customer. For
i € LCFS-PR,

W; (given T arrives during visit time) = Z Eik. 4.6)
T; x€(0,B;)

Due to the preemptive nature of the discipline, the first term in (4.5) is equal to (4.6), the waiting
time in case 2, so we calculate the LST of the waiting time of case 2 first. Conditioning on the
service time and the number of arrivals therein (as in [10]) yields, fori € LCFS-PR,

E[e~*Wi | T arrives during visit time] = ]E[e_‘Y(ZTi’kE(O’Bi)&)]

/ et 1 ”) Efe™%]" dP(B; < 1)
t

=/ exp(—t (i (1 — E[e™%1))) dP(B; < 1)
=0

= B¥(A; (1 — E[e*5])).
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For the last two terms in (4.5) we condition on //** and the number of arrivals during I/,
yielding for Re(s) > 0,i € LCFS-PR,

E[e~*Wi | T arrives during intervisit time]

= B;k()‘i(l - E[eiséi])) Y e s Z eikit#ﬂz[e*sfi]n dP(Iires <1
= n=0 .

= B (hi(1 — E[e™* 1)) / exp(—t(s 4 A; (1 — E[e™%]))) dP(I[** < 1)
t=0
1 — Efexp(—(s + A; (1 — E[e ™5 ) I)))]
(s + (1 — E[e=s&1)E[L]

1 — E[e—%¢]
(s + i (1 =E[e~*S)E[CI(1 — pi)

= B (Li(1 — E[e ™))

= B (A (1 — E[e*5]))

where the last equality follows from (3.2).

We combine the two cases, using the fact that the probability that an arrival occurs during a
visit time is equal to p;. This leads to the following expression for the LST of the waiting time
at Q; in terms of the cycle time.

Proposition 4.2. For p < 1, Re(s) > 0,
Wi (s) = B (A (1 — E[e™*5]))

1 —E[e¢]
(s + 2 (1 = E[e 5 D)E[CI(I — p;

X (Pi + - p0) )), i e LCFS-PR.

The next result gives the HT limit of the distribution of W;.

Theorem 4.2. Forp 1 1,
- 0 .D. Pi
W, 21 i € LCFS-PR,
UiC; wp. 1—,

where U, is a uniformly distributed RV on the interval [0, 1] and C i has a gamma distribution
with parameters a + 1 and j, where o and  are given in (3.1).

Proof. Using (4.3) and the fact that lim 4| B (x;(1 — E[e*5])) = 1 for Re(s) > 0, we
immediately see that the LST of W;,i € LCFS-PR, in HT is given by

75 (s) = Tm WAl — ) = A+ (1 — p——1 — (Y
Wi(S)-—I’}?]lW,»(S(l p)) = pi +(1 p’)IE[S]s{l (u+s)} 4.7

with & and p given in (3.1).

Note that the HT scaled waiting-time distribution (4.7) for i € LCFS-PR is equal to the
HT scaled waiting-time distribution (4.4) for i € LCFS. This is true because the busy periods
generated by customers arriving during service of the tagged customer do not scale with p.
A similar argument explains the probability mass in zero of the scaled waiting-time distribution.
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5. Random-order-of-service

In this section we first derive the LST of the scaled waiting-time distribution for ROS in
terms of the intervisit times. Then we use this result to obtain the waiting-time distribution in
heavy traffic.

Proposition 5.1. For p < 1, Re(s) > 0,

v, L= pi
Wi = SR

X (/x=§,-*(s) B (Ai — Aix) _x( i A1 =x)) = Bi (s + A (1 = x))) dK (x, s)

1
—i—/ (IF (i1 —x)) = I*(s + 2 (1 — x))) dK(x,s)), ieROS
x=§i*(s)

with §7(s) = B (s + A (1 — &7 (5))), the LST of a busy period at queue i with a dedicated

server, and |
1
K(x,s) :=ex (—f d ) ;.1
P y=xy_B;k(S+)¥i_)\iY) Y

Proof. The derivation proceeds along the lines of Kingman [17]. Define the waiting time
of a tagged type-i customer T as w = u + v. Here, u is the time between the arrival instant of
T and the time the server begins working on a new type-i customer, and v is the time from that
moment until 7 is taken into service. A customer may arrive during an intervisit period of Q;,
in which case u = I;*, or during a visit period, yielding u = B;**.

