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Introduction

Our main purpose in this paper is to obtain more precise information about
:wo problems which we investigated in Hartley (1971a). They are as follows:

PROBLEM 1. Let G be a countable locally finite group and n be a set of
orimes. Suppose that G = HK, H <a G, H O K = 1, where H is a normal
x'-subgroup ofG, K is a n-group and CK(H) = 1. If we assume that the Sylow
'that is, maximal) n-subgroups of G are conjugate, what can we say about the
itructure ofKP.

More generally, if we wish to consider this problem for uncountable G, it is
ippropriate to assume that G is Sylow rc-sparse Hartley (1972), in the sense
hat no countable subgroup of G has 2*° Sylow n-subgroups. However, by
hartley (1972) Lemma 3.5, this already implies that K is countable if it is locally
ioluble, and so in this case we quickly reduce to a problem about countable groups.
V discussion of Sylow rc-sparseness, and its relationship with other properties
;uch as the conjugacy of the Sylow 7t-subgroups, can be found in Hartley (1972).

PROBLEM 2. Let Gelt . What can be said about the structure of Gjp{G)">.

Here p(G) denotes the Hirsch-Plotkin radical of G, and II is the class of groups
tudied in Gardiner, Hartley and Tomkinson (1971), Hartley (1971 and 1971a)
ind elsewhere. A locally finite group G belongs to It if, for every set n of primes,
he Sylow rc-subgroups of every subgroup of G are conjugate Hartley (1972)
Theorem E and neighbouring remarks). Our previous results relating to these
>roblems are to be found in Hartley (1971a) (Lemmas 4.7-4.8 and Theorem E),
ind in Theorems C and B respectively of this paper we shall provide answers to
'roblem 2 and the locally soluble case of Problem 1 which are in a reasonable
ense complete.
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438 B. Hartley [21

To obtain our results we have had to introduce some module-theoretic ideas
which we have thought it of interest to study in more generality than is required
for the strict applications we have in mind.

We introduced in Hartley (1973) the concept of an 2Rc-module over kG, where
G is a locally finite group and k a field of characteristic p 2: 0 — a (right) fcG-module
V is called an 9Jlc-module if each p'-subgroup A of G contains a finite subgroup
F = F(A) such that CV(A) = CV(F), where CV(H) denotes the set of elements of
V fixed by the subgroup H of G. This is a form of minimal condition on the
subsets of V which are centralizers (that is, fixed point sets) of p'-subgroups of G.
As was pointed out in Hartley (1973), such modules arise naturally in considering
chief factors of U-groups, and we shall see that they also arise in other contexts as
elementary abelian sections of groups whose Sylow subgroups have suitable
conjugacy properties.

For our applications in this paper we have to consider the more general
notion of an SSlc-family for a group G (henceforth, the word "group" will always
mean "locally finite group" unless the contrary is stated).

DEFINITION. An$Jlc-familyfor a group G is a set X of (right) kG-modules X,
where k = k(X) is afield of characteristic p(X) 2: 0, satisfyinng the following
condition: For each subgroup A ofG, there exists a finite subgroup F ^ A such
that CX(F) = Cx(A)for all X e X such that p(X) £ n(A).

Here the subgroup F depends only on A and not on the particular module X
under consideration, and n(A) denotes the set of all primes q such that A contains
an element of order q. We shall write CG(X) = C]XexCG(X), and say that X is
faithful, if this subgroup is 1. Further, we say that X is irreducible if each X e X
is irreducible as fc(X)[G]-module, and classical if p(X)$ n(G) for all X e X.

Let us now consider how such families may arise in practice. Let H be any
locally soluble group and let K be any group given together with an action
(K on H), that is, a homomorphism from K into Aut H. Then we can consider K
as an operator group for H, and then speak of X-composition series of H, using
the worg "series" in the general sense of Robinson (1968), p. 5. By a K-composi-
tion factor of H we shall mean a factor of any such series. Thus a iC-composition
factor of H is, among other things, a pair F<a U of K-invariant subgroups of H
such that K normalizes no normal subgroup W of U with V < W < U.
A straightforward modification of a well known argument due to McLain
(Robinson (1968) Theorem 4.31) allows us to deduce from this, using the local
solubility of H and the local finiteness of K, that U/V is an elementary abelian
g-group for some prime p. Therefore we may view [7/7 in a natural way as an
irreducible ZpK-module. Thus the K-composition factors of H determine a
collection of irreducible ZpK-modules, for various primes p, which we shall call
the composition factors of the action (K on H).

The relationship between 9Jie-families and groups with conjugate Sylow
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subgroups is now clarified by the results below. In connection with Lemma 6.3,
notice that L is certainly Sylow rc-sparse if the Sylow 7r-subgroups of every sub-
group of L are conjugate. In fact, by Hartley (1972) Theorem B, these two pro-
perties are equivalent for groups like L. We state Lemma 6.3 in terms of the
formally weaker property.

LEMMA 6.3. Let H, K be subgroups of a group L = HK with H <J L.
Suppose that H is a locally soluble n'-group, K is a n-group, and L is Sylow
n-sparse. Then the composition factors of (K on H) form a classical irreducible
m.c-family Xfor K, and CK(X) = CK(H).

Conversely, let X be a classical 3Jtc-family for a n-group K, and suppose
that p(X) T̂  Ofor all l e X. Let H denote the direct sum of the modules XeX,
and L the semidirect product HK. Then L is Sylow n-sparse, and CK{H)
= CK{X).

LEMMA 6.4. Let L e t t , let R = p(L) and G = L/R. Then the set of chief
factors of L below R (that is, the composition factors of (L on RJ) forms in a
natural way a faithful irreducible yRc-family for G.

Conversely let G be a Vi-group admitting a faithful irreducible %Rc-family
X such that p(X) j= Ofor all X e X. Let R denote the direct sum of the modules
XeX and Lthe semidirect product RG. Then LelX, and p(L) = R.

In the second half of Lemma 6.4, the modules XeX need not correspond
to chief factors of L, since they need not be irreducible over the appropriate prime
field.

Thus it is appropriate to study SOtc-families in connection with our Problems
1 and 2.

DEFINITION. An <Mc-head is a group which admits a faithful irreducible
SSlc-family. A classical yRc-head is a group which admits a faithful classical
irreducible 3Jlc-family.

As our main result on 2Rc-heads we have the following, which characterizes
locally soluble 2Rc-heads completely and is the central result of the paper.

THEOREM A. Let G be a locally soluble group. Then G is an 9Rc-head if
and only if G is almost a subdirect product of a finite number of p'-pinched
groups, for various primes p.

We shall not give the definition of p'-pinched at present (see page 18), but
simply remark that it is a more elaborate form of the definition below. A group
G "almost" has a certain property, if G has a normal subgroup of finite index
with the property.

DEFINITION. A group G is pinched, if G contains a locally cyclic normal
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subgroup A such that G\A is abelian and A contains every element of prime
order of G, and if furthermore every 2-subgroup of G is abelian.

Notice that the properties of A imply that G contains no elementary abelian
subgroup whose order is the square of a prime. Therefore every finite abelian
subgroup of G is cyclic, and by Gorenstein (1968) Theorem 5.4.10, every subgroup
of prime power order of G is either cyclic or generalized quaternion. The assump-
tion on the 2-subgroups of G is introduced to rule out the latter possibility. For
more detailed information about pinched groups, see Lemma 6.5.

From Theorem A we are able, via Lemmas 6.3 and 6.4, to deduce our answers
to the problems posed at the outset.

THEOREM B. Let G be a locally soluble group and let n = n(G). Then
necessary and sufficient conditions that there exist a locally finite and locally
soluble Sylow n-sparse group L = HK such that H <i L, H is a n-group,
CK(H) = landK^G are

(i) There exists a prime q$n,
(ii) G is almost subpropinched,

where we have used the abbreviation "subpropinched" for "subdirect product
of finitely many pinched groups".

It seems quite conceivable that the hypotheses of local solubility are re-
dundant in this result. In this connection, suppose that L = HK is Sylow n-
sparse, where H is a normal ^'-subgroup of L, K is a 7i-group, and CK(H) = 1.
Then Hartley (1971a) Lemmas 4.7-4.8 show that every locally soluble subgroup
of K has finite (Mal'cev special or Priifer) rank. It follows easily from this and the
Feit-Thompson Theorem that whenever a subgroup Q s C2oo of K normalizes a
2'-subgroup R of K, then [Q,R~\ = 1. A recent theorem of Sunkov (1970) then
shows that K contains a normal 2-subgroup Ko such that the Sylow 2-subgroups
of K/Ko are finite. This seems to provide a considerable reduction in the problem
of describing K in the case 2 en.

In answer to Problem 2 we have a theorem with a very similar flavour to
Theorem B.

THEOREM C. Let G be a group. Then necessary and sufficient conditions
for the existence of a group LeU such that L/p(L) £ G are

(i) GeU,
(ii) G is almost subpropinched.

Some consequences of this can be read off from Lemma 6.6. In particular,
an immediate consequence of these results is Corollary Cl below, which may be
compared with the well known theorem of Mal'cev that soluble linear groups are
nilpotent-by-abelian-by-finite (Robinson (1968) Theorem 2.11). A theorem of
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Wehrfritz ((1968) Theorem Al) shows that periodic soluble linear groups belong
to IX, and it appears that general It-groups are in some senses not too far from
linear groups.

COROLLARY Cl. Let Ge l t . Then Gjp(G) contains a normal subgroup of
finite index which is metabelian and parasoluble.

The concept of parasolubility is due to Wehrfritz (1971); a group H is para-
soluble if H contains a finite series 1 = Ho g Ht ^ ••• ^ Hn = H of normal
subgroups with abelian factors and such that every subgroup of # ( /# ;_ ! is
normal in HjH^^ (1 ^ i ^ n).

The paper is organized along the following lines. Section 2 contains some
elementary and basic observations about 9Jlc-families in general. In Section 3
we attack the problem of describing the structure of a locally soluble 9ftc-head
G and reduce it to the case when G is finitely radical, that is, has a finite series
with locally nilpotent factors. The next section shows that it suffices to consider
so-called reduced SH^-heads, and that finitely radical 50le-heads are in fact almost
metabelian. Section 5 completes the proof of Theorem A and Section 6 the de-
duction of Theorems B and C.

NOTATION. Much of our notation has already been introduced. If {Gx} is a
set of subgroups of a group, we write (G{) for the group they generate, and say
that {Gx} is a coherent set if TC«GX» = Uxn(Gk). A set of elements of a group
will be called coherent if the cyclic subgroups they generate are coherent. A Sylow
basis of a group G is a complete set of Sylow p-subgroups of G, one for each
prime p, every subset of which is coherent. A Sylow basis of G is said to reduce
into a subgroup H of G if the intersections of H with the members of the Sylow
basis constitute a Sylow basis for H. Throughout, n denotes a set of primes and
n the complementary set. If G is a group in which the set of rc-elements is a
subgroup, we denote that subgroup by Gn.

