A CLASS OF MODULES OVER A LOCALLY FINITE GROUP II

B. HARTLEY
(Received 29 October 1972)
Communicated by G. E. Wall

Introduction

Our main purpose in this paper is to obtain more precise information about wo problems which we investigated in Hartley (1971a). They are as follows:

Problem 1. Let G be a countable locally finite group and π be a set of primes. Suppose that $G=H K, H \triangleleft G, H \cap K=1$, where H is a normal $\tau^{\prime}-$ subgroup of G, K is a π-group and $C_{K}(H)=1$. If we assume that the Sylow that is, maximal) π-subgroups of G are conjugate, what can we say about the structure of K ?

More generally, if we wish to consider this problem for uncountable G, it is tppropriate to assume that G is Sylow π-sparse Hartley (1972), in the sense hat no countable subgroup of G has $2^{\text {No }}$ Sylow π-subgroups. However, by Gartley (1972) Lemma 3.5, this already implies that K is countable if it is locally ioluble, and so in this case we quickly reduce to a problem about countable groups. I discussion of Sylow π-sparseness, and its relationship with other properties uch as the conjugacy of the Sylow π-subgroups, can be found in Hartley (1972).

Problem 2. Let $G \in \mathfrak{U}$. What can be said about the structure of $G / \rho(G)$?
Here $\rho(G)$ denotes the Hirsch-Plotkin radical of G, and \mathfrak{U} is the class of groups tudied in Gardiner, Hartley and Tomkinson (1971), Hartley (1971 and 1971a) ind elsewhere. A locally finite group G belongs to \mathfrak{U} if, for every set π of primes, he Sylow π-subgroups of every subgroup of G are conjugate Hartley (1972) [heorem E and neighbouring remarks). Our previous results relating to these sroblems are to be found in Hartley (1971a) (Lemmas 4.7-4.8 and Theorem E), und in Theorems C and B respectively of this paper we shall provide answers to 'roblem 2 and the locally soluble case of Problem 1 which are in a reasonable ense complete.

To obtain our results we have had to introduce some module-theoretic ideas which we have thought it of interest to study in more generality than is required for the strict applications we have in mind.

We introduced in Hartley (1973) the concept of an \mathfrak{M}_{c}-module over $k G$, where G is a locally finite group and k a field of characteristic $p \geqq 0-\mathrm{a}$ (right) $k G$-module V is called an \mathfrak{M}_{c}-module if each p^{\prime}-subgroup A of G contains a finite subgroup $F=F(A)$ such that $C_{V}(A)=C_{V}(F)$, where $C_{V}(H)$ denotes the set of elements of V fixed by the subgroup H of G. This is a form of minimal condition on the subsets of V which are centralizers (that is, fixed point sets) of p^{\prime}-subgroups of G. As was pointed out in Hartley (1973), such modules arise naturally in considering chief factors of $\mathfrak{U l}$-groups, and we shall see that they also arise in other contexts as elementary abelian sections of groups whose Sylow subgroups have suitable conjugacy properties.

For our applications in this paper we have to consider the more general notion of an \mathfrak{M}_{c}-family for a group G (henceforth, the word "group" will always mean "locally finite group"' unless the contrary is stated).

Definition. An \mathfrak{M}_{c}-family for a group G is a set X of (right) $k G$-modules X, where $k=k(X)$ is a field of characteristic $p(X) \geqq 0$, satisfyinng the following condition: For each subgroup A of G, there exists a finite subgroup $F \leqq A$ such that $C_{X}(F)=C_{X}(A)$ for all $X \in X$ such that $p(X) \notin \pi(A)$.

Here the subgroup F depends only on A and not on the particular module X under consideration, and $\pi(A)$ denotes the set of all primes q such that A contains an element of order q. We shall write $C_{G}(X)=\bigcap_{X \in X} C_{G}(X)$, and say that X is faithful, if this subgroup is 1 . Further, we say that X is irreducible if each $X \in \boldsymbol{X}$ is irreducible as $k(X)[G]$-module, and classical if $p(X) \notin \pi(G)$ for all $X \in X$.

Let us now consider how such families may arise in practice. Let H be any locally soluble group and let K be any group given together with an action (K on H), that is, a homomorphism from K into Aut H. Then we can consider K as an operator group for H, and then speak of K-composition series of H, using the worg "series" in the general sense of Robinson (1968), p. 5. By a K-composition factor of H we shall mean a factor of any such series. Thus a K-composition factor of H is, among other things, a pair $V \triangleleft U$ of K-invariant subgroups of H such that K normalizes no normal subgroup W of U with $V<W<U$. A straightforward modification of a well known argument due to McLain (Robinson (1968) Theorem 4.31) allows us to deduce from this, using the local solubility of H and the local finiteness of K, that U / V is an elementary abelian q-group for some prime p. Therefore we may view U / V in a natural way as an irreducible $Z_{p} K$-module. Thus the K-composition factors of H determine a collection of irreducible $Z_{p} K$-modules, for various primes p, which we shall call the composition factors of the action (K on H).

The relationship between \mathfrak{M}_{c}-families and groups with conjugate Sylow
subgroups is now clarified by the results below. In connection with Lemma 6.3, notice that L is certainly Sylow π-sparse if the Sylow π-subgroups of every subgroup of L are conjugate. In fact, by Hartley (1972) Theorem B, these two properties are equivalent for groups like L. We state Lemma 6.3 in terms of the formally weaker property.

Lemma 6.3. Let H, K be subgroups of a group $L=H K$ with $H \triangleleft L$. Suppose that H is a locally soluble π^{\prime}-group, K is $a \pi$-group, and L is Sylow π-sparse. Then the composition factors of (K on H) form a classical irreducible \mathfrak{M}_{c}-family \boldsymbol{X} for K, and $C_{K}(\boldsymbol{X})=C_{K}(H)$.

Conversely, let X be a classical \mathfrak{M}_{c}-family for a π-group K, and suppose that $p(X) \neq 0$ for all $X \in X$. Let H denote the direct sum of the modules $X \in X$, and L the semidirect product $H K$. Then L is Sylow π-sparse, and $C_{K}(H)$ $=C_{K}(X)$.

Lemma 6.4. Let $L \in \mathfrak{U}$, let $R=\rho(L)$ and $G=L / R$. Then the set of chief factors of L below R (that is, the composition factors of (L on R)) forms in a natural way a faithful irreducible \mathfrak{M}_{c}-family for G.

Conversely let G be a \mathfrak{U}-group admitting a faithful irreducible \mathfrak{M}_{c}-family X such that $p(X) \neq 0$ for all $X \in X$. Let R denote the direct sum of the modules $X \in X$ and L the semidirect product $R G$. Then $L \in \mathfrak{U}$, and $\rho(L)=R$.

In the second half of Lemma 6.4, the modules $X \in X$ need not correspond to chief factors of L, since they need not be irreducible over the appropriate prime field.

Thus it is appropriate to study $\mathfrak{M}_{\boldsymbol{c}}$-families in connection with our Problems 1 and 2.

Definition. An \mathfrak{M}_{c}-head is a group which admits a faithful irreducible \mathfrak{M}_{c}-family. A classical \mathfrak{M}_{c}-head is a group which admits a faithful classical irreducible \mathfrak{M}_{c}-family.

As our main result on \mathfrak{M}_{c}-heads we have the following, which characterizes locally soluble \mathfrak{M}_{c}-heads completely and is the central result of the paper.

Theorem A. Let G be a locally soluble group. Then G is an \mathfrak{M}_{c}-head if and only if G is almost a subdirect product of a finite number of p^{\prime}-pinched groups, for various primes p.

We shall not give the definition of p^{\prime}-pinched at present (see page 18), but simply remark that it is a more elaborate form of the definition below. A group G 'almost" has a certain property, if G has a normal subgroup of finite index with the property.

Definition. A group G is pinched, if G contains a locally cyclic normal
subgroup A such that G / A is abelian and A contains every element of prime order of G, and if furthermore every 2 -subgroup of G is abelian.

Notice that the properties of A imply that G contains no elementary abelian subgroup whose order is the square of a prime. Therefore every finite abelian subgroup of G is cyclic, and by Gorenstein (1968) Theorem 5.4.10, every subgroup of prime power order of G is either cyclic or generalized quaternion. The assumption on the 2 -subgroups of G is introduced to rule out the latter possibility. For more detailed information about pinched groups, see Lemma 6.5.

From Theorem A we are able, via Lemmas 6.3 and 6.4, to deduce our answers to the problems posed at the outset.

Theorem B. Let G be a locally soluble group and let $\pi=\pi(G)$. Then necessary and sufficient conditions that there exist a locally finite and locally soluble Sylow π-sparse group $L=H K$ such that $H \triangleleft L, H$ is a π^{\prime}-group, $C_{K}(H)=1$ and $K \cong G$ are
(i) There exists a prime $q \notin \pi$,
(ii) G is almost subpropinched,
where we have used the abbreviation "subpropinched" for "subdirect product of finitely many pinched groups".

It seems quite conceivable that the hypotheses of local solubility are redundant in this result. In this connection, suppose that $L=H K$ is Sylow π sparse, where H is a normal π^{\prime}-subgroup of L, K is a π-group, and $C_{K}(H)=1$. Then Hartley (1971a) Lemmas 4.7-4.8 show that every locally soluble subgroup of K has finite (Mal'cev special or Prüfer) rank. It follows easily from this and the Feit-Thompson Theorem that whenever a subgroup $Q \cong C_{2 \infty}$ of K normalizes a 2^{\prime}-subgroup R of K, then $[Q, R]=1$. A recent theorem of Šunkov (1970) then shows that K contains a normal 2 -subgroup K_{0} such that the Sylow 2 -subgroups of K / K_{0} are finite. This seems to provide a considerable reduction in the problem of describing K in the case $2 \in \pi$.

In answer to Problem 2 we have a theorem with a very similar flavour to Theorem B.

Theorem C. Let G be a group. Then necessary and sufficient conditions for the existence of a group $L \in \mathfrak{U}$ such that $L / \rho(L) \cong G$ are
(i) $G \in \mathfrak{U}$,
(ii) G is almost subpropinched.

Some consequences of this can be read off from Lemma 6.6. In particular, an immediate consequence of these results is Corollary C1 below, which may be compared with the well known theorem of Mal'cev that soluble linear groups are nilpotent-by-abelian-by-finite (Robinson (1968) Theorem 2.11). A theorem of

Wehrfritz ((1968) Theorem A1) shows that periodic soluble linear groups belong to \mathfrak{U}, and it appears that general \mathfrak{U}-groups are in some senses not too far from linear groups.

Corollary C1. Let $G \in \mathfrak{U}$. Then $G / \rho(G)$ contains a normal subgroup of finite index which is metabelian and parasoluble.

The concept of parasolubility is due to Wehrfritz (1971); a group H is parasoluble if H contains a finite series $1=H_{0} \leqq H_{1} \leqq \cdots \leqq H_{n}=H$ of normal subgroups with abelian factors and such that every subgroup of H_{i} / H_{i-1} is normal in $H / H_{i-1}(1 \leqq i \leqq n)$.