For v, we first consider the transform of the number of customers at moments when the
server is able to take a customer from queue i into service, denoted as Q(z, X), for |z| < 1 and
with X € {B;, I;}. From Kawasaki et al. [15] for an arrival during a visit period, we have

(1= p) (1 = I (i — diz)e (DB

Q@ B) = BB i — ki) —2)

If the customer arrives during an intervisit period we have, for [z] < 1,7 € ROS,
0@z I) = e~ M=l

Kingman [17, Theorem 2] provides the LST of v given the number of customers present.
Combining this theorem with the equations above, we obtain the LST of v for an arrival during
a visit period while a customer of size B; is in service: For Re(s) > 0,i € ROS,

E[e™*" | B; and arrival during visit period]

B /1 (1= p)(1 = IF (A — dx))e =08
) LELL1(B]f (i — Aix) — x)

dK (x, s).

Similarly, we have for a customer arriving during an intervisit period of length I;, for Re(s) >
0,i € ROS,

1
E[e™*" | I; and arrival during intervisit period] = / e MU0 g (5 5).
,Ei*(s)
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Note that given B; or I;, u and v are independent. For an arrival during a visit while a customer
of size B; is in service, we obtain, for Re(s) > 0,i € ROS,

Ele™" | B;]
=E[e™5" | BiE[e™" | Bi]

_ =i /‘ (= p)(1 = 17Oy = dgene 2008
sBi Jgro MELL(B] (b — Aix) — x) ’
_1—n /‘ 1= I¥(hi — dix) e M(=0Bi _ e=(thi(1=0)B; .
sME[L] Jer(s) Bf (M — Aix) — x B; ;

Now, using the fact that ]E[e_‘/’B"/Bi] = Bl.*[qﬁ]/E[B,-] (see [17]), we have, for Re(s) > 0,i €
ROS,

E[E[e™" | B;]]
o l—pi 1 1=LF0q = Xix) Bf(Li(1 = x)) = Bf'(s + (1 — x))
 SMELL] Jer(s) Bf (i — hix) — x E[Bi]

dK (x, ).

Again it holds that a customer arrives with probability p; during a visit period. Hence, W/ (s) =
PiE[E[e™" | B;]] + (1 — pp))E[E[e™*" | I;]]. Using similar arguments for the final term in
addition to some rewriting, we obtain the result.

Next, we turn to the HT limit. Before we state our result, we define Y as a RV with PDF
and CDF

(1 — y)Pi/(=pi)

T Fr()=1-1=n"1% yeo 1.

fr(y) =

The RV Y is to be interpreted as the fraction of customers, including both present customers
and those arriving until the server’s departure from the queue, that are served before the arriving
customer (see [29] for an interpretation in terms of a fluid model).

The next theorem gives the HT limit of the distribution of W; in terms of Y.
Theorem 5.1. For p 1 1,

Uifé w.p. pi,

o~ . i € ROS,
u;rC wp. 1-—p;,

where Uif hasa uniform distribution on the interval [0, Y p;] and Ul.g has a uniform distribution
onlYpi, 1 —p; +Ypl.
Proof. First we rewrite the LST of the waiting time given in Proposition 5.1. Noting that

dK(x,s) K(x,s)
dx  x—Bf(s+r(l—x)’
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we obtain

v\ L= pi ! i _
Wi(s) = SELL] </x=§*m K(x,s)(1 = I (Ai — Aix))

x( ! + : )dx
B¥(hi(1 =x)) —x  x—Bf(s+ A (1 —x))

1
+/ K (x, ) (i (1 = x)) = I (s + A (1 — x)))
X:Ei*(s)

X ! dx).
x — B(s +A;(1—x))

In line with Takagi and Kudoh [22] we take y = (1 — x) /(1 — éi*(s)); this givesx = 1 —y(1 —
& (s)) and dx = —(1 — &7 (s)) dy, yielding

L—pi (!
Wi(s) = _p(/‘ K(1—y(1=&()), )1 = I (yri (1 — £(5))))
sE[I;] y=0
% < 1- éf,'*(s)
B (yAi(1 —&7(s))) — 14+ y(1 —&7(s))
. 1 —&%(s) )dy
L —y(1—=§7(s)) — B (s + yri(1 — £(5)))

1
+/ K1 —y(—§)),s)
y=0

x (I (i (L= & (s)) — 1] (s + yAi (1 — §7())))

( s ) )
X dy ).
L=y = &) — Bi(s + yAi(1 = §7(s)))

We now take HT limits for the terms separately. We start with the most involved term, K (x, ).
Using the substitution t = (1 — y)/(1 — x) in (5.1), we write

1 _
K(x,s) :exp(—/ 1« dt).
1=0 1 —t(1 —x) — B(s + At (1 — x))