By the rank of a group we always understand its Mal'cev special rank, so
that a group G has finite rank if there exists a natural number n such that every
finitely-generated subgroup of G can be generated by n elements. The least such
n is then called the rank of G, and denoted by rk (G).

We write fi^G) for the subgroup generated by the elements of prime order of
G, and Z(G) for the centre of G. A section of G is a factor UjV where F<i U ^ G.

All modules considered in this paper will be right modules. If A ^ H ^ G
are subgroups of G, k is a field, and X is a fcH-module, then XA denotes the
module X retricted to A and XG the induced module.

If Xis anSRc-family for H, then XA = {XA:Xe X} and XG = {XG: Xe X}.
The characteristic of a field k will be denoted by char k, and we write char X
= {charfc(X): Xe X} = {p(X)\ Xe X}, the characteristic of the 9Kc-family X.
If n is a set of primes, then Xn = [Xe X: p(X)en\j {0}}.

A section of a module X is a factor UjV, where V :g 17 are submodules of X.
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2. Constructions with 9Jtc-families

In this section, we are concerned with methods of constructing new 50lc-
families from given ones. Most of the observations are of an elementary nature.

LEMMA 2.1. Let X be an yiic-family for a group G. Then
(i) Any subset of X is naturally an yjlc-familyfor G.
(ii) IfH^G, then XH is an "M.-family for H.
(iii) / / G is locally soluble, X < G and K <i CG(X), then X is naturally

anmc-familyforGIK.

PROOF, (i) and (ii) are immediate from the definitions. As for (iii), let B/K
be a subgroup of G/K and let n = n(B/K). Suppose for a contradiction that for
every finite subgroup F/K of B/K there exists a module X e X such that p (X)$ n
and CX(B) < CX(F). Then there exists a tower 1 < FJK < F2/K < — of
finite subgroups of B/K and sequence XUX2, ••• of members of X such that
p(Xt)tn and CXi(Fi+1) < CXi(Ft) for each i.

If B* = U T= I ^« then B*/K is a countable re-group, and so by well known
results (cf Hartley (1971a) Lemma 2.1) we have B* = KA for some 7i-subgroup A of
G. There exists a finite subgroup F of A such that CX(A) = CX(F) for all X e X
with p(X) <£ n = n(A).

In particular, choosing i so that F ^ Fit we obtain CXi(Fi+1) ^ CX.(A)
= CX.(F) ^ CXi(.F;), the desired contradiction. The result follows.

LEMMA 2.2. The union of a finite number of <SRc-families for a given
group G is also an^Slc-family for G.

PROOF. This is immediate.
The next two results allow us under many circumstances to replace a given

2Rc-family by an irreducible one.

LEMMA 2.3. Let X be a kG-module, let A ^ G and suppose that
char k $ n{A). Suppose that F is a finite subgroup of A such that CX(A) = CX(F),
and let U/V be a section ofXA. Then CU/V(A) = CU/V(F).

PROOF. Let u + F b e any element of CV/V(F). Then as F is finite, u lies in
a submodule W of UF which is finite-dimensional over k. Since charfc^7r(F),
W is completely reducible, and (Cw(F))(p = CW$(F) if <f> is any fcF-homomorphism
of W. Thus u + Ve CW(F) + V/V and we find that

CVIV(F) = CV{F) + V/V = CV(A) + V/V £ CV/V(A).

Hence Cv/r(F) = CU/Y(A), as claimed.

LEMMA 2.4. Let X be an yjlc-family for a group G. Then
(i) Suppose that, for each Xe X, l,x is a family of k{X)[G~\-sections of X.

Then \Jxex^ is an <Mc-family for G.
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(ii) Suppose X is classical and Zx is the set of all composition factors of
X(XeX). Then Uxex^x = Y is a classical irreducible Wc-family for G, and
Q ( Y) = CC(X).

(iii) IfG admits a faithful classicaiyjlc-family then G is a classical $Jlc-head.

PROOF, (i) is immediate from Lemma 2.3 and the definition. For (ii) we have
that if g e G and g centralizes every member of S x , then <g> stabilizes a series
in the module X. Since the order of g is prime to char k, it follows that g acts
trivially on X. Therefore CG(X) = CG(SX) for each X e X, and so

CG(X) = Cc( Y).

(iii) is an immediate consequence of (ii) and the definitions.
We go on to consider field extensions.

LEMMA 2.5. Let X be an irreducible 3Rc-family for a group G. For each
XeX, let k(X) be an extension field for k(X), and let X be a composition factor
of the k{X)\G]-module X ® *(X)£(X). Then X = {X: Xe X} is an irreducible
^-family for G, and CG(X) = CG(X).

PROOF. Let XeX and let {wx} be a basis of k = k(X) over k = k(X).
Then X <£>kk = ©X(X ® wx) so that, as kG-module, X ® kk is a direct sum
of copies of the irreducible module X and is in particular completely reducible.
Hence every fcG-section of X ® k k is a direct sum of copies of X, and in particular
X, considered as fcG-module, is such a direct sum. Therefore CG(X) = CG(X),
and if F g A g G are such that

CX(A) = CX{F),

then CX{A) = CX(F). From this the result follows.

COROLLARY 2.6. Let G be an Wc-head. Then G has a faithful irreducible
algebraically closed 3Rc-family.

Here the terminology should be clear.

LEMMA 2.7. Let X be a family ofkG-modules X, where k = k{X) is afield.
Suppose G contains a subgroup H of finite index such that XH is an 3Rc-family
for H. Then X is an ^-family for G.

PROOF. Let A ^ G. There is a finite subgroup Ao of A such that
A = (AnH, Ao}. Since XH = {XH: Xe X} is an 9Jlc-family, there is a finite
subgroup F o f i n f l such that CX(A r\ H) = CX(F) for all X e X such that
p(X)$n(A nH). Then F* = <F,^0> is a finite subgroup of A, and CX(F*)
= CX(A) if X e X and p(X) $ n(A).

Finally we need to consider the induced family XG, where X is an 2Rc-family
for a subgroup H of G.
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LEMMA 2.8. Let H be a subgroup of finite index of a group G, and
letX be an ^-family for H. ThenXGis an^-family for G, and CG(XG)
= nffeGCfl(X)9.

PROOF. Let slt ••-,sn be a right transversal to H in G, so that G = \J"=iHst.
Then, i f X e X , we have XG = ®"=1X ® s^Let K = f]gBGH9.Tbea \G:K\< OO

and, by Lemma 2.7 it suffices to show that (XG)K is an 9ftc-family for K. Let A ^ K.
Then Lemma 2.1 shows that XK is an 2Rc-family and so, if 1 ^ i ^ n, there is a
finite subgroup Ft of stAs~il such that Cx(Ft) = Cx(SiAsf*) if Xe X and
p(X)^n(siAsri) = 7r(>4). Let F = (sr'-FjS;: 1 ^ i ^ n>. Then F is a finite
subgroup of A. If p(X) $ n(A) and E" = x xf ® sf = x (x( e X) is an element of
XG centralized by F, then a direct calculation shows that Ft centralizes xt. There-
fore SiAsl~1 centralizes xt, and so A centralizes x. Hence CXG(F) = CXG{A) for all
X e X such that p(X) £ n{A). Thus (XG)K is an 2Jlc-family for K, as required.

It will often be expedient in the sequel to form the direct sum of the modules
in an 9Kc-family X for a group G, and to have a name for the resulting object.

DEFINITION. Let G be a group and let Y be a ZG-module. We say that Y is
a G-mod if there is a set {kk: leA} of fields, and for each Ae A a khG-module
Vx such that Y ^ © i e A Vx as ZG-modules.

If the VK can be taken as the members of an 9Jic-family for G, we say that Y
is an Wc-mod over G, and if the 9Jtc-family can be chosen to be irreducible, we
say that Y is a completely reducible $Jlc-mod over G.

If p is a prime, we write Yp for the Sylow p-subgroup of Y, and we also write
Yo for the maximal divisible subgroup of Y, viewing these as ZG-modules. If p is
now a prime or zero, then under any isomorphism Y = ©j.Vx as above, Yp will
correspond to the sum of those modules Vx for which char kk = p. Thus Yp will
be an 2Rc-mod over G if Y is, and so on. The same is true of Yn = ®q e „ Yq © Yo,
where TT is a set of primes.

LEMMA 2.9. Let G be a group, let Y be an Wc-mod over G, let H ^ G and
let n = n(H). Then YK' is naturally an 3Rc-mod over H. and when so viewed,
satisfies the minimal condition on centralizers.

PROOF. Let Y* = Yn~. Then the above remarks and Lemma 2.1 show that
y* is naturally an SD^-mod over H. From the definitions, it follows that each
subgroup A of H contains a finite subgroup F such that CY*(A) = CY*(F). Thus
(Y*)H satisfies the minimal condition on centralizers.

The following observation about 9Jic-mods will be important in the sequel.

LEMMA 2.10. Let Y be a completely reducible yRc-mod for G and suppose
that A is a finite non-cyclic abelian subnormal subgroup of G such that
\G:NG(A)\ < oo. Then
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Y = (CY{a): 1 * aeA>.

The proof requires the following (certainly well known) version of the
weakest form of Clifford's theorem.

LEMMA 2.11. Let G be any group, not necessarily locally finite, let k be
a field, let V be an irreducible kG-module and let N <i G. Then VN is completely
reducible provided either | G: N | is finite or | JV | is finite.

PROOF. Suppose that we know that VN contains an irreducible submodule U.
Then *LxeGUx is a fcG-submodule of V, and so V = "LxsGUx. Since N o G,
each Ux is an irreducible fciV-module. Thus VN is a sum of irreducible submodules,
and so is completely reducible. When N is finite the existence of U is clear.

If | G: N | is finite, let G = U?=i^s» a n d let 0 ± veV. Then Sj=1tWj • kN
= E*=i ufciVsj is a non-zero /cG-submodule of F, and so is equal to V. Thus T^
is a finitely-generated /ciV-module, and so has a maximal submodule W. Since
Df=i Ws, is a proper fcG-submodule we must have Di = i Wsf = 0. Thus P̂ , is
isomorphic to a submodule of the completely reducible fcN-module © f=1 F/ffs,,
and so is completely reducible.

PROOF OF LEMMA 2.10. We may obviously suppose that Y is an irreducible
kG-module, where k is a suitable field. There is a normal subgroup JV of G such
that \G: N\ < oo and N normalizes A. Then AN is a subnormal subgroup of
finite index of G and so, by applying the first case of Lemma 2.11 repeatedly, we
find that YAN is completely reducible. Hence by the second case of that lemma,
so is YA. Now it is well known that a finite abelian group which admits a faithful
irreducible module is cyclic. Therefore each irreducible summand of YA is central-
ized by some non-trivial element of A. From this the result clearly follows.