The paper is organized along the following lines. Section 2 contains some elementary and basic observations about \mathfrak{M}_{c}-families in general. In Section 3 we attack the problem of describing the structure of a locally soluble \mathfrak{M}_{c}-head G and reduce it to the case when G is finitely radical, that is, has a finite series with locally nilpotent factors. The next section shows that it suffices to consider so-called reduced \mathfrak{M}_{c}-heads, and that finitely radical \mathfrak{M}_{c}-heads are in fact almost metabelian. Section 5 completes the proof of Theorem A and Section 6 the deduction of Theorems B and C.

Notation. Much of our notation has already been introduced. If $\left\{G_{\lambda}\right\}$ is a set of subgroups of a group, we write $\left\langle G_{\lambda}\right\rangle$ for the group they generate, and say that $\left\{G_{\lambda}\right\}$ is a coherent set if $\pi\left(\left\langle G_{\lambda}\right\rangle\right)=\bigcup_{\lambda} \pi\left(G_{\lambda}\right)$. A set of elements of a group will be called coherent if the cyclic subgroups they generate are coherent. A Sylow basis of a group G is a complete set of Sylow p-subgroups of G, one for each prime p, every subset of which is coherent. A Sylow basis of G is said to reduce into a subgroup H of G if the intersections of H with the members of the Sylow basis constitute a Sylow basis for H. Throughout, π denotes a set of primes and π^{\prime} the complementary set. If G is a group in which the set of π-elements is a subgroup, we denote that subgroup by G_{π}.

By the rank of a group we always understand its Mal'cev special rank, so that a group G has finite rank if there exists a natural number n such that every finitely-generated subgroup of G can be generated by n elements. The least such n is then called the rank of G, and denoted by $\mathrm{rk}(G)$.

We write $\Omega_{1}(G)$ for the subgroup generated by the elements of prime order of G, and $Z(G)$ for the centre of G. A section of G is a factor U / V where $V \triangleleft U \leqq G$.

All modules considered in this paper will be right modules. If $A \leqq H \leqq G$ are subgroups of G, k is a field, and X is a $k H$-module, then X_{A} denotes the module X retricted to A and X^{G} the induced module.

If \boldsymbol{X} is an \mathfrak{M}_{c}-family for H, then $X_{A}=\left\{X_{A}: X \in X\right\}$ and $\boldsymbol{X}^{\boldsymbol{G}}=\left\{X^{\boldsymbol{G}}: X \in \boldsymbol{X}\right\}$. The characteristic of a field k will be denoted by char k, and we write char \boldsymbol{X} $=\{\operatorname{char} k(X): X \in X\}=\{p(X): X \in X\}$, the characteristic of the \mathfrak{M}_{c}-family \boldsymbol{X}. If π is a set of primes, then $X_{n}=\{X \in X: p(X) \in \pi \cup\{0\}\}$.

A section of a module X is a factor U / V, where $V \leqq U$ are submodules of X.

2. Constructions with \mathfrak{M}_{e}-families

In this section, we are concerned with methods of constructing new $\mathfrak{M}_{c^{-}}$ families from given ones. Most of the observations are of an elementary nature.

Lemma 2.1. Let X be an \mathfrak{M}_{c}-family for a group G. Then
(i) Any subset of X is naturally an \mathfrak{M}_{c}-family for G.
(ii) If $H \leqq G$, then X_{H} is an \mathfrak{M}_{c}-family for H.
(iii) If G is locally soluble, $K \triangleleft G$ and $K \leqq C_{G}(X)$, then X is naturally an \mathfrak{M}_{c}-family for G / K.

Proof. (i) and (ii) are immediate from the definitions. As for (iii), let B / K be a subgroup of G / K and let $\pi=\pi(B / K)$. Suppose for a contradiction that for every finite subgroup F / K of B / K there exists a module $X \in X$ such that $p(X) \notin \pi$ and $C_{X}(B)<C_{X}(F)$. Then there exists a tower $1<F_{1} / K<F_{2} / K<\cdots$ of finite subgroups of B / K and sequence X_{1}, X_{2}, \cdots of members of X such that $p\left(X_{i}\right) \notin \pi$ and $C_{X_{i}}\left(F_{i+1}\right)<C_{X_{i}}\left(F_{i}\right)$ for each i.

If $B^{*}=\bigcup_{i=1}^{\infty} F_{t}$ then B^{*} / K is a countable π-group, and so by well known results (cf Hartley (1971a) Lemma 2.1) we have $B^{*}=K A$ for some π-subgroup A of G. There exists a finite subgroup F of A such that $C_{X}(A)=C_{X}(F)$ for all $X \in X$ with $p(X) \notin \pi=\pi(A)$.

In particular, choosing i so that $F \leqq F_{i}$, we obtain $C_{X_{i}}\left(F_{i+1}\right) \geqq C_{X_{i}}(A)$ $=C_{X_{i}}(F) \geqq C_{X_{i}}\left(F_{i}\right)$, the desired contradiction. The result follows.

Lemma 2.2. The union of a finite number of \mathfrak{M}_{c}-families for a given group G is also an $\mathfrak{M}_{\text {c }}$-family for G.

Proof. This is immediate.
The next two results allow us under many circumstances to replace a given \mathfrak{M}_{c}-family by an irreducible one.

Lemma 2.3. Let X be a $k G$-module, let $A \leqq G$ and suppose that char $k \notin \pi(A)$. Suppose that F is a finite subgroup of A such that $C_{X}(A)=C_{X}(F)$, and let U / V be a section of X_{A}. Then $C_{U / V}(A)=C_{U / V}(F)$.

Proof. Let $u+V$ be any element of $C_{U / V}(F)$. Then as F is finite, u lies in a submodule W of U_{F} which is finite-dimensional over k. Since char $k \notin \pi(F)$, W is completely reducible, and $\left(C_{W}(F)\right) \phi=C_{W \phi}(F)$ if ϕ is any $k F$-homomorphism of W. Thus $u+V \in C_{W}(F)+V / V$ and we find that

$$
C_{U / V}(F)=C_{U}(F)+V / V=C_{U}(A)+V / V \leqq C_{U / V}(A)
$$

Hence $C_{U / V}(F)=C_{U / V}(A)$, as claimed.
Lemma 2.4. Let \boldsymbol{X} be an \mathfrak{M}_{c}-family for a group G. Then
(i) Suppose that, for each $X \in X, \Sigma_{X}$ is a family of $k(X)[G]$-sections of X. Then $\bigcup_{\mathbf{x} \in \mathbf{x}^{\Sigma}}$ is an \mathfrak{M}_{c}-family for G.
(ii) Suppose X is classical and Σ_{X} is the set of all composition factors of $X(X \in X)$. Then $\bigcup_{X \in X} \Sigma_{X}=\boldsymbol{Y}$ is a classical irreducible \mathfrak{M}_{c}-family for G, and $C_{G}(\boldsymbol{Y})=C_{G}(X)$.
(iii) If G admits a faithful classical \mathfrak{M}_{c}-family then G is a classical \mathfrak{M}_{c}-head.

Proof. (i) is immediate from Lemma 2.3 and the definition. For (ii) we have that if $g \in G$ and g centralizes every member of Σ_{X}, then $\langle g\rangle$ stabilizes a series in the module X. Since the order of g is prime to char k, it follows that g acts trivially on X. Therefore $C_{G}(X)=C_{G}\left(\Sigma_{X}\right)$ for each $X \in X$, and so

$$
C_{G}(X)=C_{G}(Y)
$$

(iii) is an immediate consequence of (ii) and the definitions.

We go on to consider field extensions.
Lemma 2.5. Let \boldsymbol{X} be an irreducible \mathfrak{M}_{c}-family for a group G. For each $X \in X$, let $\bar{k}(X)$ be an extension field for $k(X)$, and let \bar{X} be a composition factor of the $\bar{k}(X)[G]-m o d u l e ~ X \otimes_{k(X)} \bar{k}(X)$. Then $\overline{\boldsymbol{X}}=\{\bar{X}: X \in X\}$ is an irreducible \mathfrak{M}_{c}-family for G, and $C_{G}(X)=C_{G}(\bar{X})$.

Proof. Let $X \in X$ and let $\left\{w_{\lambda}\right\}$ be a basis of $k=\bar{k}(X)$ over $k=k(X)$. Then $X \otimes_{k} k=\oplus_{\lambda}\left(X \otimes w_{\lambda}\right)$ so that, as $k G$-module, $X \otimes_{k} \bar{k}$ is a direct sum of copies of the irreducible module X and is in particular completely reducible. Hence every $k G$-section of $X \otimes_{k} \bar{k}$ is a direct sum of copies of X, and in particular \bar{X}, considered as $k G$-module, is such a direct sum. Therefore $C_{G}(X)=C_{G}(\bar{X})$, and if $F \leqq A \leqq G$ are such that

$$
C_{X}(A)=C_{X}(F)
$$

then $C_{X}(A)=C_{X}(F)$. From this the result follows.
Corollary 2.6. Let G be an \mathfrak{M}_{c}-head. Then G has a faithful irreducible algebraically closed \mathfrak{M}_{c}-family.

Here the terminology should be clear.
Lemma 2.7. Let X be a family of $k G$-modules X, where $k=k(X)$ is a field. Suppose G contains a subgroup H of finite index such that X_{H} is an \mathfrak{M}_{c}-family for H. Then X is an \mathfrak{M}_{c}-family for G.

Proof. Let $A \leqq G$. There is a finite subgroup A_{0} of A such that $A=\left\langle A \cap H, A_{0}\right\rangle$. Since $X_{H}=\left\{X_{H}: X \in X\right\}$ is an \mathfrak{M}_{c}-family, there is a finite subgroup F of $A \cap H$ such that $C_{X}(A \cap H)=C_{X}(F)$ for all $X \in X$ such that $p(X) \notin \pi(A \cap H)$. Then $F^{*}=\left\langle F, A_{0}\right\rangle$ is a finite subgroup of A, and $C_{X}\left(F^{*}\right)$ $=C_{X}(A)$ if $X \in X$ and $p(X) \notin \pi(A)$.

Finally we need to consider the induced family $\boldsymbol{X}^{\boldsymbol{G}}$, where \boldsymbol{X} is an \mathfrak{M}_{c}-family for a subgroup H of G.

Lemma 2.8. Let H be a subgroup of finite index of a group G, and let \boldsymbol{X} be an \mathfrak{M}_{c}-family for H. Then \boldsymbol{X}^{G} is an \mathfrak{M}_{c}-family for G, and $C_{G}\left(\boldsymbol{X}^{G}\right)$ $=\bigcap_{g \in G} C_{H}(X)^{g}$.