Taking the HT limit of K (1 — y(1 — &7 (s)), s), we obtain, using I’Hopital’s rule and some
rewriting,

lim K (1 — y(1 =& (s(1 = p))), s(1 — p))
ptl

_ exp(_ /‘ YE[£;] dt)
r=0 —El& 1ty + E[B;1(1 + A;tyE[§;])

L
:exp(— yA/ dt)
L —pi Ji=o 1 —1y
1
:exp( — In(1 —y))
1 —pi

=(1- y)l/(]*ﬁi)'
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In the second step we use the fact that E[&;] = E[B;]/(1 — p;). The HT limits for the other
terms can be determined using I’Hopital’s rule in addition to some rewriting and the expression
for E[&;] above. In particular, we obtain

lim I/ (2 (1 — & (s(1 — p)))) = il*< YPi{ >,
P11 1=

lim I (s(1 — p) + yAi (1 =& (s(1 = p)))) = 1?(%)
ptl 1—p
lim 1 =& (s(1—p)) _ 1
ot BE(yai(1 — &5 (s(1—p)) — 1+ y(1 =& (1 —p)) vy —p)’
1 =& (s(1 = p)) 1

lim - = = = -
Pt 1=y =& (s(1—p)) =B (s(1—p)+yr(1 =& (s(1—=p))) A=y - p0)
Moreover, we have ii*(cs/(l —0i) = C~'i*(cs) = (u/(un + cs))® for fixed ¢ > 0. Combining
the above, after some rewriting, we obtain

1 —p;
SE[ST(1 — 5;)

1 5. — \yl/a=p)
5 1
X(/ (1—1;"( yhis >> 1=y " 4
y=0 1=pi /)yl =)A= pi)
V(o ybis (s = pi +yp) )\ L=y
=[G - (SE) %)
y=0 1 —pi 1 —pi I =»d-p)
. 1 1 w *) (1 — y)ﬁf/(l—ﬁi)
= 0; o~ 1— ~ = dy
y=0 SE[S]ypi n+ypis (1 —pi)

s f i)~ o)
y=0 SE[ST(1 — p:) |\ + ypis m+s(—pi +ypi)

(1 — y)Pi/(=p0)
(1= 5i)
This LST corresponds to a mixture of two distributions. With probability p; and conditioning on
Y =y, itis the LST of a uniform [0, y ;] multiplied by a gamma distribution with parameters
« + 1 and w; with probability 1 — p; and conditioning on ¥ = y, it is the LST of a uniform
[ypi, 1 —p; +yp;]1 multiplied by a gamma distribution with the same parameters. This completes
the proof.

Wi(s) =

dy.

Remark 5.1. The expressions for U ,:f and Ul.g in Theorem 5.1 can be rewritten more explicitly,
similar to those in Theorem 6.2; see also Remark 6.1.

6. Processor sharing

In a PS queue all customers present at the queue receiving service are served simultaneously
and at the same rate. We note that the waiting time W; (to be interpreted as the delay) is
thus defined as the sojourn time minus the service requirement. In this section we will only
consider the case of exponentially distributed service times. We extend the work of [1], where
the authors derived the HT limit of the LST of the scaled waiting time conditional on the
service requirement. In Section 6.1 we give the conditional scaled waiting-time distribution.
In Section 6.2 we derive the unconditional scaled waiting-time distribution.
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6.1. Conditional waiting-time distribution in heavy traffic

Let customers in Q; have exponentially distributed service requirements with rate b;. Let
x be the required service duration of a tagged customer. Then we have the following theorem
for the HT limit of the conditional waiting time W; | x.

Theorem 6.1. Forp 1 1, x >0,

Wi x—> . i €PS,

D Ui,fxii w.p. pi,
UE i wp. 1= pi,

where Ul-’fx =U[0, w(x)], fo =Ulwkx),w(x)+1], and fi ~ I'(a+1, ;). The parameters
o and p; can be found in (3.3), and w(x) = p; /(1 — p;)(1 — e~Lix(d =)y,

Proof. The authors of [1] derive the LST of the scaled conditional waiting time in heavy
traffic. Forp 1 1,x >0,i € PS,

-, 3 pi (Y
Wi (S|x)_sw(X)E[S](1—/3i){1 <m+sw<X>> }

) (et
SELST(L — 0i) [\ i + s (x) mi +s(w(x) +1) ’

From this LST we see that the distribution of the conditional waiting time is a uniform [0, w (x)]
multiplied by a gamma distribution with parameters @ + 1 and p; with probability p;. With
probability 1 — p;, the conditional waiting time has a uniform [w (x), w(x) + 1] multiplied by
a gamma distribution with parameters o 4+ 1 and ;. This completes the proof.

We note that w (x)I; can be interpreted as the sojourn time of a tagged customer with service
time x from the start of the visit period; see [29].