3. Locally soluble 9JJc-heads

The main result in this section is the following lemma, which is the first step
in describing the structure of locally soluble 10tc-heads.

LEMMA 3.1. Every locally soluble $Jlc-head is finitely radical.

Before beginning its proof we need to draw attention to some well known
facts.

LEMMA 3.2. Let p be a prime. There is a function fp(r,ri) such that if P
is a p-group having an abelian normal subgroup of rank ^ r and index ^ n,
then every locally finite subgroup ofAutP has rank ^ / p ( r , n).

PROOF. Let P be such a p-group and let P o be an abelian normal subgroup
of P of rank ^ r and index ^ n. Let Q = P" = <x": xeP>.Then Q is a charac-
teristic subgroup of P contained in Po , and so is abelian and of rank g r. Further-
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more P0IQ is an abelian group of rank ^ r and exponent dividing n, and so has
order at most nr. Thus \P-Q\ S " r + 1 •

Let A be any finite subgroup of AutP, Ao = CA(Q) and A1 = CJQ.^Q)).
Then AjA^ is clearly isomorphic to a subgroup of GL(r, p), and so has order
bounded by a number depending only on r and p. Also AljA0 is isomorphic
to a finite group of automorphism of Q which acts trivially on
fi^Q). By Gorenstein (1968) Theorem 5.2.4, such a group is necessarily a p-group,
and by a result of Hall (Roseblade (1965) Lemma 5), it follows that A1/Ao can be
generated by \r (5r — 1) elements. Therefore the number of generators required
for AjA0 is bounded by a number depending only on r and p. If B = CAo (P/Q),
then | AojB | ^ nr+1\ and so the number of generators needed by A\B is bounded
by a number depending only on p, r and n.

Let {s1;---,sk} be a transversal to g in P; thus /c ^ n r + 1 . For 1 g i g fe,
the map ft -> [s;, ft] maps B homomorphically into Q with kernel CB{s^). Since
these kernels clearly intersect trivially, it follows that B is isomorphic to a finite
subgroup of a direct product of k copies of Q. Thus B can be generated by kr
elements. Hence the number of generators required by A is bounded by a number
depending only on p, r and n, as claimed.

LEMMA 3.3. Let H, K be finite subgroups of a locally soluble group G.
Then there is an element xeG such that H and Kx are coherent.

PROOF. Let n = n(H) u n(K) and let S be a Hall rc-subgroup of the finite
group (H,K} with H ^ S. By Hall's theorem we have K* ^ S for some
x e <H, K>, and so <H, Kx} is a rc-group.

We are now ready to begin the proof of Lemma 3.1, and deal with the classical
case separately. In fact, this case has alreadly effectively been dealt with in
Hartley (1971a).

LEMMA 3.4. Let G be a classical locally soluble 3Jlc-head. Then G is a
metabelian-by-finite group of finite rank.

PROOF. Let X be a classical faithful irreducible 9Ke-family f° r G and let Y
be the G - m o d ® j £ j X . Then Y satisfies the minimal condition on centralizers,
by Lemma 2.9. Let T denote the semidirect product YG. Since CG(Y) = 1, every
countable subgroup of T lies in one of the form Y*G*, where G* is a countable
subgroup of G normalizing a countable subgroup Y* of Y such that CG*(Y*) = 1.
If 0^ charX then Hartley (1971a) Lemma 4.3 shows that Y*G* only has countably
many Sylow 71-subgroups. Therefore T is Sylow rc-sparse, and the required in-
formation about G follows from Hartley (1972) Lemma 3.5.

If 0 e char X, then the arguments of Hartley (1971a) Lemmas 4.5-4.6 may be
applied to Y*G* to show that every locally nilpotent subgroup of G* is almost
abelian and of finite rank. It follows that this holds for every locally nilptent
subgroup of G. Therefore the result follows from Hartley (1971a) Lemma 4.8.
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PROOF OF LEMMA 3.1. We have to consider a locally soluble group G
having a faithful irreducible 50lc-family X. As previously described, if a is a set of
primes, we write X f f = { X e X : char k(X) e a u {0}}, and we also write
Ka = CG(Xff). By Lemma 2.1, Xff is a faithful irreducible 9Kc-family for G/Ka.

The argument proceeds in stages.
(i) For each set n of primes, the n-subgroups of G/Kn. are soluble and of

bounded rank.

For if H is any 7t-subgroup of GlKn., then Lemma 2.1 shows that ( X , . ) H is a
faithful classical 9Jtc-family for H. Therefore by Lemma 2.4 (Hi) and Lemma 3.4,
H is a soluble group of finite rank. The fact that the 7c-subgroups of G/Kn. are
of bounded rank follows by a standard argument using the local solubility of
G/K,. (cf. Hartley (1972), proof of Corollary 3.5).

(ii) J/char X = p > 0 then G is finitely radical.
For using (i) and Hartley (1972) Corollary 3.5, we obtain that G\Op p.p(G) is

finite. But by a result of Kegel (Gardiner, Hartley and Tomkinson (1971) Lemma
3.2), OP(G) acts trivially on every irreducible module for G over a field of charac-
teristic p. Therefore OP{G) = 1. Since (i) shows that Op,(G) is soluble, (ii) follows

(iii) The ranks of the groups PjP O Kp. are bounded, where p runs over
all primes and P over the p-subgroups ofG.

' Notice that by (i) the ranks of the groups PjP n Kp. are bounded for each
fixed prime p, as P runs over the p-subgroups of G. Suppose that (iii) is false,
and that for some natural number fc^l we have finite sets {pi, •••,/>*} and ak

of primes such that {pu •••,pk} n ak = 0 . Suppose further that for 1 g i <; k
we have a finite prsubgroup Pt of G such that

and {Pi,---,Pk} is a coherent set of subgroups. By (i) and the hypothesis that
(iii) is false, we can choose a prime pk+1 ${pu •••,pk} U ok and a finite pk+1-
subgroup Pjt+1 of G such that

r k ( P t + 1 / P t + 1 O

where nt is the maximum of the ranks of the pj-subgroups of GjKpi, the latter
being finite by (i). Furthermore we may assume, by Lemma 3.3, that Pk+1 is
coherent with <Pt , •••,Pfc>, so that {P1 ;--- ,P t + 1} is a coherent set.

We now find that

rk(Pt + 1 /Pf c + 1 fl K{PI p t + l ) 0 2: k + 1.

Therefore there is a finite subset ik of {pl5 •••,pk+i}' such that
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Letting ak+l = ak\j xk, we find that the construction can be carried one stage
further. Since the construction can clearly be begun, we can eventually obtain
two disjoint sets {pi,p2,--} and a = (jr=i°fc OI" primes and a coherent set
{pi> P2> •"} of finite subgroups of G such that P; is a prgroup and

(1) Tk(PJPt n Ka) £ i

for all i = 1,2, ••• Let L = (PUP2, •••>. Then by Lemma 2.1, Xff is a faithful
classical 9JJc-family for L/L n Kff and therefore, by Lemmas 2.4 and 3.4, L/L n Xff

has finite rank. This contradiction to (1) above establishes (iii).
(iv) There exists a finite set a of primes and a natural number t such that

if p$o and P is a p-subgroup of G then rk(P) ^ t.

Again we assume the result false and otbtain a contradiction by carrying out
a suitable construction. At the fc-th stage of the construction we have two disjoint
sets {Pi,---,pk} and {qi,---,qk} of primes and coherent elements gi,---,gk of G
such that #; is of order pt and belongs to Kq..

Now it follows from (iii) that there is an integer / such that

(2) rk(P/P O K , . ) ^ I

for all primes p and p-subgroups P of G. Thus the ranks of the finite p-subgroups
of G/Kp, are bounded, and so G/Kp. satisfies min-p. It follows from work of
Wehrfritz (1971a) that there exist natural numbers (rt,n,) (1 g i ^ k) such that
every qrsubgroup of GIKq- contains an abelian subgroup of rank ^ rt and index
^ n . In fact, this even holds for every qrsection of G/K?;.

Since (iv) is assumed false, we can choose a prime qk+1 $ {pu •••,pk} and a
qk+l -subgroup Q of G such that

where the functions / are those given by Lemma 3.2. Then by (2), if Q*

(3) r k ( Q * ) ^ l + Z/„(!•„n,).

Let Y denote the subfamily consisting of those XeX such that char k(X) = qk+1

and let L = CG(Y). By Lemma 2.1, F is a faithful irreducible 9Jte-family
for G = G/L. Now by Gardener, Hartley and Tomkinson (1971) Lemma 3.2,
Ogk+l(G) = 1, and since Q* acts trivially on X?- the natural homomorphism
of G onto G maps Q* isomorphically onto a subgroup Q* of G which intersects
the Hirsch-Plotkin radical p(G) trivially. By (ii), G is finitely radical, and so
Q* transforms p(G) faithfully by conjugation. Now as L ^ K^ (1 ^ i g k),
the group Oqt(G) contains an abelian normal subgroup of rank ^ rt and index
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^ nf. Therefore the group of automorphisms induced on it by Q* has rank
at most /9i(rj,n,), by Lemma 3.2. It follows from (3) that there is a prime
A+i*{« i . -»«*+i} s u c h t h a t [Q*.°Pk+1(G)] # 1. Therefore 6*G contains
an element gk+1 of order Pjt+1. Since Q* g K?- , we have gk+1 eKq> , and by
Lemma 3.3 we can arrange that gk+l is coherent with gu ••-,gk.

Since the above argument also shows how to begin the construction, we
obtain in due course disjoint sets {Pi,p2,-"} and {<Ji,<?2>""} of primes and
coherent elements gug2, ••• such that gt is of order pt and belongs to Kq-r Let
H = (gug2,—y anc* a = {<Zi><?2>-••}• Then Xff is a classical 9Jtc-family for H,
and so there is a finite subgroup F of H such that CX(F) = CX(H) for all X e Xo.
Choose n so that i7 5S <g1) •• •,#„>. Then f centralizes every module X e X such
that charfc(X) = qn+i, whereas on the other hand there must be such a module
not centralized by #n + 1 . This contradiction establishes (iv).

Finally we obtain
(v) G is finitely radical. Let L= n CG(X) over all X such that char fe(X) e a,

the set given by (iv). Since a is finite, (ii) gives that G\L is finitely radical. Now
L n Ka. = 1 and so Xa. is a faithful 2Rc-family for L. It follows from Lemmas 2.1,
2.4 and 3.4 that if p is a prime in o- then every p-subgroup of L has finite rank.
By the choice of a, it follows that every abelian subgroup of L has finite rank.
A theorem of Gorcakov (1964) now shows that L itself has finite rank, and a
theorem of Kargapolov (1959) yields that L is finitely radical (in fact, L/p{L) is
abelian-by-finite). Thus G is finitely radical, as asserted.