Proof. Let s_{1}, \cdots, s_{n} be a right transversal to H in G, so that $G=\bigcup_{i=1}^{n} H s_{i}$. Then, if $X \in X$, we have $X^{G}=\oplus_{i=1}^{n} X \otimes s_{i}$. Let $K=\bigcap_{g \in G} H^{g}$. Then $|G: K|<\infty$ and, by Lemma 2.7 it suffices to show that $\left(\boldsymbol{X}^{G}\right)_{K}$ is an \mathfrak{M}_{c}-family for K. Let $A \leqq K$. Then Lemma 2.1 shows that \boldsymbol{X}_{K} is an \mathfrak{M}_{c}-family and so, if $1 \leqq i \leqq n$, there is a finite subgroup F_{i} of $s_{i} A s_{i}^{-1}$ such that $C_{X}\left(F_{i}\right)=C_{X}\left(s_{i} A s_{i}^{-1}\right)$ if $X \in X$ and $p(X) \notin \pi\left(s_{i} A s_{i}^{-1}\right)=\pi(A)$. Let $F=\left\langle s_{i}^{-1} F_{i} s_{i}: 1 \leqq i \leqq n\right\rangle$. Then F is a finite subgroup of A. If $p(X) \notin \pi(A)$ and $\Sigma_{i=1}^{n} x_{i} \otimes s_{i}=x\left(x_{i} \in X\right)$ is an element of X^{G} centralized by F, then a direct calculation shows that F_{i} centralizes x_{i}. Therefore $s_{i} A s_{i}^{-1}$ centralizes x_{i}, and so A centralizes x. Hence $C_{X} G(F)=C_{X} G(A)$ for all $X \in \boldsymbol{X}$ such that $p(X) \notin \pi(A)$. Thus $\left(\boldsymbol{X}^{\boldsymbol{G}}\right)_{K}$ is an \mathfrak{M}_{c}-family for K, as required.

It will often be expedient in the sequel to form the direct sum of the modules in an \mathfrak{M}_{c}-family \boldsymbol{X} for a group G, and to have a name for the resulting object.

Definition. Let G be a group and let Y be a $Z G$-module. We say that Y is a G-mod if there is a set $\left\{k_{\lambda}: \lambda \in \Lambda\right\}$ of fields, and for each $\lambda \in \Lambda$ a $k_{\lambda} G$-module V_{λ} such that $Y \cong \oplus_{\lambda \in \Lambda} V_{\lambda}$ as $Z G$-modules.

If the V_{λ} can be taken as the members of an \mathfrak{M}_{c}-family for G, we say that Y is an \mathfrak{M}_{c}-mod over G, and if the \mathfrak{M}_{c}-family can be chosen to be irreducible, we say that Y is a completely reducible \mathfrak{M}_{c}-mod over G.

If p is a prime, we write Y_{p} for the Sylow p-subgroup of Y, and we also write Y_{0} for the maximal divisible subgroup of Y, viewing these as $Z G$-modules. If p is now a prime or zero, then under any isomorphism $Y \cong \oplus_{\lambda} V_{\lambda}$ as above, Y_{p} will correspond to the sum of those modules V_{λ} for which char $k_{\lambda}=p$. Thus Y_{p} will be an \mathfrak{M}_{c}-mod over G if Y is, and so on. The same is true of $Y_{\pi}=\oplus_{q \in \pi} Y_{q} \oplus Y_{0}$, where π is a set of primes.

Lemma 2.9. Let G be a group, let Y be an \mathfrak{M}_{c}-mod over G, let $H \leqq G$ and let $\pi=\pi(H)$. Then $Y_{\pi^{\prime}}$ is naturally an $\mathfrak{M}_{c^{\prime}}$-mod over H. and when so viewed, satisfies the minimal condition on centralizers.

Proof. Let $Y^{*}=Y_{\pi^{\prime}}$. Then the above remarks and Lemma 2.1 show that Y^{*} is naturally an \mathfrak{M}_{c}-mod over H. From the definitions, it follows that each subgroup A of H contains a finite subgroup F such that $C_{Y} *(A)=C_{Y} *(F)$. Thus $\left(Y^{*}\right)_{H}$ satisfies the minimal condition on centralizers.

The following observation about $\mathfrak{M}_{\mathrm{c}}$-mods will be important in the sequel.
Lemma 2.10. Let Y be a completely reducible \mathfrak{M}_{c}-mod for G and suppose that A is a finite non-cyclic abelian subnormal subgroup of G such that $\left|G: N_{\mathbf{G}}(A)\right|<\infty$. Then

$$
Y=\left\langle C_{Y}(a): 1 \neq a \in A\right\rangle
$$

The proof requires the following (certainly well known) version of the weakest form of Clifford's theorem.

Lemma 2.11. Let G be any group, not necessarily locally finite, let k be a field, let V be an irreducible $k G$-module and let $N \triangleleft G$. Then V_{N} is completely reducible provided either $|G: N|$ is finite or $|N|$ is finite.

Proof. Suppose that we know that V_{N} contains an irreducible submodule U. Then $\Sigma_{x \in G} U x$ is a $k G$-submodule of V, and so $V=\Sigma_{x \in G} U x$. Since $N \triangleleft G$, each $U x$ is an irreducible $k N$-module. Thus V_{N} is a sum of irreducible submodules, and so is completely reducible. When N is finite the existence of U is clear.

If $|G: N|$ is finite, let $G=\bigcup_{i=1}^{k} N s_{i}$ and let $0 \neq v \in V$. Then $\sum_{i=1}^{k} v s_{i} \cdot k N$ $=\sum_{i=1}^{k} v k N s_{i}$ is a non-zero $k G$-submodule of V, and so is equal to V. Thus V_{N} is a finitely-generated $k N$-module, and so has a maximal submodule W. Since $\bigcap_{i=1}^{k} W s_{i}$ is a proper $k G$-submodule we must have $\bigcap_{i=1}^{k} W s_{i}=0$. Thus V_{N} is isomorphic to a submodule of the completely reducible $k N$-module $\oplus_{i=1}^{k} V / W s_{i}$, and so is completely reducible.

Proof of Lemma 2.10. We may obviously suppose that Y is an irreducible $k G$-module, where k is a suitable field. There is a normal subgroup N of G such that $|G: N|<\infty$ and N normalizes A. Then $A N$ is a subnormal subgroup of finite index of G and so, by applying the first case of Lemma 2.11 repeatedly, we find that $Y_{A N}$ is completely reducible. Hence by the second case of that lemma, so is Y_{A}. Now it is well known that a finite abelian group which admits a faithful irreducible module is cyclic. Therefore each irreducible summand of Y_{A} is centralized by some non-trivial element of A. From this the result clearly follows.

3. Locally soluble $\mathfrak{M}_{\boldsymbol{c}}$-heads

The main result in this section is the following lemma, which is the first step in describing the structure of locally soluble \mathfrak{M}_{c}-heads.

Lemma 3.1. Every locally soluble \mathfrak{M}_{c}-head is finitely radical.
Before beginning its proof we need to draw attention to some well known facts.

LEMMA 3.2. Let p be a prime. There is a function $f_{p}(r, n)$ such that if P is a p-group having an abelian normal subgroup of rank $\leqq r$ and index $\leqq n$, then every locally finite subgroup of Aut P has rank $\leqq f_{p}(r, n)$.

Proof. Let P be such a p-group and let P_{0} be an abelian normal subgroup of P of rank $\leqq r$ and index $\leqq n$. Let $Q=P^{n}=\left\langle x^{n}: x \in P\right\rangle$. Then Q is a characteristic subgroup of P contained in P_{0}, and so is abelian and of rank $\leqq r$. Further-
more P_{0} / Q is an abelian group of rank $\leqq r$ and exponent dividing n, and so has order at most n^{r}. Thus $|P: Q| \leqq n^{r+1}$.

Let A be any finite subgroup of Aut $P, A_{0}=C_{A}(Q)$ and $A_{1}=C_{A}\left(\Omega_{1}(Q)\right)$. Then A / A_{1} is clearly isomorphic to a subgroup of $\operatorname{GL}(r, p)$, and so has order bounded by a number depending only on r and p. Also A_{1} / A_{0} is isomorphic to a finite group of automorphism of Q which acts trivially on $\Omega_{1}(Q)$. By Gorenstein (1968) Theorem 5.2.4, such a group is necessarily a p-group, and by a result of Hall (Roseblade (1965) Lemma 5), it follows that A_{1} / A_{0} can be generated by $\frac{1}{2} r(5 r-1)$ elements. Therefore the number of generators required for A / A_{0} is bounded by a number depending only on r and p. If $B=C_{A_{0}}(P / Q)$, then $\left|A_{0} / B\right| \leqq n^{r+1}$! and so the number of generators needed by A / B is bounded by a number depending only on p, r and n.

Let $\left\{s_{1}, \cdots, s_{k}\right\}$ be a transversal to Q in P; thus $k \leqq n^{r+1}$. For $1 \leqq i \leqq k$, the map $b \rightarrow\left[s_{i}, b\right]$ maps B homomorphically into Q with kernel $C_{B}\left(s_{i}\right)$. Since these kernels clearly intersect trivially, it follows that B is isomorphic to a finite subgroup of a direct product of k copies of Q. Thus B can be generated by $k r$ elements. Hence the number of generators required by A is bounded by a number depending only on p, r and n, as claimed.

Lemma 3.3. Let H, K be finite subgroups of a locally soluble group G. Then there is an element $x \in G$ such that H and K^{x} are coherent.

Proof. Let $\pi=\pi(H) \cup \pi(K)$ and let S be a Hall π-subgroup of the finite group $\langle H, K\rangle$ with $H \leqq S$. By Hall's theorem we have $K^{x} \leqq S$ for some $x \in\langle H, K\rangle$, and so $\left\langle H, K^{x}\right\rangle$ is a π-group.

We are now ready to begin the proof of Lemma 3.1, and deal with the classical case separately. In fact, this case has alreadly effectively been dealt with in Hartley (1971a).

Lemma 3.4. Let G be a classical locally soluble \mathfrak{M}_{c}-head. Then G is a metabelian-by-finite group of finite rank.

Proof. Let X be a classical faithful irreducible \mathfrak{M}_{c}-family for G and let Y be the G-mod $\oplus_{X \in X} X$. Then Y satisfies the minimal condition on centralizers, by Lemma 2.9. Let T denote the semidirect product $Y G$. Since $C_{G}(Y)=1$, every countable subgroup of T lies in one of the form $Y^{*} G^{*}$, where G^{*} is a countable subgroup of G normalizing a countable subgroup Y^{*} of Y such that $C_{G}{ }^{*}\left(Y^{*}\right)=1$. If $0 \notin$ char X then Hartley (1971a) Lemma 4.3 shows that $Y^{*} G^{*}$ only has countably many Sylow π-subgroups. Therefore T is Sylow π-sparse, and the required information about G follows from Hartley (1972) Lemma 3.5.

If $0 \in \operatorname{char} X$, then the arguments of Hartley (1971a) Lemmas 4.5-4.6 may be applied to $Y^{*} G^{*}$ to show that every locally nilpotent subgroup of G^{*} is almost abelian and of finite rank. It follows that this holds for every locally nilptent subgroup of G. Therefore the result follows from Hartley (1971a) Lemma 4.8.