6.2. Unconditional waiting-time distribution in heavy traffic

In the previous section we derived the HT limit of the waiting-time distribution conditional
on the service requirement. To obtain the unconditional waiting-time distribution, we first
consider a more general setting that also covers ‘unconditioning’ for SJF. Suppose we have a
conditional RV, denoted 7' | x, where x is arealization of a RV X with support x € [Xmin, Xmax]-
We have the following lemma.

Lemma 6.1. Assume that the conditional RV T | x has density fr|.(y) and distribution
Sunction Fr|.(y) with support y € [a(x),b(x)]. Suppose that a(x) and b(x) are both
increasing in x and a(x) < b(x) for all x. Let a—'(-) be the inverse of a(-) and b='(-) be
the inverse of b(-). Then, the unconditional distribution of T | x, denoted by 7~", has PDE, for
a(Xmax) < b(xmin),

al(y)
/ lex(y)fX(x)dxa y € [a(xmin), @(Xmax) ],

=Xmin

fr) = / O fx@dr, Y € [aGma)- bmin)]. ©.1)

=Xmin

f " O fx @) dr. Y € b(min): b(rma)]
x=b"1(y)

https://doi.org/10.1239/aap/1449859797 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1449859797

1004 P. VIS ET AL.

X a(x) b(x)
O £ :
Xmin % t 1 |
a(Xmin) Yy a(Xmax) b(Xmin) b(xmax)

FIGURE 2: Boundaries of the conditional distribution.

and, for a(Xmax) > b(Xmin),

a~l(y)
/ SrixMfxx)dx, y € lalxmin)s b(Xmin)],

=Xmin
e

fi = / )fmx(y)fx(X)dx, y € [b(rmin), @ (Xmax)],
x y

=b~1(

/ a0 dr. € Lot bona)
X y

=b=1(

Proof. First consider the case that a(xmax) < b(xpin). In Figure 2 we show an example
of the boundaries of the conditional distribution, plotting a(x) and b(x) with x on the vertical
axis. The possible values of T' | x then lie between the two lines. To find f7(y), we need to
integrate out x with respect to its density function. First, take y € [a(Xmin), @(Xmax)], in which
case the PDF f7(y) is obtained from the parts where x is smaller than a~—'(y). We have

a'y)
ff(Y)Z/ Jr1x() fx(x)dx.

=Xmin

If y € [a(Xmax), b(xmin)] then y is between the boundaries of the conditional distribution for
every X € [Xmin, Xmax]- This yields the second case of (6.1). Finally, for y € [b(xmin), &(X*max)],
S (y) can now be obtained from the parts where x is larger than b~ (y). The a(xmax) > b(Xmin)
case is similar. It may be checked that f7(-) is a density function. This completes the proof.

Note that the distribution in (6.1) is continuous, increasing on [a(Xmin), @ (¥max)], constant
on [a(Xmax), b(xmin)], and decreasing on [b(Xmin), b(x¥max)], Which closely resembles the
traditional trapezoidal distribution. In line with [28], we refer to (6.1) as a generalized
trapezoidal distribution.

We now apply Lemma 6.1 tothei € P S case, in which we have two conditional distributions,
Uijj , and fo. We need to find the unconditional versions of both uniform distributions.
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Theorem 6.2. For p 1 1,

~n

i w.p. O,
i W.p.l—ﬁi, iePS§,

1
~a

~ D f
Wi — lg
i

where l7if has a generalized trapezoidal distribution with PDF

f”(y)—lbeta 5 A(l—i-i()) y€|:0 i }
0 o =y (1=p0) i 1—p5" ) 1-p]

where beta, (a, b) = f(;c 911 = )P~ dr. Then l}ig has a generalized trapezoidal distribution
with PDE, for p; < %,

y(l _ '6) 1/(1—/5:') . R
1—(1—T’) .y el0, pi/(1 = pi)),
i

25,00 =11, o yelp/A =1, 6.2)
— (1 = p) 1/(1=pi) R R
Q_Q—%}4i) Cye g/ =) +1]
1
and, for p; > %

L — g\ 0=
1—O—ﬂ7§2 . yelo,
1

O (v = D= p\ /1=

oy pi
85,(») = RIS
_(1 y(—pi)

_T 5 y€[17161/(1_ﬁl)]7

O_U—Dﬂ—m
bi

1/(1=pi)
) . ye i/ =p), pi/(1—pp)+1]

and I; has a gamma distribution with parameters a + 1 and j1;. The parameters a and j1; can
be found in (3.3).