4. Reduced 2RC-Heads

In this section we shall show that every locally soluble 2Rc-head is almost a
subdirect product of so-called reduced 2Rc-heads. Taken in conjunction with
the results of the last section, this will allow us to show that locally soluble 5Dle-
heads are almost metabelian, thus effectively reducing the proof of the main
Theorem A to the metabelian case.

DEFINITION. A group G will be called reduced if whenever A is a subnormal
abelian subgroup of G such that \ G: NG{A) | < oo, then A is locally cyclic.

We have used this perhaps rather unsatisfactory term since reduced 50lc-
heads are the end product of a "reduction process", as we shall see.

The following remark is immediate. We recall that H sn G denotes that H is
a subnormal subgroup of G.

LEMMA 4.1. IfG is reduced, H sn G and | G: H | < oo, then H is reduced.

Our aim in this section is to establish

LEMMA 4.2. Let G be a locally soluble W.c-head. Then G is almost a
subdirect product of finitely many reduced 3Rc-heads.
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Before beginning the proof of it we need some information about the Hirsch-
Plotkin radical of an S0le-head. Here, local solubility is not assumed.

LEMMA 4.3. Let G be an Mc-head with Hirsch-Plotkin radical R. Then R
satisfies Min-p for all primes p.

PROOF. Let X be a faithful irreducible 9Jtc-family for G. By Gardiner,
Hartley and Tomkinson (1971) Lemma 3.2, Rp acts trivially on every irreducible
G-module over a field of characteristic p > 0. Hence by Lemma 2.1, Xp, can be
viewed as a faithful classical 9PZc-family for Rp. Therefore Rp satisfies Min, by
Lemma 3.4 and a theorem of Cernikov (1951).

We could in fact show, by adapting the arguments of Hartley (1971a)
Theorem E, that R is almost abelian and of finite rank. However we do not require
this fact at present, and in the case when G is locally soluble, it will in due course
emerge from our subsequent results.

PROOF OF LEMMA 4.2. Let G be a locally soluble group with a faithful irre-
ducible 50lc-family X. If X denotes the direct sum of the members of X, then X is
a completely reducible 9Jlc-mod over G, and if H is a re-subgroup of G, then the
ff-mod {XK.)H satisfies the minimal condititon on centralizers (Lemma 2.9).
However {Xn>)u may conceivably not be completely reducible.

Now in proving Lemma 4.2 we may clearly suppose that G is not itself reduced.
We shall show how to construct two sequences Sn, Tn of finite sets of centralizers
in X of subsets of G (n S; 0) and a sequence Ho, Hx,-- of normal subgroups of
finite index of G such that the following conditions are satisfied:

(i) Hn normalizes each KeSnU Tn and n CHn (K) — 1 as K runs over

(ii) Each K e Sn u Tn is a completely reducible 9Jtc-mod over Hn.
(iii) If K e Sn then HJCHn(K) is not reduced.
(iv) If Ke Tn then HJCBn(K) is reduced,

all the actions above being the natural ones. The construction is an elaboration
of the argument of Hartley (1971a) Lemma 4.6.

We begin by putting Ho = G, So = {X}, To = <j>. Having obtained Hm

Sn and Tn, we proceed as follows. If Sn — <f> the construction is terminated.
Otherwise, choose for each of the finitely many KeSn a non-cyclic subnormal
elementary abelian subgroup AKjCHn (K) of HJCHn (K) normalized by a subgroup
of finite index of HJCHn (K). Then AKjCH^ (K) lies in the Hirsch-Plotkin radical
of the 2Rc-head HJCHn (K), and so is finite by Lemma 4.3. It follows that there is
a normal subgroup Hn+l of G contained in Hn and such that

(1) | G : H n + 1 | < c o

and

(2) Hn+1 centralizes AKICHn(K) (KeSn).
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Since AKjCHn{K) is finite, we have from Lemma 2.10 and (ii) that

(3) K = < C K ( 0 : l 9 M e £ K > (KeSn)

where EK is any transversal to CHn(K) in AK containing 1.
Now as AKjCHn(K) is a subnormal subgroup of HJCHn(K) centralized by

Hn+1, Hn+lAK is a subnormal subgroup of finite index of Hn. Therefore, by (ii),
Lemma 2.11 and Lemma 2.4 (i), KHn+iAK is a completely reducible 9Jlc-mod
over Hn+1AK. If we express it as a direct sum of irreducible Hn+1^4K-modules,
we find, using (2), that the centralizer in it of an element te AK is just the direct
sum of those summands in the decomposition which t centralizes. Therefore
CK(f) is a completely reducible Hn+lAK-mod, and hence, by Lemmas 2.11 and
2.4 (i) again,

(4) CK(t) is a completely reducible y$lc-mod over Hn+1,

It follows from (3) that n 1 # ( e £ k C H > . + 1(Cx(0) = Qr. + 1(-K) and hence, if we
let Un+1 consist of the ffn+1-mods CK(t) (KeSn, 1 ¥= teEK), together with the
mods YHn+1(Y e Tn), then (i) shows that Hn+1 normalizes each LeUn+u and

(5) fl Cfln+1(L) = 1.
LeUn + i

We now divide the members of Un+1 into two sets Sn + 1 , Tn+1, throwing
LeUn+l into S n + 1 or Tn+1 according as Hn+1/CHn+J(L) is not or is reduced,
respectively. Now if L e Tn then Hn+1/CHn+1(L) s Hn+1CHn(L)ICHXL), a normal
subgroup of finite index of HnjCBn(L). It follows from Lemma 4.1 that

is reduced, and hence that

(6) r n g Tn+1.

Now since Hn+l is a normal subgroup of finite index of Hn, Lemmas 2.11 and 2.4
(i) show that KHn + 1 is a completely reducible 9Jlc-mod over HR+1 if Ke Tn+1.
This, together with (4) and (5), shows that (i) and (ii) of the conditions required by
the construction hold; (iii) and (iv) are immediate from the definition of S n + 1

and Tn + 1.
The lemma will evidently be proved if we can show that our construction

terminates, that is, Sn = 4> for some n. For then Hn is a subdirect product of a
finite number of reduced 2Rc-heads, namely the HJCHXK) (K e Tn).

If the construction proceeds indefinitely, then the Sn form a sequence of
non-empty finite sets. From (6) and the construction, each member of S n + 1 has
the form CK(t) for some K e Sn and t e EK, and by choosing such a K we obtain
a map of Sn+j into Sn. In view of the fact that an inverse limit of non-empty finite
sets is non-empty, it follows that we can select a sequence KUK2, ••• such that
KteSt and Ki+1 = CKt(tt) for some element 1 i= tteEKl. Let pt be the prime
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divisor of the order of AKJCH.(K,). There is a countable subgroup M of G which
covers each of the factors AKJCHi(K^. Let Mo g Mx ^ ••• be a tower of finite
subgroup of M such that U?L0 Mf = M, and let I? be a Sylow basis of M which
reduces into each Mt. Since AKi is subnormal in G it follows that AKl n My sn Mj
for each j and hence that R reduces into each of the groups AK. n Mj. Since one
of these covers AKJCH.{K^, it follows that the Sylow prsubgroup Rpt of R also
covers AKJCH.(K). Therefore we may suppose that

(7) tteRPt 0 = 1 ,2,-) .

Now the image of f, in HtlCHi{K^ lies in a subnormal pf-subgroup of the
latter group, and so by (ii) and Gardiner, Hartley and Tomkinson (1971) Lemma
3.2, we find that tt acts trivially on the ^-component of K{. Therefore there is a
prime qt ^ pt such that tt acts non-trivially on Khqi = CXq.((tu •••, f i_1». We thus
have

(8) C x , , «* ! , - , * , » < CXqt(Ou-,ti-i»

for each i. It follows that if i(l) < i(2) < ••• is any strictly increasing sequence
of natural numbers, then

For by (8), the subgroups obtained by intersecting the two sides of (9) with the
centralizer in Xqdj+l) of <<!,-••,f,o-+i)-i> are distinct.

We next consider the sequences Pi,p2,--- and quq2,---, and claim first that
no prime occurs infinitely often in the sequence {pj. Indeed if i(l) < i(2) < ••• is
an infinite sequence such that piU) = p for all j , then as qiU) # p for all j and
(by (8)) the elements tiU) generate a p-group, (9) gives a contradiction to the fact
that .Xp-, when restricted to any p-subgroup of G, satisfies the minimal condition
on centralizers (Lemma 2.9).

Furthermore, no prime q can occur infinitely often among the qt. For in the
contrary case we obtain a sequence i(l) < i(2) < ••• such that ptU) # q and
qiU) = q for all j . Using (7) and (9), we now obtain a contradiction to the fact
that Xq satisfies the minimal condition on centralizers when restricted to any
q'-subgroup of G.

An immediate recursive construction now allows us to obtain an infinite
sequence i(l) < i(2) < ••• such that the sets a = {piU)} and x = {qi(j)} are
disjoint. From (9), we find that the sequence of centralizers CXT((fl(1), •••,<i0)»
is strictly decreasing. But (7) shows that the elements ti(1),tii2),--- generate a
t'-group, and so we have a final contradiction to Lemma 2.9. Therefore Lemma
4.2 is established.

Regarding the structure of reduced 3ftc-heads, we can say the following:

LEMMA 4.4. Let G be a reduced locally soluble 9Jlc-head with Hirsch-
Plotkin radical R. Then O2(R) is locally cyclic. There is a normal subgroup
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H of finite index in G and a locally cyclic normal subgroup A of H such that
A = CH(A). Further, HjA is abelian.

PROOF. By Lemma 4.3, the Hirsch-Plotkin radical R of G satisfies Min-p
for all primes p. Since G contains no non-cyclic elementary abelian normal sub-
group, the maximal radicable subgroup i?p°of the Sylow p-subgroup Rp of R is
locally cyclic. Let Cp = CRp(R°p). Since CpIRp°is a finite p-group, Cp is nilpotent.
If Fp is any finite subgroup of Cp such that Cp = FpRp°, then Fp <a Cp and CP\FP

is locally cyclic. It follows that the set of all elements of any given order in Cp

generates a finite subgroup. Hence any finite set of elements in Cp lies in a finite
characteristic subgroup of Cp and hence in a finite characteristic subgroup of G.
Therefore, if £ is a finite subgroup of Cp, then E sn G and | G: CG(E) | < oo .
Since G is reduced, we find that every finite abelian subgroup of Cp is cyclic.

Suppose now that p is odd. Then a finite p-group, all of whose abelian sub-
groups are cyclic, is itself cyclic (Gorenstein (1968) Theorem 5.4.10), and hence Cp

is locally cyclic. Furthermore, every non-trivial automorphism of finite order of
R°p acts non-trivially on Qt (R°p) (Robinson (1968) Lemma 2.36), and hence Rp has
no automorphism of order p. Therefore Cp = Rp, and Rp is locally cyclic if p is odd.
Hence O2(R) is locally cyclic.