Proof of Lemma 3.1. We have to consider a locally soluble group G having a faithful irreducible \mathfrak{M}_{c}-family \boldsymbol{X}. As previously described, if σ is a set of primes, we write $X_{\sigma}=\{X \in X$: char $k(X) \in \sigma \cup\{0\}\}$, and we also write $K_{\sigma}=C_{G}\left(X_{\sigma}\right)$. By Lemma 2.1, X_{σ} is a faithful irreducible \mathfrak{M}_{c}-family for G / K_{σ}.

The argument proceeds in stages.
(i) For each set π of primes, the π-subgroups of G / K_{π}, are soluble and of bounded rank.

For if H is any π-subgroup of $G / K_{\pi^{\prime}}$, then Lemma 2.1 shows that $\left(\boldsymbol{X}_{\pi^{\prime}}\right)_{H}$ is a faithful classical \mathfrak{M}_{c}-family for H. Therefore by Lemma 2.4 (iii) and Lemma 3.4, H is a soluble group of finite rank. The fact that the π-subgroups of $G / K_{\pi^{\prime}}$ are of bounded rank follows by a standard argument using the local solubility of G / K_{π} ((cf. Hartley (1972), proof of Corollary 3.5).
(ii) If char $X=p>0$ then G is finitely radical.

For using (i) and Hartley (1972) Corollary 3.5, we obtain that $G / O_{p p^{\prime}, p}(G)$ is finite. But by a result of Kegel (Gardiner, Hartley and Tomkinson (1971) Lemma 3.2), $O_{p}(G)$ acts trivially on every irreducible module for G over a field of characteristic p. Therefore $O_{p}(G)=1$. Since (i) shows that $O_{p}(G)$ is soluble, (ii) follows
(iii) The ranks of the groups $P / P \cap K_{p}$, are bounded, where p runs over all primes and P over the p-subgroups of G.

- Notice that by (i) the ranks of the groups $P / P \cap K_{p}$, are bounded for each fixed prime p, as P runs over the p-subgroups of G. Suppose that (iii) is false, and that for some natural number $k \geqq 1$ we have finite sets $\left\{p_{1}, \cdots, p_{k}\right\}$ and σ_{k} of primes such that $\left\{p_{1}, \cdots, p_{k}\right\} \cap \sigma_{k}=\varnothing$. Suppose further that for $1 \leqq i \leqq k$ we have a finite p_{i}-subgroup P_{i} of G such that

$$
\operatorname{rk}\left(P_{i} / P_{i} \cap K_{\sigma_{k}}\right) \geqq i \quad(1 \leqq i \leqq k)
$$

and $\left\{P_{1}, \cdots, P_{k}\right\}$ is a coherent set of subgroups. By (i) and the hypothesis that (iii) is false, we can choose a prime $p_{k+1} \notin\left\{p_{1}, \cdots, p_{k}\right\} \cup \sigma_{k}$ and a finite $p_{k+1^{-}}$ subgroup P_{k+1} of G such that

$$
\operatorname{rk}\left(P_{k+1} / P_{k+1} \cap K_{p_{k+1}^{\prime}}\right) \geqq k+1+\sum_{i=1}^{k} n_{i}
$$

where n_{i} is the maximum of the ranks of the p_{i}^{\prime}-subgroups of $G / K_{p_{i}}$, the latter being finite by (i). Furthermore we may assume, by Lemma 3.3, that P_{k+1} is coherent with $\left\langle P_{1}, \cdots, P_{k}\right\rangle$, so that $\left\{P_{1}, \cdots, P_{k+1}\right\}$ is a coherent set.

We now find that

$$
\operatorname{rk}\left(P_{k+1} / P_{k+1} \cap K_{\left\{p_{1}, \ldots, p_{k+1}\right\}}\right) \geqq k+1
$$

Therefore there is a finite subset τ_{k} of $\left\{p_{1}, \cdots, p_{k+1}\right\}^{\prime}$ such that

$$
\operatorname{rk}\left(P_{k+1} / P_{k+1} \cap K_{\tau_{k}}\right) \geqq k+1
$$

Letting $\sigma_{k+1}=\sigma_{k} \cup \tau_{k}$, we find that the construction can be carried one stage further. Since the construction can clearly be begun, we can eventually obtain two disjoint sets $\left\{p_{1}, p_{2}, \cdots\right\}$ and $\sigma=\bigcup_{k=1}^{\infty} \sigma_{k}$ of primes and a coherent set $\left\{P_{1}, P_{2}, \cdots\right\}$ of finite subgroups of G such that P_{i} is a p_{i}-group and

$$
\begin{equation*}
\operatorname{rk}\left(P_{i} / P_{i} \cap K_{\sigma}\right) \geqq i \tag{1}
\end{equation*}
$$

for all $i=1,2, \cdots$ Let $L=\left\langle P_{1}, P_{2}, \cdots\right\rangle$. Then by Lemma $2.1, X_{\sigma}$ is a faithful classical \mathfrak{M}_{c}-family for $L / L \cap K_{\sigma}$ and therefore, by Lemmas 2.4 and 3.4, $L / L \cap K_{\sigma}$ has finite rank. This contradiction to (1) above establishes (iii).
(iv) There exists a finite set σ of primes and a natural number t such that if $p \notin \sigma$ and P is a p-subgroup of G then $\mathrm{rk}(P) \leqq t$.

Again we assume the result false and otbtain a contradiction by carrying out a suitable construction. At the k-th stage of the construction we have two disjoint sets $\left\{p_{1}, \cdots, p_{k}\right\}$ and $\left\{q_{1}, \cdots, q_{k}\right\}$ of primes and coherent elements g_{1}, \cdots, g_{k} of G such that g_{i} is of order p_{i} and belongs to $K_{q_{i}}$.

Now it follows from (iii) that there is an integer l such that

$$
\begin{equation*}
\operatorname{rk}\left(P / P \cap K_{p}\right) \leqq l \tag{2}
\end{equation*}
$$

for all primes p and p-subgroups P of G. Thus the ranks of the finite p-subgroups of G / K_{p}, are bounded, and so G / K_{p}, satisfies min- p. It follows from work of Wehrfritz (1971a) that there exist natural numbers $\left(r_{i}, n_{i}\right)(1 \leqq i \leqq k)$ such that every q_{i}-subgroup of $G / K_{q_{i}^{\prime}}$ contains an abelian subgroup of rank $\leqq r_{i}$ and index $\leqq n$. In fact, this even holds for every q_{i}-section of $G / K_{q_{i}^{\prime}}$

Since (iv) is assumed false, we can choose a prime $q_{k+1} \notin\left\{p_{1}, \cdots, p_{k}\right\}$ and a q_{k+1}-subgroup Q of G such that

$$
\operatorname{rk}(Q) \geqq 1+l+\sum_{i=1}^{k} f_{q_{i}}\left(r_{i}, n_{i}\right)
$$

where the functions f are those given by Lemma 3.2. Then by (2), if Q^{*} $=Q \cap K_{q_{k+1}^{\prime}}$, then

$$
\begin{equation*}
\operatorname{rk}\left(Q^{*}\right) \geqq 1+\sum_{i=1}^{k} f_{q_{i}}\left(r_{i}, n_{i}\right) \tag{3}
\end{equation*}
$$

Let Y denote the subfamily consisting of those $X \in X$ such that char $k(X)=q_{k+1}$ and let $L=C_{G}(\boldsymbol{Y})$. By Lemma 2.1, \boldsymbol{Y} is a faithful irreducible \mathfrak{M}_{c}-family for $\bar{G}=G / L$. Now by Gardener, Hartley and Tomkinson (1971) Lemma 3.2, $O_{q_{k+1}}(\bar{G})=1$, and since Q^{*} acts trivially on $X_{q_{k+1}^{\prime}}$ the natural homomorphism of G onto \bar{G} maps Q^{*} isomorphically onto a subgroup \bar{Q}^{*} of \bar{G} which intersects the Hirsch-Plotkin radical $\rho(\bar{G})$ trivially. By (ii), \bar{G} is finitely radical, and so \bar{Q}^{*} transforms $\rho(\bar{G})$ faithfully by conjugation. Now as $L \geqq K_{q_{i}^{\prime}}(1 \leqq i \leqq k)$, the group $O_{q_{i}}(\bar{G})$ contains an abelian normal subgroup of rank $\leqq r_{i}$ and index
$\leqq n_{i}$. Therefore the group of automorphisms induced on it by $\overline{Q^{*}}$ has rank at most $f_{q_{i}}\left(r_{i}, n_{i}\right)$, by Lemma 3.2. It follows from (3) that there is a prime $p_{k+1} \notin\left\{q_{1}, \cdots, q_{k+1}\right\}$ such that $\left[Q^{*}, O_{p_{k+1}}(\bar{G})\right] \neq 1$. Therefore $Q^{* G}$ contains an element g_{k+1} of order p_{k+1}. Since $Q^{*} \leqq K_{q_{k+1}^{\prime}}$, we have $g_{k+1} \in K_{q_{k+1}^{\prime}}$, and by Lemma 3.3 we can arrange that g_{k+1} is coherent with g_{1}, \cdots, g_{k}.

Since the above argument also shows how to begin the construction, we obtain in due course disjoint sets $\left\{p_{1}, p_{2}, \cdots\right\}$ and $\left\{q_{1}, q_{2}, \cdots\right\}$ of primes and coherent elements g_{1}, g_{2}, \cdots such that g_{i} is of order p_{i} and belongs to $K_{q_{i}^{\prime}}$ Let $H=\left\langle g_{1}, g_{2}, \cdots\right\rangle$ and $\sigma=\left\{q_{1}, q_{2}, \cdots\right\}$. Then X_{σ} is a classical \mathfrak{M}_{c}-family for H, and so there is a finite subgroup F of H such that $C_{X}(F)=C_{\boldsymbol{X}}(H)$ for all $X \in \boldsymbol{X}_{\sigma}$. Choose n so that $F \leqq\left\langle g_{1}, \cdots, g_{n}\right\rangle$. Then F centralizes every module $X \in X$ such that $\operatorname{char} k(X)=q_{n+1}$, whereas on the other hand there must be such a module not centralized by g_{n+1}. This contradiction establishes (iv).

Finally we obtain
(v) G is finitely radical. Let $L=\cap C_{G}(X)$ over all X such that char $k(X) \in \sigma$, the set given by (iv). Since σ is finite, (ii) gives that G / L is finitely radical. Now $L \cap K_{\sigma^{\prime}}=1$ and so X_{σ}, is a faithful \mathfrak{M}_{c}-family for L. It follows from Lemmas 2.1, 2.4 and 3.4 that if p is a prime in σ then every p-subgroup of L has finite rank. By the choice of σ, it follows that every abelian subgroup of L has finite rank. A theorem of Gorčakov (1964) now shows that L itself has finite rank, and a theorem of Kargapolov (1959) yields that L is finitely radical (in fact, $L / \rho(L)$ is abelian-by-finite). Thus G is finitely radical, as asserted.