Proof. Let fy, () and gy; , (-) be the densities of U,.jfx and fo, respectively. First consider
Ju, () = low(x) for y € [0, w(x)]; thus, a(x) = 0 and b(x) = w(x). Here, x is the
service requirement, a realization of an exponential distribution, so x € [0, 00). Since w(0) =
0 and w(c0) = p;/(1 — p;), we only have to find the final term in (6.1) and consider the
interval [0, p; /(1 — p;)]. For a fixed y, the inverse function of w is @~ (y) = In(1 — y(1 —
0i)/0i)/(=b; (1 — p;)). By Lemma 6.1, we have

a0 = [ a0

=0~ ()
o0 N:
:/ bie b L Py gmhix(-0y 1 g
x=In(l=y(1=40)/5i)/ —bi 1=p0) Pi
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0 A
1— i 1 5 (-
=/ bi— (1 — ) P/ g
t=1=y(1—p;i)/pi Pi _bl(l - pl)

1—y(1—=p;)/ pi R R
:/ Ai(l _t)_ltpi/(l_;oi)dt
=0 Pi

1 Pi
= Tbetal_ 1—51)/pi <1 + > 0)
bi y(l=pi)/p 1—pi

The third equality is obtained by taking r = e 2i*(1-0),
function.

Now we turn to the second term involving U; g . Notethat gy, ,(y) = lfory € [w(x), o(x)+
1]. To apply Lemma 6.1, observe that for p, / (1 — ,o,) <1 it holds that a(Xmax) < b(Xmin)-
First assume that p; /(1 — p;) < 1, implying 5; < 5. Forafixed y € [0, 5;/(1 — §;)), x needs
to be smaller than ™! ). Ify e [0;/(1 —p;), 1] 1t lies between the boundaries of the uniform
distribution for all x, and if y € (1, p; /(1 — ;) + 1], then x needs to be larger than w! ).
Then, for the PDF of U,

This leads to an incomplete beta

Fg (0~ (), y €10, pi/(1 — pp),
1= Fp(w 'y —=1), ye,pi/(1—p)+1]

Substituting Fp, (x) =1 — e~%i* and the inverse of w () into the above gives (6.2). The p; > 1
case implies that a(xmax) > b(xmin) and is similar, completing the proof.

Remark 6.1. (PS and ROS.) For regular GI/M/1 queues, the relation between PS and ROS
has been characterized by Borst et al. [9]. It is easily seen that the sample path relations [9,
Equation (3)] also hold for the polling models under consideration. More specifically, consider a
tagged customer 7 arriving at Q; when the server visits Q;. Then, the sojourn-time distribution
of T for PS, given n; customers at Q; upon arrival, is identical to the waiting-time distribution
of T for ROS, given n; waiting customers at Q; upon arrival in addition to the one in service.
Under HT scalings, the differences between waiting and sojourn times vanish, explaining the
equivalence between Theorems 6.2 and 5.1 (see Remark 5.1).

7. n-class priority queues

In this section we look at n-class priority queues. Each customer is assigned to a priority
index k, 1 < k < n, where customers with a low priority index are served before customers
with higher priority indices. Within each class the service order is FCFS. In Section7.1 the
focus lies on the nonpreemptive n-class priority regime. We will later use this discipline to find
the waiting-time distribution in the SJF case. In [16], Kella and Yechiali studied the M/G/1
queue with single and multiple server vacations under both the preemptive and nonpreemptive
priority regimes. The M/G/1 queue with multiple vacations is similar to a polling model, since
we express the waiting times in cycle times and we can replace vacations by intervisit times.
This relation has also been used in [6] to analyze multi-class polling models. We study the
preemptive n-class priority regime in Section 7.2.

7.1. Nonpreemptive n-class priority queues

For the nonpreemptive n-class priority regime, we introduce notation and terminology based
on [16], as this turns out to be useful and provide intuition for this and the next section.
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Let A; x be the arrival rate of class-k customers and B; x be the service duration of class-k
customers. Class-a customers are the customers with priority index lower than k, i.e. they
are served before class-k customers. They have arrival rate A;, = ZI;-;%)»,; j and service
duration B; 4. Class-b customers are customers with priority index higher than k, their arrival
rate is A; p = Z?:kﬁ)‘i,j and their service duration is B; ;. We have p; , = A; 4E[B; 4] and
pi.b = Ai pbE[B; p]. Let§; , denote the length of time from a moment a class-a customer enters
service and no other class-a customers are present, until the first moment when there are no
class-a customers in the queue. Clearly, &; , is the duration of a busy period in a standard M/G/1
queue with arrival rate X; , and service times B; ,. From [16], we have the following LST for
the waiting-time distribution W; ; of a class-k customer in Q;. ForRe(s) > 0,k =1,...,n,

(I = pi)(A = IF(s + Aig — hi,a§[ 4 (5)))
E[Li 1k B (s + Aija — Xia () — Aik +5)
N Pib (1 = B, (s + Xia — Xia&],(5)))
E[Bip](Mik B (s 4 Aiia — hiia] () = Xik +5)

Wi(s) = (7.1)

ie NPRIOR.