If i?° # 1 then, since R2is a direct factor of any larger abelian subgroup of
C2 and every finite abelian subgroup of C2 is cyclic, we find that R2 is a maximal
abelian subgroup of C2 and hence that C2 = R° . Since in fact C2 is the centra-
lizer of the subgroup of order 4 of R°2 (Robinson (1968) Theorem 2.36), we have
that \R2: C2\ = 1 or 2. Let A = O2(R) x R°2. Then A is locally cyclic. If
D = CG(A), then D also centralizes RjA, and since Lemma 3.1 shows that D is
finitely radical, we obtain that D :g R by an argument similar to Hartley (1971a)
Lemma 5.4. Hence D n R2 :g C2, and so D = A. Therefore we may take H = G
in this case.

If .R° = 1, then C2 = R2 and R2 is either cyclic or a generalized quaternion
group (Gorenstein (1968) Theorem 5.4.10). Let H = CG(R2), A = H n R
= O2.(R) x Z(R2), where Z(R2) is the centre of R2. Then \G: H\ is finite and
H -=a G. Since H is finitely radical and A = H Pi R is the Hirsch-Plotkin radical
of # , we have A = CHU).

Since the automorphism group of a locally cyclic group is abelian, we have
that HfA is abelian in either case.

(A little more argument actually shows that we can take H = G unless R2

is a quaternion group of order 8, in which case H can be chosen to be of index
dividing 6. This is the best that can be expected if we want H to contain a self-
centralizing locally cyclic normal subgroup, as the example of GL (2,3) shows).

We can now state a theorem which gives quite a lot of information on the
structure of locally soluble 50lc-heads.

THEOREM 4.5. Let G be a locally soluble 3Rc-head. Then G is almost
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metabelian. The Hirsch-Plotkin radical of G is almost abelian and of finite
rank.

PROOF. Lemma 4.4, together with its proof, shows that the theorem holds
for reduced 2Jtc-heads. Therefore, by Lemma 4.2, it suffices to show that the
properties attributed to G are preserved by forming subdirect products with
finitely many factors and finite extensions. We leave this straightforward exercise
to the reader.

We complete this section by showing how the proof of Theorem A may now
be reduced to determining the structure of metabelian reduced 9Ke-heads. But
first we need to define a p'-pinched group.

DEFINITION. Let p be a prime. A group G is said to be p'-pinched if G
contains a locally cyclic normal subgroup A such that

(i) G\A is abelian.
(ii) For every prime q ^ p, every element of order q of G lies in A.
(iii) Op(G) ^ A.
(iv) There is a normal subgroup K of G such that K n Op(G) = 1 and

GjK satisfies Min-p.

Notice that, by (ii) and the locally cyclic nature of A, G contains no non-
cyclic elementary abelian q-subgroup if q ^ p. Hence, if q is an odd prime different
from p, every g-subgroup of G is locally cyclic, while if p ^ 2 every finite 2-sub-
group of G is either cyclic or generalized quaternion. However a p'-pinched
group may nevertheless be uncountable, cf Hartley (1972), remarks following
Corollary Cl .

We have

LEMMA 4.6. Let G be p'-pinched and N-& G. Then N is p -pinched.

PROOF. Let A and K be as in the definition, and let B = A n N. Then B is
locally cyclic, N/B is abelian, and every element of N of prime order q ¥= p lies
in B. As OP(N) = OP(G) O N, we have Op(N) ^ A n N = B. Furthermore, if
L = N nK, then L n OP(N) = 1 since OP(N) ^ OP(G), and N/L ^ NK/K
satisfies Min-p.

The necessity of the conditions given in Theorem A for a locally soluble
group to be an 3Jic-head can now readily be deduced from Lemma 4.7 below,
the proof of which we defer to the next section.

LEMMA 4.7. Let G be a metabelian reduced Wc-head. Then G is almost a
subdirect product of a finite number of p'-pinched groups, for various primes p.

DEDUCTION OF THEOREM A: necessity. By Lemma 4.2, if G is a locally soluble
9Jtc-head, then G contains a normal subgroup H of finite index and subgroups
Ku - , Kn-aH such that each # / # , is a reduced 9Kc-head and n?=i ^ i = 1-
By Lemma 4.4, there exist subgroups L, with Kt ^ L , < f l such that \H: L( j is
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finite and LJK, is metabelian. There exists a normal subgroup L of G such that
L ^ C\UiLi and \G: L\ < oo. Then LjL n X ^ LKJKi, which is a normal
subgroup of finite index of HjKt contained in L./X;. Therefore, by Lemma 4.1,
each of the groups LjL O K, is reduced and metabelian. Also, by Lemmas 2.1,
2.4 and 2.11, each of these groups is an 9Jtc-head.

Let Mt = L n K(. By Lemma 4.7, there exists a subgroup T; of finite index
in L such that Mt ^ Tt<3 L, and finitely many normal subgroups MtJ of Tt such
that r\jMij = Mi and T^M^ is p'-pinched for a suitable prime p. Let T be a
normal subgroup of finite index of G contained in n"=i >̂ Then by Lemma 4.6,
each of the groups TjT O Mtj is p'-pinched for the appropriate prime p. Since
OijMij = l,Tisasubdirectproductof a finite number of //-pinched groups, and
the deduction of the necessity statement of Theorem A is complete.

We now establish the sufficiency statement of Theorem A, so that all that
remains is to prove Lemma 4.7.

LEMMA 4.8. Let G be a group which is almost a subdirect product of
finitely many 3)tc-heads. Then G is an 9Jlc-head.

PROOF. By hypothesis, G contains a normal subgroup H of finite index and
subgroups Klt •••,Kn<i H such that each H/Kf is an 2Re-head. Thus HjKx has a
faithful irreducible 2Rc-family, Xt say. We may view Xt naturally as an irreducible
3Jtc-family for H with CH(X;) = Kt. By Lemma 2.8, X(

G is an 2Kc-family for G.
Now if Xi e X,, then (Xf )H is the direct sum of a finite number of irreducible
H-submodules, among which a copy of X,- occurs. Therefore we can choose a
composition factor Yt of X? such that (YJg has a direct summand isomorphic
toXj.

If Yt consists of all such modules 7;, then Lemma 2.4 (i) shows that Fj is an
irreducible 9Jlc-family for G, and clearly CG{ Y,) O H ^ Kt. By Lemma 2.2,
Y= U"=i Yi i s a l s o a n 9Jlc-family for G, and CG( Y) n H ^ fl"=i K, = 1.

Finally, G/H is finite and so has a faithful irreducible 9Jic-family over any field of
characteristic not dividing its order (since GjH has a faithful completely reducible
representation over such a field). By viewing such a family as an 2Rc-family for G
and adjoining it to Y, we obtain the required faithful irreducible 2Rc-family
over G.

COROLLARY 4.9. Every almost abelian group with Min is an Wlc-head.

PROOF. Such a group G contains a normal subgroup of finite index which
is a direct product of finitely many groups of type Cpx. Now a group of type
Cpoo has a faithful irreducible module over Zq, is where q is any prime different
from p (Robinson (1968) Lemma 2.37). Since such a module is trivially an 2RC-
module (as every non-trivial element of the group acts fixed-point-freely), the
Corollary follows from Lemma 4.8.
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PROOF OF THEOREM A: sufficiency. By Lemma 4.8, it suffices to show that
every p'-pinched group G has a faithful irreducible 2Rc-family. Let A be a locally
cyclic normal subgroup of G containing every element of prime order q =£ p of
G and such that G\A is abelian. We may suppose that A is chosen maximal subject
to these conditions. Let B be any abelian subgroup of G containing A. Then since
every abelian p'-subgroup of G is locally cyclic Bp.A = Bp. x Ap is locally
cyclic. Hence Bp- ^ A, by the maximality of A, and so B/A is a p-group. It follows
that, if C = CG(A), then CIA is a p-group. Since C is clearly nilpotent it is the
direct product of its Sylow subgroups and we have

(10) Ca(A) g AOp(G) = Ap. x Op(G) = A

by (iii) of the definition of p'-pinched.
Now A\AP is a locally cyclic p'-group, and so has faithful irreducible module

U over any field k whose characteristic is p or 0. By allowing Ap to act trivially
we may view U as a L4-module. Let W = UG and let V be any composition
factor of W. Now WA is a direct sum of irreducible fc/1-submodules on each of
which the kernel of A is Ap; consequently V is also such a direct sum and

(11) CJV) = A,.

Furthermore, since G is //-pinched, any subgroup L of G which is not a p-group
contains a non-trivial p'-element a of A. The latter acts fixed-point freely on V,
and so CV(L) = Cv(a) = 0. Therefore

(12) V is an irreducible 9Jlc-module over G.

Since G is p'-pinched, there is a normal subgroup K of G such that G/K
satisfies Min-p and K n Op(G) = 1. We may evidently suppose that 0P'(G/K) = 1.
Then the Hirsch-Plotkin radical of G/K is a p-group satisfying Min, and contains
its centralizer since G/K is soluble. Since a periodic group of automorphisms of
a p-group satisfying Min also satisfies min (Robinson (1968) Theorem 2.35), we
find that G/K satisfies Min. Then GjK has a faithful irreducible 9Kc-family Y, by
Corollary 4.9; in fact it is worth pointing out that this family can be taken to
consist of modules over any given field k, of characteristic not belonging to
n{GjK). By viewing Fas a family over G and adding V to it, we obtain an ir-
reducible $0ic-family X over G.

It remains to verify that X is faithful. From (11) we obtain that CG(X) O A
S Ap = OP(G), and hence, as OP(G) is faithfully represented on Y, we obtain
that Ca(X) n A = 1. Therefore CG(X) ^ CG(A) = A by (10), and so CG(X) = 1,
as required.

5. Metabelian SRC-Heads

In this section we have to investigate the structure of reduced metabelian
2Rc-heads, in order to prove that such groups are almost subdirect products
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of p'-pinched groups. The key lemma in this investigation is Lemma 5.4. In
proving this lemma we have to extend the fields over which the modules in our
SD^-family are defined, employing Corollary 2.6 for the purpose. This is the only
time in the paper when field extension seems necessary.

Before coming to Lemma 5.4 we need three technical lemmas, the first of
which will certainly be well known.

LEMMA 5.1. Let A be a periodic abelian group and let k be an algebra-
cally closed field. Then

(i) Every irreducible kA-module has dimension 1 over k.
(ii) Let V be an irreducible kA-module, let K = CA(V), and let a e A u t A

Let V denote the kA-module V with the A-action (v,a)^>v.ax~'. Then V £ V
if and only ifK" — K and a centralizes AjK.