4. Reduced \mathfrak{M}_{c}-Heads

In this section we shall show that every locally soluble \mathfrak{M}_{c}-head is almost a subdirect product of so-called reduced \mathfrak{M}_{c}-heads. Taken in conjunction with the results of the last section, this will allow us to show that locally soluble $\mathfrak{M l}_{c^{-}}$ heads are almost metabelian, thus effectively reducing the proof of the main Theorem A to the metabelian case.

Definition. A group G will be called reduced if whenever A is a subnormal abelian subgroup of G such that $\left|G: N_{G}(A)\right|<\infty$, then A is locally cyclic.

We have used this perhaps rather unsatisfactory term since reduced $\mathfrak{M}_{c^{-}}$ heads are the end product of a "reduction process", as we shall see.

The following remark is immediate. We recall that $H \operatorname{sn} G$ denotes that H is a subnormal subgroup of G.

Lemma 4.1. If G is reduced, $H \operatorname{sn} G$ and $|G: H|<\infty$, then H is reduced.
Our aim in this section is to establish
Lemma 4.2. Let G be a locally soluble \mathfrak{M}_{c}-head. Then G is almost a subdirect product of finitely many reduced \mathfrak{M}_{c}-heads.

Before beginning the proof of it we need some information about the HirschPlotkin radical of an \mathfrak{M}_{c}-head. Here, local solubility is not assumed.

Lemma 4.3. Let G be an \mathfrak{M}_{c}-head with Hirsch-Plotkin radical R. Then R satisfies Min-p for all primes p.

Proof. Let \boldsymbol{X} be a faithful irreducible \mathfrak{M}_{c}-family for G. By Gardiner, Hartley and Tomkinson (1971) Lemma 3.2, R_{p} acts trivially on every irreducible G-module over a field of characteristic $p>0$. Hence by Lemma 2.1, X_{p}, can be viewed as a faithful classical \mathfrak{M}_{c}-family for R_{p}. Therefore R_{p} satisfies Min, by Lemma 3.4 and a theorem of Cernikov (1951).

We could in fact show, by adapting the arguments of Hartley (1971a) Theorem E, that R is almost abelian and of finite rank. However we do not require this fact at present, and in the case when G is locally soluble, it will in due course emerge from our subsequent results.

Proof of Lemma 4.2. Let G be a locally soluble group with a faithful irreducible \mathfrak{M}_{c}-family \boldsymbol{X}. If X denotes the direct sum of the members of X, then X is a completely reducible \mathfrak{M}_{c}-mod over G, and if H is a π-subgroup of G, then the $H-\bmod \left(X_{\pi}\right)_{H}$ satisfies the minimal condititon on centralizers (Lemma 2.9). However $\left(X_{\pi^{\prime}}\right)_{H}$ may conceivably not be completely reducible.

Now in proving Lemma 4.2 we may clearly suppose that G is not itself reduced. We shall show how to construct two sequences S_{n}, T_{n} of finite sets of centralizers in X of subsets of $G(n \geqq 0)$ and a sequence H_{0}, H_{1}, \cdots of normal subgroups of finite index of G such that the following conditions are satisfied:
(i) H_{n} normalizes each $K \in S_{n} \cup T_{n}$ and $\cap C_{H_{n}}(K)=1$ as K runs over $S_{n} \cup T_{n}$.
(ii) Each $K \in S_{n} \cup T_{n}$ is a completely reducible \mathfrak{M}_{c}-mod over H_{n}.
(iii) If $K \in S_{n}$ then $H_{n} / C_{H_{n}}(K)$ is not reduced.
(iv) If $K \in T_{n}$ then $H_{n} / C_{H_{n}}$ (K) is reduced,
all the actions above being the natural ones. The construction is an elaboration of the argument of Hartley (1971a) Lemma 4.6.

We begin by putting $H_{0}=G, S_{0}=\{X\}, T_{0}=\phi$. Having obtained H_{n}, S_{n} and T_{n}, we proceed as follows. If $S_{n}=\phi$ the construction is terminated. Otherwise, choose for each of the finitely many $K \in S_{n}$ a non-cyclic subnormal elementary abelian subgroup $A_{K} / C_{H_{n}}(K)$ of $H_{n} / C_{H_{n}}(K)$ normalized by a subgroup of finite index of $H_{n} / C_{H_{n}}(K)$. Then $A_{K} / C_{\boldsymbol{H}_{n}}(K)$ lies in the Hirsch-Plotkin radical of the \mathfrak{M}_{c}-head $H_{n} / C_{H_{n}}(K)$, and so is finite by Lemma 4.3. It follows that there is a normal subgroup H_{n+1} of G contained in H_{n} and such that

$$
\begin{equation*}
\left|G: H_{n+1}\right|<\infty \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
H_{n+1} \text { centralizes } A_{K} / C_{H_{n}}(K) \quad\left(K \in S_{n}\right) . \tag{2}
\end{equation*}
$$

Since $A_{K} / C_{H_{n}}(K)$ is finite, we have from Lemma 2.10 and (ii) that

$$
\begin{equation*}
K=\left\langle C_{K}(t): 1 \neq t \in E_{K}\right\rangle \quad\left(K \in S_{n}\right) \tag{3}
\end{equation*}
$$

where E_{K} is any transversal to $C_{H_{n}}(K)$ in A_{K} containing 1.
Now as $A_{K} / C_{H_{n}}(K)$ is a subnormal subgroup of $H_{n} / C_{H_{n}}(K)$ centralized by $H_{n+1}, H_{n+1} A_{K}$ is a subnormal subgroup of finite index of H_{n}. Therefore, by (ii), Lemma 2.11 and Lemma 2.4 (i), $K_{H_{n+1} A_{K}}$ is a completely reducible \mathfrak{M}_{c}-mod over $H_{n+1} A_{K}$. If we express it as a direct sum of irreducible $H_{n+1} A_{K}$-modules, we find, using (2), that the centralizer in it of an element $t \in A_{K}$ is just the direct sum of those summands in the decomposition which t centralizes. Therefore $C_{K}(t)$ is a completely reducible $H_{n+1} A_{K}$-mod, and hence, by Lemmas 2.11 and 2.4 (i) again,

$$
\begin{equation*}
C_{K}(t) \text { is a completely reducible } \mathfrak{M}_{c}-\bmod \text { over } H_{n+1} \tag{4}
\end{equation*}
$$

It follows from (3) that $\cap_{1 \neq t \in E_{k}} C_{H_{n+1}}\left(C_{K}(t)\right)=C_{H_{n+1}}(K)$ and hence, if we let U_{n+1} consist of the H_{n+1}-mods $C_{K}(t)\left(K \in S_{n}, 1 \neq t \in E_{K}\right)$, together with the mods $Y_{H_{n+1}}\left(Y \in T_{n}\right)$, then (i) shows that H_{n+1} normalizes each $L \in U_{n+1}$, and

$$
\begin{equation*}
\bigcap_{L \in U_{n+1}} C_{H_{n+1}}(L)=1 \tag{5}
\end{equation*}
$$

We now divide the members of U_{n+1} into two sets S_{n+1}, T_{n+1}, throwing $L \in U_{n+1}$ into S_{n+1} or T_{n+1} according as $H_{n+1} / C_{H_{n+1}}(L)$ is not or is reduced, respectively. Now if $L \in T_{n}$ then $H_{n+1} / C_{H_{n+1}}(L) \cong H_{n+1} C_{H_{n}}(L) / C_{H_{n}}(L)$, a normal subgroup of finite index of $H_{n} / C_{B_{n}}(L)$. It follows from Lemma 4.1 that

$$
H_{n+1} / C_{B_{n+1}}(L)
$$

is reduced, and hence that

$$
\begin{equation*}
T_{n} \leqq T_{n+1} \tag{6}
\end{equation*}
$$

Now since H_{n+1} is a normal subgroup of finite index of H_{n}, Lemmas 2.11 and 2.4 (i) show that $K_{H_{n+1}}$ is a completely reducible \mathfrak{M}_{c}-mod over H_{n+1} if $K \in T_{n+1}$. This, together with (4) and (5), shows that (i) and (ii) of the conditions required by the construction hold; (iii) and (iv) are immediate from the definition of \boldsymbol{S}_{n+1} and \boldsymbol{T}_{n+1}.

The lemma will evidently be proved if we can show that our construction terminates, that is, $S_{n}=\phi$ for some n. For then H_{n} is a subdirect product of a finite number of reduced \mathfrak{M}_{c}-heads, namely the $H_{n} / C_{H_{n}}(K)\left(K \in T_{n}\right)$.

If the construction proceeds indefinitely, then the $\boldsymbol{S}_{\boldsymbol{n}}$ form a sequence of non-empty finite sets. From (6) and the construction, each member of S_{n+1} has the form $C_{K}(t)$ for some $K \in S_{n}$ and $t \in E_{K}$, and by choosing such a K we obtain a map of S_{n+1} into S_{n}. In view of the fact that an inverse limit of non-empty finite sets is non-empty, it follows that we can select a sequence K_{1}, K_{2}, \cdots such that $K_{i} \in S_{i}$ and $K_{i+1}=C_{K_{i}}\left(t_{i}\right)$ for some element $1 \neq t_{i} \in E_{K_{i}}$. Let p_{i} be the prime
divisor of the order of $A_{K_{i}} / C_{H_{i}}\left(K_{i}\right)$. There is a countable subgroup M of G which covers each of the factors $A_{K_{i}} / C_{H_{i}}\left(K_{t}\right)$. Let $M_{0} \leqq M_{1} \leqq \cdots$ be a tower of finite subgroup of M such that $\cup_{i=0}^{\infty} M_{i}=M$, and let R be a Sylow basis of M which reduces into each M_{i}. Since $A_{K_{i}}$ is subnormal in G it follows that $A_{K_{i}} \cap M_{j}$ sn M_{j} for each j and hence that R reduces into each of the groups $A_{K_{i}} \cap M_{j}$. Since one of these covers $A_{K_{i}} / C_{H_{i}}\left(K_{i}\right)$, it follows that the Sylow p_{i}-subgroup $R_{p_{i}}$ of R also covers $A_{K_{i}} / C_{H_{i}}\left(K_{i}\right)$. Therefore we may suppose that

$$
\begin{equation*}
t_{i} \in R_{p_{i}} \quad(i=1,2, \cdots) \tag{7}
\end{equation*}
$$

Now the image of t_{i} in $H_{i} / C_{H_{i}}\left(K_{i}\right)$ lies in a subnormal p_{i}-subgroup of the latter group, and so by (ii) and Gardiner, Hartley and Tomkinson (1971) Lemma 3.2 , we find that t_{i} acts trivially on the p_{i}-component of K_{i}. Therefore there is a prime $q_{i} \neq p_{i}$ such that t_{i} acts non-trivially on $K_{i, q_{i}}=C_{X_{q_{i}}}\left(\left\langle t_{1}, \cdots, t_{i-1}\right\rangle\right)$. We thus have

$$
\begin{equation*}
C_{X_{q_{i}}}\left(\left\langle t_{1}, \cdots, t_{i}\right\rangle\right)<C_{X_{q_{i}}}\left(\left\langle t_{1}, \cdots, t_{i-1}\right\rangle\right) \tag{8}
\end{equation*}
$$

for each i. It follows that if $i(1)<i(2)<\cdots$ is any strictly increasing sequence of natural numbers, then

$$
\begin{equation*}
C_{X q_{i}(j+1)}\left(\left\langle t_{i(1)}, \cdots, t_{i(j+1)}\right\rangle\right)<C_{\left.\chi_{q_{i}(j+1)}\right)}\left(\left\langle t_{i(1)}, \cdots, t_{i(j)}\right\rangle\right) \tag{9}
\end{equation*}
$$

For by (8), the subgroups obtained by intersecting the two sides of (9) with the centralizer in $X_{q_{i}(j+1)}$ of $\left\langle t_{1}, \cdots, t_{i(j+1)-1}\right\rangle$ are distinct.