The first term in (7.1) corresponds to the waiting time of class-k customers in Q; that arrive
during the time from the start of the intervisit time until the moment a class-b customer at Q; is
taken into service. The second term corresponds to the waiting time of class-k customers that
arrive during the time from the moment the first class-b customer is taken into service until the
end of the cycle. Note that this expression was also derived in [6].

The following theorem gives the HT limit of the distribution of W; x.

Theorem 7.1. Forp 1+ 1,k=1,...,n,

|0 wp. pip/(1 — pi + Pib),
Wik > i€ NPRIOR,

U wp. (1= )/ = pi + pis),

where U; is a uniformly distributed RV that lies between O and 1 /(1 — p; ,) and I; hasa gamma
distribution with parameters o + 1 and [1;, where o and ; are given in (3.3).

Proof. The scaled waiting-time distribution is obtained by combining (7.1) with Proposi-

tion 3.2 and using I’Hopital’s rule (see [29]). Specifically, for Re(s) > 0,k = 1,...,n,i €
NPRIOR,

Wi (s) = lim Wi (s(1 — p))
1l

_ 1 - iai 1 {1 _ ( i >a}
1 — 6 + pip E[SIs(1 — 6,)/(1 = pia) wi +s/(0 = pia)
Pib

—_— (7.2)
1 — pi + pip

Recognizing this as the LST of a RV that is equal to 0 with probability p;p/(1 —
0i + pi.») and a uniform multiplied by a gamma distribution with probability (1 — p;)/(1—p; +
0i.p) completes the proof.
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7.2. Preemptive n-class priority queues

Similar to the previous section, the results of [16] also allow the derivation of the LST of the
time until service in a polling system where different priority classes are served with preemptive
priority. Let Wl-(q) denote the time until a customer first receives service, or the waiting time in
queue. We observe that this is not equal to the waiting time as defined in this paper (i.e. sojourn
time minus service time) due to service preemptions. For class &, the LST of the time from the
start until the end of service R; , often referred to as the residence time, is

Rfp = B4 (s + hia — Aiadl 0 (9)). (7.3)

For a class-k customer in Q; the LST of the waiting time in queue , forRe(s) > 0,k =1,...,n,
is

(1= p) (I = I7(s + Aisa — Xi,a§] 4 (5))
E[Li1(Ai kB (s + Aia — Ai,a§ () — Aik +5)
N Pib(hia(1 =&, (s)) +5)

Aik B (s 4+ Aia — Miabl () — Aik + 5

Wit ) =

, i e NPRIOR-PR. (74)

For n-class priority queues, the waiting-time distribution in heavy traffic is equal to the case of
nonpreemptive priority queues. For the scaled waiting time in queue Wl.(f,f() of a class-k customer
in Q; with preemptive priority service using (7.4), for Re(s) > 0,i € NPRIOR-PR,k =
1..., n, we obtain

(1= 5 — (i /(i + 51+ hi oElE D))
E[S1(1 — p)s(1 = pix(l + AioEl&14])
Bip(L+ AioElE q])
1= pix(l + AioElE 4]

which is equal to (7.2) for the nonpreemptive case. As before, o and u; are given in (3.3).
From (7.3) it follows directly that the residence time can be neglected in heavy traffic.

Wil ") =

8. Shortest-job-first and SRPT

The SJF service discipline can be thought of as a nonpreemptive priority queue with different
priority classes. It may be interpreted as the continuous equivalent to having an infinite number
of priority classes, where the priority classes correspond to job sizes. Alternatively, in Schrage
and Miller [20], for the waiting time conditional on the service requirement x, a 3-class priority
queue is used where the second class consists of customers of size x. From the HT limit
derived in the previous section, we can immediately derive the HT limit of the waiting-time
distribution for SJF. The conditional and unconditional scaled waiting-time distributions are
given in Sections 8.1 and 8.2, respectively. The SRPT and preemptive SJF are discussed in
Section 8.3.