PROOF, (i) Let V be an irreducible fcyl-module. Then V contains a non-
zero vector v. If a e A, then v lies in a finite-dimensional subspace UofV invariant
under a. Since k is algebraically closed, there is an element A e k and a non-zero
vector weU such that wa = Aw. For fixed A and a, the set of all vectors w e V
which satisfy this condition is a non-zero fc/1-submodule of V, and so must be V
itself. It follows that every element of A acts on V as multiplication by an element
of k, so that every /c-subspace of V is a L4-submodule. Hence dim* 7 = 1.

(ii) Suppose that V" s V. Then as K* = CA(V), we must have K" = K.
By(i)> F is 1-dimensional and each element of/1 acts on V by scalar multiplication.
Thus we have a homomorphism A: A -* k* such that va = k{a)v for all a e A
and veV. Let <f>: V-> V be an isomorphism. Then (va)(f> = v<j> • a*~\
Hence X(a)v<j> = X(a"~') v<j> for all veV, aeA, whence A t a ' V 1 ) = 1 and
a = a" 'modiC = kerA. Thus a centralizes A/K. The converse is immediate.

LEMMA 5.2. Let G be a group containing an abelian normal subgrou p A
which satisfies Min-p for all primes p and is such that G\A is abelian. Suppose
that, for infinitely many primes p, G contains an element of order p not belonging
to A. Then there is an infinite subgroup BofG such that B n A = 1 and B is a
direct product of cyclic groups of distinct prime orders.

PROOF. Suppose that C is a cyclic subgroup of G such that C n A = 1
and | C | is a product of distinct primes. We shall show that C is contained in a
larger such subgroup; from this the result will follow.

Let a be the (finite) set of prime divisors of | C |. Since, for each prime p, the
Sylow p-subgroup Ap of A is an abelian group satisfying Min, it follows from
Robinson (1968) Theorem 2.35 that GjCG{Ap) is finite. Therefore there exists an
element x of prime order q $ a in G such that x centralizes Aa and x $ A. If g e G
then we have [g,x~\eA and so

1 = [g,x*] = \_g, x~]9modAa-, as x centralizes AjAa-.
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Hence, as q $ a, we have [g, x] e Aa. for all g e G.
It follows that Aa.(x) o G. Consider the group i4ff.<x>C = H. Now C is a

finite maximal (7-subgroup of H, and hence every cx-element of H is conjugate
to an element of C. Therefore A r\ H is a cr'-group, and so A O H ^ ^4ff.<x)>.
Hence A n /f = ^4O., as x$A. It follows that fl/Ao. is abelian.

Since | C | is a a-number, a theorem of Gaschutz (Huppert (1961) Chapter I,
Theorem 17.4) shows that H splits over Aa,. If D is a complement, then Da is a
maximal c-subgroup of H, and so is conjugate in H to C. Therefore we can
arrange that D ^ C. Since Dr\A = DnAr\H = DnAa. = 1, D is the
required subgroup.

LEMMA. 5.3. Let G be a group with a faithful irreducible 9Jtc-family X.
Suppose that G contains an infinite normal locally nilpotent subgroup D such
that Dq is finite for each prime q. Then there is a subgroup K ofG and an infinite
set n of primes such that

(i) K n Dq < Dq for all qen.
(ii) For each finite subset a of n, there exists a module XaeX such that

KnDa = CDa(Xa).

PROOF. If there is a module X e X such that D/CD(Z) is infinite, then we
may evidently take K = CD(X) and n to be the set of all primes q such that
D/CD(X) contains an element of order q. Therefore, during the rest of the proof,
we assume that

(1) D: CD(X) | < oo for all X e X.

We begin by deducing that

(*) There exists an infinite subset t of n(D) and a subfamily Y of X such
that T n char Y = 0 and Dq n Cc( Y) < Dq for all qex.

We recall that, if X is a set of primes, then Xx = [XeX: char k{X) eX\j {0}}.
If there is a finite set X of primes such that Dq n CG(XJ < Dq for infinitely
many q, then we may evidently take Y = Xx and choose T suitably to obtain (*).
Otherwise, we have that if X is any finite set of primes, then Dq ^ CC(XX) for all
but finitely many q.

In this latter case, suppose we have obtained a finite subset rn of n(D) and a
finite set an of primes such that xn n an = 0 and Dq n CG(Xffn) < Dq for all
q e rn. Then the set of all primes r such that r$on U xn and 1 # Dr ^ CG(XffnUtJ
is infinite, as n(D) is infinite. Choose such a prime r and let r n + 1 = Tn U {r}.
Since X is a faithful 9Jie-family for G, there exists a module X e X such that
Dr ^ CG(X). The choice of r shows that char fc(X) <£ <7n u Tn u {0}, and further-
more, since Or(G) acts trivially on every irreducible module for G over a field of
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characteristic r, (Gardiner, Hartley and Tomkinson (1971) Lemma 3.2) we have
char k(X) ^ r. Therefore, letting an+1 = an u {charfc(Z)}, we obtain that
Tn+1 O <7n+1 = 0 . Clearly Z)g n C^Z, ,^ , ) < Dq for all q e r n + 1 . Proceeding in
this way and letting T = u " = i Tn, a = u™=i cn and F = Xa, we obtain (*).

We may assume without loss of generality that D = DT. By (*), we have
that DjD n CG( F) is infinite. Thus, if we write KY = D O CG(7) (7 e F), then

(2) D/ fl -Kr IS infinite

whereas from (1)

(3) D/Xy is finite for each Ye Y

Since 7r(D) n char F = $, each subgroup 4̂ of D contains a finite subgroup
F such that Cy(.4) = CY(F) for all 7 6 F. In particular, we may choose a finite,
subset nt of 7i(D) such that Cr(D(11) = Cr(D) for all Y e Y. Thus, if KY t D^,
then KY = D. By (2) and (3) the number of distinct subgroups KY is infinite, and
since DM1 is finite, we can obtain a subfamily Ft of Fand a subgroup F± of £>M

such that the set of subgroups KY(Y e Ft) is infinite and

(4) KY n DVI = F, < DM1

for all F e Fx.
We take the situation just obtained as the first stage of a construction, at

the rc-th stage of which we have pairwise disjoint finite sets /j.l,/j.2,---,nn of primes,
proper subgroups Fu---,Fn of DM1, ••,DlXn respectively, and subfamilies
Fx ^ F2 ^ ••• ^ Fn of Fsuch that {KY: Ye Fn} is infinite and

(5) KY n (DM x ••• x DMJ = F, x - x fn

for all 7 e Fn. To obtain the next step of the construction, let Xn = (jUi u ••• u fin)'
There is a finite subset /*n+1 of Xn such that Cr(DAJ = Cy(DM(i+1) for all 7 e Yn.
Thus, if 7 e Fn and Ky ^ ^Mn+1, then X r ^ Dkn. Since Difj has finite index in D,
only finitely many subgroups of D can contain it, and so infinitely many of the
subgroups KY (Ye Yn) intersect Dlin+1 in a proper subgroup. The finiteness of
Dlln+l then implies that there is a subfamily Fn + 1 of Fand a subgroup Fn+1 of
D|ln+1 such that {Ky: Ye Fn + 1} is infinite and

KynD^^ = Fn + 1 < /)M n t l if 7 e F n + 1 .

Then (5) holds with n replaced by n + 1.

Now let K = FL x F2 x • • • and let n consist of all primes q such that some
DM./F, contains an element of order q. Then % is infinite, and it follows from (5)
that the required conditions (i) and (ii) are satisfied.
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We now come to the result which provides the fundamental step in analysing
the structure of metabelian 2Rc-heads.

LEMMA 5.4. Let G be a metabelian Wc-head. Then there is a finite set
a of primes and a normal abelian subgroup A of G such that G/A is abelian
and A contains every element of G whose order is a prime not belonging to a.

PROOF. AS usual, we assume the lemma false and derive a contradiction.
Let R be the Hirsch-Plotkin radical of G. Then by Theorem 4.5, R has finite
rank and there is a finite set X of primes such that Rx, is abelian. Let A = (G' n Rx)
x Rx,. Then A and G/A are abelian. Since the lemma is assumed false, there
are infinitely many primes p such that G contains an element of order p not
lying in A. Therefore, by Lemma 5.2, there is an infinite subgroup Bx of G such
that Bj n A = 1 and B1 is a direct product of cyclic groups of distinct prime
orders. Let B the Sylow A'-subgroup of Bv Then B n R = 1, and B is infinite.

Let x be an element of prime order p in B. We claim that

(6) lx,Ap.] # 1.

For we have, since GjA is abelian, that [x, Rp~] ^ Ap. and so, if [x,^p-] = 1, then
[_x,Rp~\ = 1. It follows from this that /?<x> = Rp- x Rp(,x) is a normal locally
nilpotent subgroup of G, whence xeR, a contradiction.

We now construct elements cu c2, ••• of B of distinct prime orders pu p2, •••
and finite elementary abelian normal subgroups Du D2, ••• of G of distinct prime
exponents qi,q2,--- such that

(7) 1 # \Db c j = D, (i = l , 2 , - ) .

In fact, suppose cu •••,cB and Du--,Dn have been obtained. Since Aqi is an abelian
group satisfying Min, its centralizer in G has finite index in G. Therefore there
exists a prime pn+l different from any of plt ••-,/>„ such that B contains an element
cn + 1 of order pn+l which centralizes Aqi x ••• x Aqn. By (6), there is a prime
qn+1 # pn+l such that [-4,n+1, cn+1] # 1, and we must have qn+1 ${qu---,qn}.
Then cn + 1 does not centralize Q^A,^ , ) , and we may take Dn+1

= [Q1(/l4 n + J) ,cn + 1]. Since A and G/̂ 4 are abelian, we easily see that Dn + 1 «=a G.
Let 7t be as given by Lemma 5.3, with D = D1 x D2 x ••• and X a faithful

irreducible algebraically closed 2Rc-family for G (see Corollary 2.6). Then by
considering Dn instead of D and reindexing, we can obtain new sequences
cuc2, ••• and DltD2, ••• such that (7) holds; furthermore we have now a subgroup
K of D such that

(8) KnDt<D, (i = 1,2,--)

and for n = 1,2, ••• we have a module XB e X such that

(9) K n (£>! x ... x DJ = CG(Xn) n (Dt x - x DJ.

Let the primes Pi,p2,--- be divided in any way into two disjoint infinite
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subsets v1 and v2, and write C = (cl,c2,---}, Ci = C^, C2 = CU2. Since X is an
2Rc-family for G, there is a finite subgroup Ft of Cj such that 0 ^ ) = CxiCJ
for all X e X such that char k(X) $ n^C^ = vx. Let n be any integer large enough
to ensure that Fx < Clr\((^ciy x ••• x <cn» = H ^ N o w sinceEn = Dj x ••• x Dn

is a finite normal subgroup of G, Lemma 2.11 shows that the k(Xn) [G]-module Xn

becomes completely reducible when restricted to En. In fact, let Z be any irreducible
submodule of (Xtt)En. Then each Zg (g e G) is an irreducible £n-submodule of
Xn, and *Lg<=GZg = Xn.

n,
Let L = C£n(Z). Then I? = CEn(Zg) and so ngeGLg=En n CG(Xn) =

by (9). Now CG(EJL) contains A as A is abelian, and hence CG(EJL) < G a s
G/A is also abelian. Therefore [£„, Cc(£n/L)] is a normal subgroup of G contained
in L, and so contained in f]geGLs = K n En. It follows from (7) and (8) that
CG(EJL) n «cj> x ••• x <cn» = 1, and in particular that CG(EJL) n Hx = 1.
Therefore, by Lemma 5.1, the submodules Zg (geH^ are pairwise non-
isomorphic.