We next consider the sequences p_{1}, p_{2}, \cdots and q_{1}, q_{2}, \cdots, and claim first that no prime occurs infinitely often in the sequence $\left\{p_{i}\right\}$. Indeed if $i(1)<i(2)<\cdots$ is an infinite sequence such that $p_{i(j)}=p$ for all j, then as $q_{i(j)} \neq p$ for all j and (by (8)) the elements $t_{i(j)}$ generate a p-group, (9) gives a contradiction to the fact that $X_{p^{\prime}}$, when restricted to any p-subgroup of G, satisfies the minimal condition on centralizers (Lemma 2.9).

Furthermore, no prime q can occur infinitely often among the q_{i}. For in the contrary case we obtain a sequence $i(1)<i(2)<\cdots$ such that $p_{i(j)} \neq q$ and $q_{i(j)}=q$ for all j. Using (7) and (9), we now obtain a contradiction to the fact that X_{q} satisfies the minimal condition on centralizers when restricted to any q^{\prime}-subgroup of G.

An immediate recursive construction now allows us to obtain an infinite sequence $i(1)<i(2)<\cdots$ such that the sets $\sigma=\left\{p_{i(j)}\right\}$ and $\tau=\left\{q_{i(j)}\right\}$ are disjoint. From (9), we find that the sequence of centralizers $C_{X_{r}}\left(\left\langle t_{i(1)}, \cdots, t_{i(j)}\right\rangle\right)$ is strictly decreasing. But (7) shows that the elements $t_{i(1)}, t_{i(2)}, \cdots$ generate a τ^{\prime}-group, and so we have a final contradiction to Lemma 2.9. Therefore Lemma 4.2 is established.

Regarding the structure of reduced \mathfrak{M}_{c}-heads, we can say the following:
Lemma 4.4. Let G be a reduced locally soluble \mathfrak{M}_{c}-head with HirschPlotkin radical R. Then $O_{2},(R)$ is locally cyclic. There is a normal subgroup
H of finite index in G and a locally cyclic normal subgroup A of H such that $A=C_{H}(A)$. Further, H / A is abelian.

Proof. By Lemma 4.3, the Hirsch-Plotkin radical R of G satisfies Min- p for all primes p. Since G contains no non-cyclic elementary abelian normal subgroup, the maximal radicable subgroup R_{p}^{0} of the Sylow p-subgroup R_{p} of R is locally cyclic. Let $C_{p}=C_{R_{p}}\left(R_{p}^{0}\right)$. Since $C_{p} / R_{p}{ }^{0}$ is a finite p-group, C_{p} is nilpotent. If F_{p} is any finite subgroup of C_{p} such that $C_{p}=F_{p} R_{p}{ }^{0}$, then $F_{p} \triangleleft C_{p}$ and C_{p} / F_{p} is locally cyclic. It follows that the set of all elements of any given order in C_{p} generates a finite subgroup. Hence any finite set of elements in C_{p} lies in a finite characteristic subgroup of C_{p} and hence in a finite characteristic subgroup of G. Therefore, if E is a finite subgroup of C_{p}, then $E \operatorname{sn} G$ and $\left|G: C_{G}(E)\right|<\infty$. Since G is reduced, we find that every finite abelian subgroup of C_{p} is cyclic.

Suppose now that p is odd. Then a finite p-group, all of whose abelian subgroups are cyclic, is itself cyclic (Gorenstein (1968) Theorem 5.4.10), and hence C_{p} is locally cyclic. Furthermore, every non-trivial automorphism of finite order of R_{p}^{0} acts non-trivially on $\Omega_{1}\left(R_{p}^{0}\right)$ (Robinson (1968) Lemma 2.36), and hence R_{p}^{0} has no automorphism of order p. Therefore $C_{p}=R_{p}$, and R_{p} is locally cyclic if p is odd. Hence $O_{2},(R)$ is locally cyclic.

If $R_{2}^{0} \neq 1$ then, since $R_{2}{ }^{0}$ is a direct factor of any larger abelian subgroup of C_{2} and every finite abelian subgroup of C_{2} is cyclic, we find that R_{2} is a maximal abelian subgroup of C_{2} and hence that $C_{2}=R_{2}^{0}$. Since in fact C_{2} is the centralizer of the subgroup of order 4 of R_{2}^{0} (Robinson (1968) Theorem 2.36), we have that $\left|R_{2}: C_{2}\right|=1$ or 2 . Let $A=O_{2^{\prime}}(R) \times R_{2}^{0}$. Then A is locally cyclic. If $D=C_{G}(A)$, then D also centralizes R / A, and since Lemma 3.1 shows that D is finitely radical, we obtain that $D \leqq R$ by an argument similar to Hartley (1971a) Lemma 5.4. Hence $D \cap R_{2} \leqq C_{2}$, and so $D=\mathrm{A}$. Therefore we may take $H=G$ in this case.

If $R_{2}^{0}=1$, then $C_{2}=R_{2}$ and R_{2} is either cyclic or a generalized quaternion group (Gorenstein (1968) Theorem 5.4.10). Let $H=C_{G}\left(R_{2}\right), A=H \cap R$ $=O_{2} \cdot(R) \times Z\left(R_{2}\right)$, where $Z\left(R_{2}\right)$ is the centre of R_{2}. Then $|G: H|$ is finite and $H \triangleleft G$. Since H is finitely radical and $A=H \cap R$ is the Hirsch-Plotkin radical of H, we have $A=C_{H}(A)$.

Since the automorphism group of a locally cyclic group is abelian, we have that H / A is abelian in either case.
(A little more argument actually shows that we can take $H=G$ unless $\boldsymbol{R}_{\mathbf{2}}$ is a quaternion group of order 8 , in which case H can be chosen to be of index dividing 6 . This is the best that can be expected if we want H to contain a selfcentralizing locally cyclic normal subgroup, as the example of $\operatorname{GL}(2,3)$ shows $)$.

We can now state a theorem which gives quite a lot of information on the structure of locally soluble \mathfrak{M}_{c}-heads.

Theorem 4.5. Let G be a locally soluble \mathfrak{M}_{c}-head. Then G is almost
metabelian. The Hirsch-Plotkin radical of G is almost abelian and of finite rank.

Proof. Lemma 4.4, together with its proof, shows that the theorem holds for reduced $\mathfrak{M}_{\boldsymbol{c}}$-heads. Therefore, by Lemma 4.2, it suffices to show that the properties attributed to G are preserved by forming subdirect products with finitely many factors and finite extensions. We leave this straightforward exercise to the reader.

We complete this section by showing how the proof of Theorem A may now be reduced to determining the structure of metabelian reduced \mathfrak{M}_{c}-heads. But first we need to define a p^{\prime}-pinched group.

Definition. Let p be a prime. A group G is said to be p^{\prime}-pinched if G contains a locally cyclic normal subgroup A such that
(i) G / A is abelian.
(ii) For every prime $q \neq p$, every element of order q of G lies in A.
(iii) $O_{p}(G) \leqq A$.
(iv) There is a normal subgroup K of G such that $K \cap O_{p}(G)=1$ and G/K satisfies Min-p.

Notice that, by (ii) and the locally cyclic nature of A, G contains no noncyclic elementary abelian q-subgroup if $q \neq p$. Hence, if q is an odd prime different from p, every q-subgroup of G is locally cyclic, while if $p \neq 2$ every finite 2 -subgroup of G is either cyclic or generalized quaternion. However a p^{\prime}-pinched group may nevertheless be uncountable, of Hartley (1972), remarks following Corollary C1.

We have
Lemma 4.6. Let G be p^{\prime}-pinched and $N \triangleleft G$. Then N is p^{\prime}-pinched.
Proof. Let A and K be as in the definition, and let $B=A \cap N$. Then B is locally cyclic, N / B is abelian, and every element of N of prime order $q \neq p$ lies in B. As $O_{p}(N)=O_{p}(G) \cap N$, we have $O_{p}(N) \leqq A \cap N=B$. Furthermore, if $L=N \cap K$, then $L \cap O_{p}(N)=1$ since $O_{p}(N) \leqq O_{p}(G)$, and $N / L \cong N K / K$ satisfies Min-p.

The necessity of the conditions given in Theorem A for a locally soluble group to be an $\mathfrak{M e}_{c}$-head can now readily be deduced from Lemma 4.7 below, the proof of which we defer to the next section.

Lemma 4.7. Let G be a metabelian reduced \mathfrak{M}_{c}-head. Then G is almost a subdirect product of a finite number of p^{\prime}-pinched groups, for various primes p.

Deduction of Theorem A: necessity. By Lemma 4.2, if G is a locally soluble \mathfrak{M}_{c}-head, then G contains a normal subgroup H of finite index and subgroups $K_{1}, \cdots, K_{n} \triangleleft H$ such that each H / K_{i} is a reduced \mathfrak{M}_{c}-head and $\bigcap_{i=1}^{n} K_{i}=1$. By Lemma 4.4, there exist subgroups $L_{\text {; }}$ with $K_{i} \leqq L_{i} \triangleleft H$ such that $\left|H: L_{i}\right|$ is
finite and L_{i} / K_{i} is metabelian. There exists a normal subgroup L of G such that $L \leqq \bigcap_{i=1}^{n} L_{i}$ and $|G: L|<\infty$. Then $L / L \cap K_{i} \cong L K_{i} / K_{i}$, which is a normal subgroup of finite index of H / K_{i} contained in L_{i} / K_{i}. Therefore, by Lemma 4.1, each of the groups $L / L \cap K_{l}$ is reduced and metabelian. Also, by Lemmas 2.1, 2.4 and 2.11 , each of these groups is an \mathfrak{M}_{c}-head.

Let $M_{i}=L \cap K_{i}$. By Lemma 4.7, there exists a subgroup T_{i} of finite index in L such that $M_{i} \leqq T_{i} \triangleleft L$, and finitely many normal subgroups $M_{i j}$ of T_{i} such that $\bigcap_{j} M_{i j}=M_{i}$ and $T_{i} / M_{i j}$ is p^{\prime}-pinched for a suitable prime p. Let T be a normal subgroup of finite index of G contained in $\bigcap_{i=1}^{n} T_{i}$ Then by Lemma 4.6, each of the groups $T / T \cap M_{i j}$ is p^{\prime}-pinched for the appropriate prime p. Since $\bigcap_{i, j} M_{i j}=1, T$ is a subdirect product of a finite number of p^{\prime}-pinched groups, and the deduction of the necessity statement of Theorem A is complete.