8.1. Conditional waiting-time distribution in heavy traffic

To go from (7.2) to SJF we let the service time of the customer determine its priority.
Note that we can apply the model of Section 7.1 if the distribution is discrete. In this
section we assume that the service-time distribution has a density. First we derive the LST
of the waiting time conditional on x, the service duration required by a tagged customer.

https://doi.org/10.1239/aap/1449859797 Published online by Cambridge University Press


https://doi.org/10.1239/aap/1449859797

Heavy-traffic limits for polling models 1009

Define p;(x) = AE[B;1{p,<x)], which is the continuous equivalent of p; ,. Because the
service-time distribution is continuous, we have p; — p;p = piq. We can now write the
conditional LST using (7.2). For Re(s) > 0, x > 0,

Wi*(s | x) = _A:ai ,\1 _ {l—( Mi ,\ )a}
1 — pi(x) E[S]s(1 — p;)/(1 — p; (x)) i + /(1 = p;i(x))
bi — pi (x)

—, ieSJF. 8.1
1 —p0;i(x)

This result gives rise to the following theorem.
Theorem 8.1. For p 1 1,

0 wp (0i — pi(x))/ (1 = pi(x)),
UixI; wp. (1 —=p5)/(1—=p;(x)),

D
Wix =

ieSJF. (8.2)

Then U x is a RV with a uniform distribution on [0, 1/(1 — p;(x))] and I~,~ has a gamma
distribution with parameters o + 1 and u; as given in (3.3).

Proof. The results follow directly from (8.1).

8.2. Unconditional waiting-time distribution in heavy traffic

For the unconditional waiting-time distribution in heavy traffic, we have the following
theorem. Let p; 1(y) denote the inverse function of 5; (x).

Theorem 8.2. For p 1 1,

t

Wig iii, iESJF,
where Ui has PDF

l_ﬁi’ yE[O, 1]’
o . 8.3
= a=m(i- e (57(57))) veaa-mm  ®

with a point mass at 0 of

f TAZH® o ay, (84)
o 1—pi(x)

and I; has a gamma distribution with parameters « + 1 and w; as given in (3.3).
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Proof. Note that the conditional waiting-time distribution in (8.2) can be written as a gamma
distribution multiplied by a uniform distribution with a point mass at 0; we refer to the latter
as ‘uniform’ distribution. To find the unconditional distribution of the waiting time, we need
to find the unconditional ‘uniform’ distribution l7,~ using Lemma 6.1. Note that, for y €
[0, 1/(1 — p;(x))], the CDF of this conditional ‘uniform’ distribution is

— hi(x) 1= pi
1— pi(x) 1= pi(x)

Fy, . (y) = y( = pi(x)).

The PDF of U;  is given by

. 1
fu., () =1—p; forye |:0, —Aj|;
1 = pi(x)
thus, we have a(x) = 0 and b(x) = 1/(1 — f;(x)). Recall that p;(x) = A;E[B;1(,<x] and
note that p; (Xmin) = 0 and p; (Xmax) = Pi; b(x) thus increases from 1 to 1/(1 — g;). If y < 1,
we have

fo, ) = /_O fB,(x) * fu,,(y)dx =1 - pi, y €10, 1].

When y > 1, U; , only has probability mass for x > ,5;1 ((y = 1)/y). We obtain

f5.0) = f . () * fu, () dx
x=p; (y=1)/y)

comnm () veoits)

Combining the results above we see that f],- has probability mass (8.4) in 0, and density (8.3).
This completes the proof.

8.3. The SRPT and preemptive SJF

In this section we consider preemptive size-based scheduling policies. The most common is
SRPT, where the customer with the smallest remaining service time is preemptively taken into
service. A less well-known policy is preemptive SJF, where the customer is preemptively taken
into service with the smallest original service time. The latter policy also has some desirable
properties; see, e.g. [3] and [14]. Similar to SJF, the waiting-time distribution for preemptive
SJF follows directly from the preemptive n-class priority queue of Section 7.2.

The analysis of SRPT does not follow directly from the results of [16]. Below, we use their
framework to derive the LST of the waiting time in queue W, q for a customer with service
time x. We utilize the notation introduced in Section 7 and adopt the terminology of [16].
In particular, letting class a represent customers with service times smaller than x, "g“l’fa (s) is
defined by

£, () = fo exp(—1(s + Aia — A&l (5))) fp, (1) dt

1
Fp; (x)

with A; 4 = A;Fp;(x), i.e. &’ (s) is a type-a busy period. Similarly, let class b represent
customers with service times larger than x and A; , = A; (1 — Fp, (x)).
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Proposition 8.1. For p < 1,i € SRPT,Re(s) > 0,

1 — pi
Wi(q),*(s) _ m(l _ Ii*(s + Aig — )»i,aé::a(s)))
1
i — 0i(x) — Ai pX
+ Pi p’(s) i.b S+ Aig — )Li,aé;';ja (s))

)"i,b *
+ T(l —exp(—x(s + )\i,u - )Li,aél‘,a ().