Therefore the modules Zg (g e / / t ) generate their direct sum, and if 0 # zeZ,
then >> = E , e Fl z^ is a non-trivial element of Xn centralized by Ft but not by Hu

as Fx < Ht. Hence Ct does not centralize y. By the choice of Fu we must have
char/c(Xn)e vx ; this holds for all large enough n. But by similar considerations,
char k(Xn) e v2 for large enough n. Since v, n v2 = 0 , we have obtained a
contradiction and established Lemma 5.4.

A further reduction is needed before we can finally establish Theorem A.

LEMMA 5.5 Let G be a metabelian 3Jic-head containing a normal locally
cyclic subgroup A such that G/A is abelian, and let a be a finite set of primes.
Then there is a normal subgroup H of G containing A, such that | G: H | < oo
and, for each prime q, \HjCH(Aq)\ is divisible by at most one prime from a.

PROOF. Suppose if possible that the result is false. Let C = CG(Aa) and
suppose that we have obtained n primes quq2,---,qn not belonging to a and
such that, if C, = CG(Aa x Aqi x ••• x Aq), then |C,/C1+1 [ is divisible by at
least two primes in a for 0 ^ i ^ n — 1. Then | G: Cn | < oo since each Sylow
subgroup of A is cyclic or quasi-cyclic, and so by assumption there exists a prime
qn+1 such that | CJCCn(Aqn + l)\ is divisible by at least two primes in a. Clearly
<7n+i £ {<7i> ••"> In) U*7 a n d t n e construction proceeds, yielding eventually an
infinite sequence qi,q2,--- •

Since a is finite, there must be a pair (p, q) of primes in a such that
pq 11 Cj-i/Cj | for infinitely many values of i. Suppose that these values of i form
a subsequence i(l) < i(2) < ••• and let C,* = CG(Aa x AliM x ••• x Aqiij)). Then
pq divides the order of C;* n C,-0-+1)_1/Cjl'+1 n CiU+1).l = CiU+1)-JCiu+1).
Hence pq divides the order of (C* n C,u+1)_1)Cjl'+1/C>*1, a subgroup of
C*jCf+1. In other words, we may suppose that
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(10) pq\\CJCt+1\for alii = 1,2,-

Let B = H1°+l Cll(Aq.). We apply Lemma 5.3 to B to obtain a set % of primes
and a subgroup K of B as there described. By passing to a suitable subsequence
again as above, we may assume that n = {<Zi,<Z2>"}- Then as Bqi is cyclic of
order qt and K n Bq. = 1, we in fact have K = 1. For each n S; 1, we have a
module Xn, belonging to a faithful irreducible 2ftc-family X for G

(11) C c ( I B ) n ( B 1 x - . x B J = l .

Let pB be the characteristic of k(Xn) and suppose there is an infinite sub-
sequence n(l) < n(2) < ••• such that pn(i) ^ p for all i = 1,2, •••. Let
L = n™=1CG(Xn(0) and consider the group G = G/L, letting x -*• 3c be the
natural homomorphism of G onto this group. By Lemma 2.1, G has a faithful
irreducible 9Kc-family {Xn(1),Xn(2),•••} of characteristic not containing p. For
each i = 1,2, •••, (10) allows us to choose a p-element xt which centralizes

•̂ «»d) x •" x ^«n(i-i> but n o t AMO- 1° ^act> u s m 8 Lemma 3.3, we can also
arrange that <xlJx2, •••> is a p-group, P say. Since qn{i) ^ p and AqM is locally
cyclic, we have [BinU), x;] ^ 1 and so, from (11) l_BqnU),x^ ^ L. Thus xt belongs
to CP(BqnU) x ••• x 59n((_0) but not to Cp(BqM) x ••• x Bqnlt)), and we find
that P does not satisfy Min. However as P has a faithful 9Jlc-family of characteristc
not containing p, this contradicts Lemma 3.4. It follows that we must have
pn = p for all but finitely many n.

But similarly we must have pn = q for all but finitely many n, and since
these two statements are incompatible, we have obtained a contradiction and
proved Lemma 5.5.

Now we are ready to establish Lemma 4.7 and thus conclude the proof of
our main theorem, Theorem A.

PROOF OF LEMMA 4.7. We have a metabelian reduced 9Jlc-head G, which
we must show is almost a subdirect product of finitely many p'-pinched groups.
By Lemma 5.4, there is a normal abelian subgroup A of G and a finite set a of
primes such that G/A is abelian and every element of G whose order is a prime
not lying in a, belongs to A. It will be convenient to assume lea and [ff| ^ 2;
this we may clearly do. We may suppose further that A is chosen maximal subject
to satisfying the conditions required of it; then A is actually a maximal abelian
subgroup of G and so

(12) A = CG(A).

Since G is reduced, A is locally cyclic. By Lemma 5.5 there is a normal sub-
groupHof G containing 4 such that |G:H| < ooand.for each prime q,\HjCH{Aq)\
is divisible by at most one prime from a. Since A is locally cyclic and a is finite
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we have that | G: CG(Aa) | < oo, and so, by replacing H by CH(Aa) if necessary,
we may suppose that

(13) [ t f , 4 J = 1.

It will suffice to show that H is a subdirect product of a finite number of
p'-pinched groups. Let a = {Pi, •••,£„}. For 1 ^ i :g n, let CT,- = CT— {p,} and
let TTJ be the set of all primes q such that | H/CH(Aq) | is divisible by some prime
in <T(.

Then

(14) n, n a = 0 (1 £ i £ n),

by (13).

Let x be any o-relement of H. Then by the choice of nt, we have [x, ̂ 4,] = 1
unless q e 7tf. Therefore [x, ̂ 4] ^ /!„., and we have AKi(x) <i A(x) <i if. It
follows that the normal closure of <(x A^.y in H/AKt is a <r(-subgroup, and hence
that the set of <rrelements of H/AKl is a subgroup UJAKl of ff/^4,,. We shall show
that

(15) n Ut = 1
i = l

and

(16) H/Ui is pt'-pinched,

thereby completing the proof.
Now by its construction, [/,• is a it, u ffj-group. It follows from (14) that

n(C) i = I ^>) = fl /"= i nt • Now if q is a prime in this intersection, then | H/CH(Aq) I
is divisible by some prime in an, that is, by some pt with 1 ^ i ;S n — 1. But as
q e nt, \ HICH(Aq) | is divisible by some Pj with j ^ i. Thus pip] j | H/CH(Aq) | ,
which contradicts the choice of H. Hence f l i^i^i = <t> a n d (15) is established.

To obtain (16) takes a little more work. First let qent. Then there is a <rr

element xeH such that [^44,x] # 1. Since ,4, is cyclic or quasi-cyclic and q$ot

(by (13)), we have \_Aq, x] = Aq. Hence Aq ^ H'. Now it also follows from (13)
that q $ a, and so every element of order q of H lies in A. Therefore every elemen-
tary abelian g-subgroup of H is cyclic. Hence every abelian ^-subgroup of H is
cyclic and so, since the assumptions that 2 e a implies that q is odd, every finite
^-subgroup of H is cyclic (Gorenstein (1968) Theorem 5.4.10). Since 1 ^ Aq ^ H',
every g-element of if lies in a finite subgroup F of H such that F' n Aq ^ 1. The
remarks above show that the Sylow ^-subgroups of F are cyclic, and so, by a well-
known transfer theorem, q does not divide | F/F' | and every ^-element of F lies
in F'. Therefore every g-element of H lies in H' and so in A. Since this holds for
every q e nt, we have shown that AXl is the set of 7rrelements of H, and so
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(17) H/Ui is a (7t( u otf-group,

as UilAn. was denned as the set of o-,-elements of H/AXI.
Let x - + j c b e the natural homomorphism of H onto H = H/Uj. Referring

to the definition of p'-pinched given before Lemma 4.6, we see that we have
that A is a locally cyclic normal subgroup of H such that HjA is abelian. Let q be
any prime ^ pt such that H contains an element of order q. Then from (17),
q $ ftj U fft. Since Ut is a nt \j argroup, every element of order q of H is the
natural image of an element of order q of H. Since q £at and q ^ pt, v/e have
g ^ a, and so every element of order q of H lies in ^4. Hence every element of order
q of H lies in ̂ 4.

Now let Pj/l/j = OPi(H). Then Pf centralizes ^4Pf', and so P4 centralizes
ApsUilUi, which is H-isomorphic to APi,fApt. n t / , s APi.IAK^a. £ A(),iU(r)..
Let j t / j e Pi/1/;. Then we may choose j> to be a Pj-element of H, and the preceding
remarks show that y centralizes A^ntUay. But the definition of n( shows that
every />relement of H centralizes An. and hence, using (13), we find that y central-
izes A. Therefore ye A, by (12), and we have Op.{H) <; A.

It remains to establish (iv) of the definition. To this end, we notice that as
P{ is contained in the locally cyclic subgroup A and t/; is a p/-group, Pt contains
a unique minimal subgroup Z = <zl/,->, where z is an element of order pt of A.
Since G is an 9Jlc-head, there exists an irreducible 9Jtc-module X for G over some
field k such that <z> n CG(JQ = 1. By Gardiner, Hartley and Tomkinson (1971)
Lemma 3.2, and the fact that z e Op.(G), we have char k ^ pt. Hence, if
K-i — CG{X), Lemmas 2.1 and 3.4 give that G/K^ satisfies Min-pj. Hence, if
K = H n Ku then H/K satisfies Min-^ and HjR satisfies Min-p,-. If zeK, then
we obtain zeKUit and hence, as K<i KUt and Ut is a prgroup, we find that
zeK, which is not the case. Therefore OP.(H) n K = 1, and we have shown that
R is ^'-pinched. Therefore Lemma 4.7 and Theorem A are established.

6. Consequences of the Main Theorem

Theorem A allows us to answer many questions about the structure of
locally soluble 9Jlc-heads, since the structure of p'-pinched groups is reasonably
transparent in many respects. For example, a p'-pinched group clearly contains
a self-centralizing locally cyclic normal subgroup. Since the automorphism group
of such a group clearly has cardinal at most 2No, the cardinal of a p'-pinched
group is at most 2X°. Hence we have using Theorem A,

COROLLARY A l . If G is a locally soluble Wc-head, then \G\ g 2N o.