We now establish the sufficiency statement of Theorem A, so that all that remains is to prove Lemma 4.7.

Lemma 4.8. Let G be a group which is almost a subdirect product of finitely many \mathfrak{M}_{c}-heads. Then G is an \mathfrak{M}_{c}-head.

Proof. By hypothesis, G contains a normal subgroup H of finite index and subgroups $K_{1}, \cdots, K_{n} \triangleleft H$ such that each H / K_{i} is an \mathfrak{M}_{c}-head. Thus H / K_{i} has a faithful irreducible \mathfrak{M}_{c}-family, $\boldsymbol{X}_{\boldsymbol{i}}$ say. We may view $\boldsymbol{X}_{\boldsymbol{i}}$ naturally as an irreducible \mathfrak{M}_{c}-family for H with $C_{H}\left(X_{i}\right)=K_{i}$. By Lemma $2.8, X_{i}^{G}$ is an \mathfrak{M}_{c}-family for G. Now if $X_{i} \in X_{i}$, then $\left(X_{i}^{G}\right)_{H}$ is the direct sum of a finite number of irreducible H-submodules, among which a copy of X_{i} occurs. Therefore we can choose a composition factor Y_{i} of X_{i}^{G} such that $\left(Y_{i}\right)_{H}$ has a direct summand isomorphic to X_{i}.

If Y_{i} consists of all such modules Y_{i}, then Lemma 2.4 (i) shows that Y_{i} is an irreducible \mathfrak{M}_{c}-family for G, and clearly $C_{G}\left(\boldsymbol{Y}_{i}\right) \cap H \leqq K_{i}$. By Lemma 2.2, $\boldsymbol{Y}=\bigcup_{i=1}^{n} \boldsymbol{Y}_{i}$ is also an \mathfrak{M}_{c}-family for G, and $C_{G}(\boldsymbol{Y}) \cap H \leqq \bigcap_{i=1}^{n} K_{i}=1$. Finally, G / H is finite and so has a faithful irreducible \mathfrak{M}_{c}-family over any field of characteristic not dividing its order (since G / H has a faithful completely reducible representation over such a field). By viewing such a family as an \mathfrak{M}_{c}-family for \boldsymbol{G} and adjoining it to \boldsymbol{Y}, we obtain the required faithful irreducible \mathfrak{M}_{c}-family over G.

Corollary 4.9. Every almost abelian group with Min is an \mathfrak{M}_{c}-head.
Proof. Such a group G contains a normal subgroup of finite index which is a direct product of finitely many groups of type $C_{p \infty}$. Now a group of type $C_{p \infty}$ has a faithful irreducible module over Z_{q}, is where q is any prime different from p (Robinson (1968) Lemma 2.37). Since such a module is trivially an $\mathfrak{M}_{\boldsymbol{c}^{-}}$ module (as every non-trivial element of the group acts fixed-point-freely), the Corollary follows from Lemma 4.8.

Proof of Theorem A : sufficiency. By Lemma 4.8, it suffices to show that every p^{\prime}-pinched group G has a faithful irreducible \mathfrak{M}_{c}-family. Let A be a locally cyclic normal subgroup of G containing every element of prime order $q \neq p$ of G and such that G / A is abelian. We may suppose that A is chosen maximal subject to these conditions. Let B be any abelian subgroup of G containing A. Then since every abelian p^{\prime}-subgroup of G is locally cyclic $B_{p}, A=B_{p} \times A_{p}$ is locally cyclic. Hence $B_{p^{\prime}} \leqq A$, by the maximality of A, and so B / A is a p-group. It follows that, if $C=C_{G}(A)$, then C / A is a p-group. Since C is clearly nilpotent it is the direct product of its Sylow subgroups and we have

$$
\begin{equation*}
C_{G}(A) \leqq A O_{p}(G)=A_{p} \times O_{p}(G)=A \tag{10}
\end{equation*}
$$

by (iii) of the definition of p^{\prime}-pinched.
Now A / A_{p} is a locally cyclic p^{\prime}-group, and so has faithful irreducible module U over any field k whose characteristic is p or 0 . By allowing A_{p} to act trivially we may view U as a $k A$-module. Let $W=U^{G}$ and let V be any composition factor of W. Now W_{A} is a direct sum of irreducible $k A$-submodules on each of which the kernel of A is A_{p}; consequently V is also such a direct sum and

$$
\begin{equation*}
C_{A}(V)=A_{p} \tag{11}
\end{equation*}
$$

Furthermore, since G is p^{\prime}-pinched, any subgroup L of G which is not a p-group contains a non-trivial p^{\prime}-element a of A. The latter acts fixed-point freely on V, and so $C_{V}(L)=C_{V}(a)=0$. Therefore

$$
\begin{equation*}
V \text { is an irreducible } \mathfrak{M}_{c} \text {-module over } G . \tag{12}
\end{equation*}
$$

Since G is p^{\prime}-pinched, there is a normal subgroup K of G such that G / K satisfies Min $-p$ and $K \cap O_{p}(G)=1$. We may evidently suppose that $O_{p},(G / K)=1$. Then the Hirsch-Plotkin radical of G / K is a p-group satisfying Min, and contains its centralizer since G / K is soluble. Since a periodic group of automorphisms of a p-group satisfying Min also satisfies min (Robinson (1968) Theorem 2.35), we find that G / K satisfies Min. Then G / K has a faithful irreducible \mathfrak{M}_{c}-family Y, by Corollary 4.9 ; in fact it is worth pointing out that this family can be taken to consist of modules over any given field k, of characteristic not belonging to $\pi(G / K)$. By viewing \boldsymbol{Y} as a family over G and adding V to it, we obtain an irreducible \mathfrak{M}_{c}-family \boldsymbol{X} over \boldsymbol{G}.

It remains to verify that \boldsymbol{X} is faithful. From (11) we obtain that $C_{\boldsymbol{G}}(\boldsymbol{X}) \cap A$ $\leqq A_{p}=O_{p}(G)$, and hence, as $O_{p}(G)$ is faithfully represented on Y, we obtain that $C_{G}(X) \cap A=1$. Therefore $C_{G}(X) \leqq C_{G}(A)=A$ by (10), and so $C_{G}(X)=1$, as required.

5. Metabelian \mathfrak{M}_{c}-Heads

In this section we have to investigate the structure of reduced metabelian \mathfrak{M}_{c}-heads, in order to prove that such groups are almost subdirect products
of p^{\prime}-pinched groups. The key lemma in this investigation is Lemma 5.4. In proving this lemma we have to extend the fields over which the modules in our \mathfrak{M}_{c}-family are defined, employing Corollary 2.6 for the purpose. This is the only time in the paper when field extension seems necessary.

Before coming to Lemma 5.4 we need three technical lemmas, the first of which will certainly be well known.

Lemma 5.1. Let A be a periodic abelian group and let k be an algebracally closed field. Then
(i) Every irreducible $k A$-module has dimension 1 over k.
(ii) Let V be an irreducible $k A$-module, let $K=C_{A}(V)$, and let $\alpha \in$ Aut A. Let V^{α} denote the $k A$-module V with the A-action $(v, a) \rightarrow v . a^{\alpha^{-1}}$. Then $V^{\alpha} \cong V$ if and only if $K^{\alpha}=K$ and α centralizes A / K.

Proof. (i) Let V be an irreducible $k A$-module. Then V contains a nonzero vector v. If $a \in A$, then v lies in a finite-dimensional subspace U of V invariant under a. Since k is algebraically closed, there is an element $\lambda \in k$ and a non-zero vector $w \in U$ such that $w a=\lambda w$. For fixed λ and a, the set of all vectors $w \in V$ which satisfy this condition is a non-zero $k A$-submodule of V, and so must be V itself. It follows that every element of A acts on V as multiplication by an element of k, so that every k-subspace of V is a $k A$-submodule. Hence $\operatorname{dim}_{k} V=1$.
(ii) Suppose that $V^{\alpha} \cong V$. Then as $K^{\alpha}=C_{A}\left(V^{\alpha}\right)$, we must have $K^{\alpha}=K$. By (i), V is 1-dimensional and each element of A acts on V by scalar multiplication. Thus we have a homomorphism $\lambda: A \rightarrow k^{*}$ such that $v a=\lambda(a) v$ for all $a \in A$ and $v \in V$. Let $\phi: V \rightarrow V^{\alpha}$ be an isomorphism. Then (va) $\phi=v \phi \cdot a^{\alpha-1}$. Hence $\lambda(a) v \phi=\lambda\left(a^{\alpha^{-1}}\right) v \phi$ for all $v \in V, a \in A$, whence $\lambda\left(a^{-1} a^{\alpha^{-1}}\right)=1$ and $a \equiv a^{\alpha^{-1}} \bmod K=\operatorname{ker} \lambda$. Thus α centralizes A / K. The converse is immediate.

Lemma 5.2. Let G be a group containing an abelian normal subgrou $p A$ which satisfies Min-p for all primes p and is such that G / A is abelian. Suppose that, for infinitely many primes p, G contains an element of order p not belonging to A. Then there is an infinite subgroup B of G such that $B \cap A=1$ and B is a direct product of cyclic groups of distinct prime orders.

Proof. Suppose that C is a cyclic subgroup of G such that $C \cap A=1$ and $|C|$ is a product of distinct primes. We shall show that C is contained in a larger such subgroup; from this the result will follow.

Let σ be the (finite) set of prime divisors of $|C|$. Since, for each prime p, the Sylow p-subgroup A_{p} of A is an abelian group satisfying Min, it follows from Robinson (1968) Theorem 2.35 that $G / C_{G}\left(A_{p}\right)$ is finite. Therefore there exists an element x of prime order $q \notin \sigma$ in G such that x centralizes A_{σ} and $x \notin A$. If $g \in G$ then we have $[g, x] \in A$ and so

$$
1=\left[g, x^{q}\right] \equiv[g, x]^{q} \bmod A_{\sigma^{\prime}}, \text { as } x \text { centralizes } A / A_{\sigma^{\prime}}
$$

Hence, as $q \notin \sigma$, we have $[g, x] \in A_{\sigma}$, for all $g \in G$.
It follows that $A_{\sigma^{\prime}}\langle x\rangle \triangleleft G$. Consider the group $A_{\sigma^{\prime}}\langle x\rangle C=H$. Now C is a finite maximal σ-subgroup of H, and hence every σ-element of H is conjugate to an element of C. Therefore $A \cap H$ is a σ^{\prime}-group, and so $A \cap H \leqq A_{\sigma} \cdot\langle x\rangle$. Hence $A \cap H=A_{\sigma^{\prime}}$, as $x \notin A$. It follows that $H / A_{\sigma^{\prime}}$ is abelian.