Proof. We start with the multi-class case, where class k is the class under consideration
having service times in (x — &, x], for ¢ > 0 small, and classes a and b have priority indexes
lower and higher than k, respectively. That is, the service times of class a are smaller than x — ¢
and the service times of class b are larger than x. Applying the idea of [20], customers of size
larger than x only affect class k as soon as their remaining service times become x. Specifically,
class b initiates a delay cycle, as defined in [16], when their remaining service time is x. In the
terminology of Kella and Yechiali, we thus have T; , i cycles for T; = I;, B; 4, B; x, but now
also for T = x. Since the LST of the waiting time given the cycle during which the customer
arrives is known, it remains to specify the probabilities that the system is in a specific delay
cycle. In line with [16, p. 28], we have the cycle probabilities

I1; 0 := P(no delay) = p;.p — Ai,pX = pi — pi,a — Pik — AibX,

P(B; 4 cycle) = Lpl’a, P(B; x cycle) = Lﬂl’k,
1 = pia — Pik 1 — pia — Pik
P(I; cycle) = —pl, P(x cycle) = l’—hx.
1 = pia — pik I — pia — Pik

Using the probabilities above in [16, Equations (7a) and (8)], we obtain, for Re(s) > 0,
(1= p) (A = I7(s + Xig — 2i,a§/,(5)))
E[Li1(Ai kB (s + Aia — Ai,a§] () — Aik +5)
n I 0(s + Aia — )&i,agiﬂja (8)) + Aip(1 —exp(—x(s + Ajq — )Ni,a‘i::a(s))))
Aik B (s 4+ Aia — Miab] () — Aik + 5 '

Wik ") =

Letting ¢ | 0 and substituting I1; o, we obtain the result.

As in Section 7.2, Wi(,i) is the waiting time in queue before the customer is first taken into
service; this is not the same as the waiting time defined in this paper. We note that the residence
time is identical to the residence time in a regular SRPT queue; see [20].

For LCFS and multi-class priority queues, the HT limits for the nonpreemptive and preemp-
tive policies are identical. The same holds for SJF, preemptive SJF, and SRPT as represented
by the following theorem.

Theorem 8.3. For p 1 1, the scaled waiting times W; follow the same probability distribution
for SJE, preemptive SJF, and SRPT.

Proof. Consider the conditional scaled waiting time Wi,x(s). For preemptive SJF it can
be directly observed from Section 7.2 that the HT limit is identical to the one for SJF. Using
Proposition 8.1, it follows that lim,y Wi(ffc)’*(s(l — p)) equals the right-hand side of (8.1).
Using (7.3) as an upper bound for the residence time, it is evident that the additional delay
during the service does not contribute to the HT limit.
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FIGURE 3: Shapes of the service-order specific distributions.

9. Illustration and numerical results

In this section we illustrate the results and indicate how to use them for numerical approxi-
mations. We refer to [29] for additional results. Due to exhaustive service taking place at queue
i it holds that C}(s) = I*(s 4+ A; (1 — £7(s))), cf. (3.2), we can rewrite the second (gamma)
distribution in terms of the scaled length-biased intervisit time distribution for all scheduling
policies; thus, obtaining Wi = @,-i ;. In Figure 3 we plot the PDFs fg, (x) of ©; (Figure 3(a))
and also the CDFs Fg, (x) (Figure 3(b)). We choose p; = 0.4. For FCFS, LCFS, ROS, and
NPRIOR, the HT limit only depends on the service time distribution through its first moment.
This is not the case for PS, SJF, and SRPT. In the figures we took exponential service times
for PS and SJF. Figure 3(a) nicely shows how ®; behaves; for LCFS and FCFS it is like a
uniform distribution, for SJF it is a type of generalized trapezoidal distribution, whereas it
slightly deviates from this for ROS and PS. The atoms in O can be observed from Figure 3(b).
In addition, these CDFs allow us to see the impact of the scheduling policy. For instance, SJF
is here superior to ROS and PS.

We use the HT limits as the basis for approximations for the waiting-time distributions for
stable systems, i.e. with p < 1. To this end, the asymptotic results suggest the following
approximation for the waiting-time distribution for p < 1. Fori =1,..., N,

P(W; <x) = P(O;I'; < (1 — p)x).
The moments of the waiting-time distribution can be approximated using

E[OFE[T}]
(1— p)*

We refer the reader to [25] for an elaboration on the accuracy of the approximation.

E[WK] ~
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