It is not hard to see that this bound can be attained — see for example the
group QP constructed after Corollary Cl in Hartley (1972). Rather than pursuing
locally soluble 9Jlc-heads in general, however, we revert to those which arise in the
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context of our main applications, which are Theorems B and C. By Hartley (1971a)
Lemmas 4.7-4.8 and Theorem E, such 9Jic-heads are of finite rank.

LEMMA 6.1. (i) A pinched group is p'-pinched for all primes p.
(ii) A p-pinched group of finite rank is almost pinched.

PROOF, (i) We recall that a group G is pinched, if G contains a locally cyclic
normal subgroup A which has abelian factor group and contains every element
of prime order of G, and furthermore every 2-subgroup of G is abelian. It follows
from the definition and Gorenstein (1968) Theorem 5.4.10, that every subgroup
of prime power order of G is cyclic. Thus G satisfies Min-p for all primes p.
We may suppose A chosen maximal subject to satisfying the conditions required
of it; then A = CG(A). But OP(G) centralizes A as OP{G) is abelian; thus
OP(G) ^ A and a glance at the definition reveals that G is p '-pinched.

(ii) Let G be p'-pinched, and let A be a locally cyclic normal subgroup of G
as in the definition (p. 18). By an argument given in the sufficiency proof of
Theorem A, we may assume that A = CG(A).

Now since G has finite rank, G satisfies Min-q for all primes q. If Q is any
g-subgroup of G with maximal radicable subgroup Q°, then Q° centralizes A as A
is locally cyclic, and so Q° g A. Therefore the Sylow g-subgroup of GjA is
finite for each prime q. Let HjA be the Sylow {p, 2}'-subgroup of G\A. Then
if -a G and |G: H | < oo. Then A is locally cyclic, H/A is abelian, and as A
contains every p-element of H and every element of prime order q ^ p of G,
A contains every element of prime order of H. Since A also contains every 2-
element of H, every 2-subgroup of H is abelian.

Now it is immediate that every subgroup of a pinched group is pinched.
A routine argument now allows us to deduce from Theorem A:

THEOREM 6.2. Let G be a locally soluble group of finite rank. Then G is
an yRc-head if and only if G is almost subpropinched,

recalling that a subpropinched group is just a subdirect product of finitely
many pinched groups.

PROOF. Let G be a locally soluble 9Ke-head of finite rank. Then by Theorem A,
G contains a normal subgroup H of finite index and finitely many subgroups
Ku • ••, Kn <i H such that each H/Kf is p -pinched for suitable p and f) "= t Kt = 1.
By Lemma 6.1, HjK, contains a pinched normal subgroup Lj/Kj of finite index.
There is a normal subgroup L of finite index in G and contained in (~) "= t Lt.
Then L\L n Kt = LKJKi -a LJKf, and so LjL O Kt is pinched. Hence L is sub-
propinched, as required.

Theorem B is now a rather immediate consequence of Theorem 6.2 and
Lemma 6.3, which was stated in the introduction and remains to be proved.

PROOF OF LEMMA 6.3. We consider first a Sylow ^-sparse group L = HK,

where H is a normal locally soluble 7i'-subgroup of L and K is a 7t-group. If X is
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the set of composition factors of (K on H), then the remarks preceding the state-
ment of Lemma 6.3 in Section 1 show that X can be thought of as a family of
irreducible K-modules over various fields Zp. Let A be any subgroup of K. Then a
straightforward extension of Hartley (1971a) Lemma 4.3, using the fact that L is
Sylow rc-sparse, shows that there is a finite subgroup F of A such that CH(F)
= CH(A). Let X e X and identify X with a K-composition factor U\V of H.

Arguing as in Lemma 2.3 and using the fact that the fixed points of a finite rc-group
T acting on a finite rc'-group U are preserved by T-homomorphism of (/(Goren-
renstein (1968) Theorem 6.2.2) we find that CU/V{F) = Cv{F)VjV = CA(F)VIV
rg CU/V(A), and equality must hold. Thus X is in fact a classical 9Jtc-family for K.
Furthermore, CK(X) clearly staailizes a series of H, and hence, using say Gardiner,
Hartley and Tomkinson (1971) Lemma 4.11, we obtain CK(X) = CK(H).

Conversely, let X be a given 9JZc-family for a ji-group K, and suppose
0 ^ p(X) $ n for all X e X. We form the direct sum H of the modules in X and
the semidirect product HK. Clearly CK(X) = CK(H) in this case. It is also clear,
since X is classical, that each subgroup A of K contains a finite subgroup F such
that CH(A) = CH{F). Since every countable subgroup of HK is contained in one
of the form J ^ K i , where Ht and Kt are countable subgroups of H and K res-
pectively and Kx normalizes Hu Hartley (1971a) Lemma 4.3 shows that HK is
Sylow 7r-sparse.

PROOF OF THEOREM B. TO see the necessity of the given conditions we note
that Lemma 6.3 shows that G is a classical locally soluble 9Jlc-head. Therefore G
has finite rank by Lemma 3.4, and so G is almost subpropinched by Theorem 6.2.
Clearly there exists a prime q £ n.

For the sufficiency, it is enough by Lemma 6.3 to show that a group G which
is almost subpropinched admits a faithful irreducible 2Rc-family whose charac-
teristic is any given prime q $ n(G). Theorem A shows that G admits some faithful
irreducible 2ftc-family, and if we recall that a pinched group is p'-pinched for
every p, we see that the argument used to show that G has a faithful irreducible
2Rc-family (end of Section 4) also shows that the characteristic can be chosen as
desired.

To prove Theorem C we must first establish Lemma 6.4.

PROOF OF LEMMA 6.4. If L eU and R = p(L), then the set of chief factors
of L below R forms in a natural way a family X of irreducible L-modules over
various fields Zp. Let A ^ L and let n = n(A). Then any X e X such that
charfc (X) $ n can be viewed as a chief factor of L below Rn>. From the definition
of the class U, the group RXA is Sylow rc-sparse, and so, by the extension of
Hartley (1971a) Lemma 4.3 already mentioned, there is a finite subgroup F of A
such that CR^.(F) = CR^{A). Arguing as in the proof of Lemma 6.3 we find that
CX(F) = CX(A) for all X e X such that char k(X $ )n, and so X is an irreducible
2Rc-familyforL.
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By Hartley (1971) Theorem 2.8, R is the intersection of the centralizers of the
chief factors of L below R, and so, by Lemma 2.1, X can be viewed as a faithful ir-
reducible 2Rc-family for G = LjR.

For the converse, let G, X and R be as given. Then any countable subgroup
of L = RG lies in one of the form HK, where H and K are countable subgroups
of R and G respectively and K normalizes H. Let A be any rc-subgroup of K.
Then from the construction of R, there is a finite subgroup F of A such that
CR_.(A) = CRn.(F). Hence CH_,(A) = CH_.(F). It follows by the argument of
Hartley (1971a) Lemma 7.1 that HKeVL and hence, by Hartley (1972) Lemma 2.1
and the obvious fact that L is finitely radical, that LeVL.

Let T = p(L). Then T ^ R and so T = R(T O G). Let S = T n G. Then
Sp is a normal p-subgroup of G, and so, by Gardiner, Hartley and Tomkinson
(1971) Lemma 3.2. Sp centralizes every irreducible G-module over a field of
characteristic p. However Sp centralizes i?p. as <Sp,i?p-> is locally nilpotent, an
so Sp centralizes Xp-. Hence Sp ^ Ca(X) = 1, and so p(L) = R as claimed.

PROOF OF THEOREM C. Suppose that G ^ L/p(L), where L e It. Then
G e l l as U is image-closed. By Lemma 6.4 G is a locally soluble 9Kc-head, and
by Hartley (1971a) Theorem E, G has finite rank. Hence by Theorem 6.2, G is
almost subpropinched.

Conversely, let G be an almost subpropinched U-group. By Lemma 6.4, it
suffices to show that G admits a faithful irreducible 9Jlc-family of characteristic
not containing zero. This follows by the argument used to construct 9Jt<.-familes
in the proof of Theorem A (end of Section 4).

It seems appropriate, in view of Theorems B and C, to conclude with a few
remarks about the structure of pinched and almost subpropinched groups. We
have seen that if G is pinched, then every subgroup of prime power order of G
is cyclic. Thus G' and GjG' are locally cyclic, and G is countable. It is well known
that if F is any finite group with cyclic Sylow subgroups, then | F' | and j FjF' |
are relatively prime. It follows easily from this that TC(G') n n(GjG') = 0 and
hence, since G is countable, that G splits over G' (e.g. Hartley (1971a) Lemma 2.1).
We have established part of

LEMMA 6.5. Let G be a group. Then G is pinched if and only ifG can be
written as a semidirect product G = BC, Bo G, B P\ C = 1 of locally cyclic
subgroups B and C such that n(B) n n(C) = 0 and CC(B) contains every
element of prime order of C

Furthermore, GeVL if and only if each subgroup D of C contains a finite
subgroup F such that CB(D) = CB(F).

PROOF. If G is pinched, then taking B = G', we obtain a subgroup C such
that G = BC and n{E) n n(C) = 0 , as described above. Clearly C and B are
locally cyclic. Now the fact that every subgroup of prime power order of G is
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abelian implies that any two abelian normal subgroups of G commute elementwise,
and so if A is a maximal abelian normal subgroup of G containing all the elements
of prime order of G, then A ^ B. Hence A = B(A O C), A O C ^ CC(B), and
so CC(B) contains every element of prime order of C.

Conversely if G = BC as given, we take A = BCC(B). Then A is locally
cyclic as n(B) O 7t(C) = 0 . Clearly G//1 is abelian and every element of prime
order of G lies in A. Since 2 can belong to at most one of n(B) and n(C), every
2-subgroup of G is abelian.

Finally, the condition for G to belong to It follows from Lemmas 4.3 and
7.1 of Hartley (1971a).

LEMMA 6.6. Let G be almost subpropinched. Then
(i) G is countable.
(ii) G is almost metabelian.
(iii) G is almost parasoluble.
(iv) G has finite rank.
(v) For almost all primes q, every q-subgroup ofG is abelian.
(vi) There is a finite set a of primes such that the elements of G whose

orders are primes not lying in a generate an abelian subgroup.

PROOF. It is a straightforward exercise to verify that pinched groups possess
all these properties and that they are preserved by taking subgroups, finite ex-
tensions and direct products with finitely many factors. The concept of para-
solubility was introduced by Wehrfritz (1971); a group G is called parasoluble if G
has a finite series 1 = Go S Gx g ••• ^ Gn = G of normal subgroups with
abelian factors and such that every subgroup of GJG^x is normal in GfGi-l

(1 | i g n). In showing that pinched groups are parasoluble, notice that everj
subgroup of a locally cyclic group is characteristic.
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