Since $|C|$ is a σ-number, a theorem of Gaschutz (Huppert (1961) Chapter I, Theorem 17.4) shows that H splits over $A_{\sigma^{\prime}}$. If D is a complement, then D_{σ} is a maximal σ-subgroup of H, and so is conjugate in H to C. Therefore we can arrange that $D \geqq C$. Since $D \cap A=D \cap A \cap H=D \cap A_{\sigma^{\prime}}=1, D$ is the required subgroup.

Lemma. 5.3. Let G be a group with a faithful irreducible \mathfrak{M}_{c}-family \boldsymbol{X}. Suppose that G contains an infinite normal locally nilpotent subgroup D such that D_{q} is finite for each prime q. Then there is a subgroup K of G and an infinite set π of primes such that
(i) $K \cap D_{q}<D_{q}$ for all $q \in \pi$.
(ii) For each finite subset σ of π, there exists a module $X_{\sigma} \in X$ such that $K \cap D_{\sigma}=C_{D_{\sigma}}\left(X_{\sigma}\right)$.

Proof. If there is a module $X \in X$ such that $D / C_{D}(X)$ is infinite, then we may evidently take $K=C_{D}(X)$ and π to be the set of all primes q such that $D / C_{D}(X)$ contains an element of order q. Therefore, during the rest of the proof, we assume that

$$
\begin{equation*}
D: C_{D}(X) \mid<\infty \text { for all } X \in X \tag{1}
\end{equation*}
$$

We begin by deducing that
(*) There exists an infinite subset τ of $\pi(D)$ and a subfamily \boldsymbol{Y} of \boldsymbol{X} such that $\tau \cap \operatorname{char} \boldsymbol{Y}=\varnothing$ and $D_{q} \cap C_{G}(\boldsymbol{Y})<D_{q}$ for all $q \in \tau$.

We recall that, if λ is a set of primes, then $X_{\lambda}=\{X \in X$: char $k(X) \in \lambda \cup\{0\}\}$. If there is a finite set λ of primes such that $D_{q} \cap C_{G}\left(X_{\lambda}\right)<D_{q}$ for infinitely many q, then we may evidently take $Y=X_{\lambda}$ and choose τ suitably to obtain (${ }^{*}$). Otherwise, we have that if λ is any finite set of primes, then $D_{q} \leqq C_{G}\left(X_{\lambda}\right)$ for all but finitely many q.

In this latter case, suppose we have obtained a finite subset τ_{n} of $\pi(D)$ and a finite set σ_{n} of primes such that $\tau_{n} \cap \sigma_{n}=\varnothing$ and $D_{q} \cap C_{G}\left(X_{\sigma_{n}}\right)<D_{q}$ for all $q \in \tau_{n}$. Then the set of all primes r such that $r \notin \sigma_{n} \cup \tau_{n}$ and $1 \neq D_{r} \leqq C_{G}\left(X_{\sigma_{n} \cup \tau_{n}}\right)$ is infinite, as $\pi(D)$ is infinite. Choose such a prime r and let $\tau_{n+1}=\tau_{n} \cup\{r\}$. Since \boldsymbol{X} is a faithful \mathfrak{M}_{c}-family for G, there exists a module $X \in \boldsymbol{X}$ such that $D_{r} \neq C_{G}(X)$. The choice of r shows that $\operatorname{char} k(X) \notin \sigma_{n} \cup \tau_{n} \cup\{0\}$, and furthermore, since $O_{r}(G)$ acts trivially on every irreducible module for G over a field of
characteristic r, (Gardiner, Hartley and Tomkinson (1971) Lemma 3.2) we have char $k(X) \neq r$. Therefore, letting $\sigma_{n+1}=\sigma_{n} \cup\{\operatorname{char} k(X)\}$, we obtain that $\tau_{n+1} \cap \sigma_{n+1}=\varnothing$. Clearly $D_{q} \cap C_{G}\left(X_{\sigma_{n+1}}\right)<D_{q}$ for all $q \in \tau_{n+1}$. Proceeding in this way and letting $\tau=\cup_{n=1}^{\infty} \tau_{n}, \sigma=\cup_{n=1}^{\infty} \sigma_{n}$ and $Y=X_{\sigma}$, we obtain (${ }^{*}$).

We may assume without loss of generality that $D=D_{\tau}$. By (*), we have that $D / D \cap C_{G}(Y)$ is infinite. Thus, if we write $K_{Y}=D \cap C_{G}(Y)(Y \in Y)$, then

$$
\begin{equation*}
D / \bigcap_{Y \in Y} K_{Y} \text { is infinite } \tag{2}
\end{equation*}
$$

whereas from (1)

D / K_{Y} is finite for each $Y \in \boldsymbol{Y}$

Since $\pi(D) \cap$ char $Y=\phi$, each subgroup A of D contains a finite subgroup F such that $C_{Y}(A)=C_{Y}(F)$ for all $Y \in Y$. In particular, we may choose a finite. subset μ_{1} of $\pi(D)$ such that $C_{Y}\left(D_{\mu_{1}}\right)=C_{Y}(D)$ for all $Y \in Y$. Thus, if $K_{Y} \geqq D_{\mu_{1}}$, then $K_{Y}=D$. By (2) and (3) the number of distinct subgroups K_{Y} is infinite, and since $D_{\mu_{1}}$ is finite, we can obtain a subfamily Y_{1} of Y and a subgroup F_{1} of D_{μ} such that the set of subgroups $K_{Y}\left(Y \in Y_{1}\right)$ is infinite and

$$
\begin{equation*}
K_{Y} \cap D_{\mu_{1}}=F_{1}<D_{\mu_{1}} \tag{4}
\end{equation*}
$$

for all $Y \in Y_{1}$.
We take the situation just obtained as the first stage of a construction, at the n-th stage of which we have pairwise disjoint finite sets $\mu_{1}, \mu_{2}, \cdots, \mu_{n}$ of primes, proper subgroups F_{1}, \cdots, F_{n} of $D_{\mu_{1}}, \cdots, D_{\mu_{n}}$ respectively, and subfamilies $\boldsymbol{Y}_{1} \geqq \boldsymbol{Y}_{2} \geqq \cdots \geqq \boldsymbol{Y}_{n}$ of \boldsymbol{Y} such that $\left\{K_{Y}: Y \in \boldsymbol{Y}_{n}\right\}$ is infinite and

$$
\begin{equation*}
K_{Y} \cap\left(D_{\mu_{1}} \times \cdots \times D_{\mu_{n}}\right)=F_{1} \times \cdots \times F_{n} \tag{5}
\end{equation*}
$$

for all $Y \in Y_{n}$. To obtain the next step of the construction, let $\lambda_{n}=\left(\mu_{1} \cup \cdots \cup \mu_{n}\right)^{\prime}$ There is a finite subset μ_{n+1} of λ_{n} such that $C_{Y}\left(D_{\lambda_{n}}\right)=C_{Y}\left(D_{\mu_{n+1}}\right)$ for all $Y \in Y_{n}$. Thus, if $Y \in Y_{n}$ and $K_{Y} \geqq D_{\mu_{n+1}}$, then $K_{Y} \geqq D_{\lambda_{n}}$. Since $D_{\lambda_{n}}$ has finite index in D, only finitely many subgroups of D can contain it, and so infinitely many of the subgroups $K_{\boldsymbol{Y}}\left(Y \in \boldsymbol{Y}_{n}\right)$ intersect $D_{\mu_{n+1}}$ in a proper subgroup. The finiteness of $D_{\mu_{n+1}}$ then implies that there is a subfamily \boldsymbol{Y}_{n+1} of \boldsymbol{Y} and a subgroup F_{n+1} of $D_{\mu_{n+1}}$ such that $\left\{K_{Y}: Y \in Y_{n+1}\right\}$ is infinite and

$$
K_{Y} \cap D_{\mu_{n+1}}=F_{n+1}<D_{\mu_{n}+1} \text { if } Y \in Y_{n+1}
$$

Then (5) holds with n replaced by $n+1$.
Now let $K=F_{1} \times F_{2} \times \cdots$ and let π consist of all primes q such that some $D_{\mu_{i}} / F_{i}$ contains an element of order q. Then π is infinite, and it follows from (5) that the required conditions (i) and (ii) are satisfied.

We now come to the result which provides the fundamental step in analysing the structure of metabelian \mathfrak{M}_{c}-heads.

Lemma 5.4. Let G be a metabelian \mathfrak{M}_{c}-head. Then there is a finite set σ of primes and a normal abelian subgroup A of G such that G / A is abelian and A contains every element of G whose order is a prime not belonging to σ.

Proof. As usual, we assume the lemma false and derive a contradiction. Let R be the Hirsch-Plotkin radical of G. Then by Theorem $4.5, R$ has finite rank and there is a finite set λ of primes such that $R_{\lambda^{\prime}}$, is abelian. Let $A=\left(G^{\prime} \cap R_{\lambda}\right)$ $\times R_{\lambda^{\prime}}$. Then A and G / A are abelian. Since the lemma is assumed false, there are infinitely many primes p such that G contains an element of order p not lying in A. Therefore, by Lemma 5.2, there is an infinite subgroup B_{1} of G such that $B_{1} \cap A=1$ and B_{1} is a direct product of cyclic groups of distinct prime orders. Let B the Sylow λ^{\prime}-subgroup of B_{1}. Then $B \cap R=1$, and B is infinite.

Let x be an element of prime order p in B. We claim that

$$
\begin{equation*}
\left[x, A_{p^{\prime}}\right] \neq 1 . \tag{6}
\end{equation*}
$$

For we have, since G / A is abelian, that $\left[x, R_{p^{\prime}}\right] \leqq A_{p^{\prime}}$ and so, if $\left[x, A_{p^{\prime}}\right]=1$, then $\left[x, R_{p^{\prime}}\right]=1$. It follows from this that $R\langle x\rangle=R_{p^{\prime}} \times R_{p}\langle x\rangle$ is a normal locally nilpotent subgroup of G, whence $x \in R$, a contradiction.

We now construct elements c_{1}, c_{2}, \cdots of B of distinct prime orders p_{1}, p_{2}, \cdots and finite elementary abelian normal subgroups D_{1}, D_{2}, \cdots of G of distinct prime exponents q_{1}, q_{2}, \cdots such that

$$
\begin{equation*}
1 \neq\left[D_{i}, c_{i}\right]=D_{\boldsymbol{i}} \quad(i=1,2, \cdots) \tag{7}
\end{equation*}
$$

In fact, suppose c_{1}, \cdots, c_{n} and D_{1}, \cdots, D_{n} have been obtained. Since $A_{q_{1}}$ is an abelian group satisfying Min, its centralizer in G has finite index in G. Therefore there exists a prime p_{n+1} different from any of p_{1}, \cdots, p_{n} such that B contains an element c_{n+1} of order p_{n+1} which centralizes $A_{q_{1}} \times \cdots \times A_{q_{n}}$. By (6), there is a prime $q_{n+1} \neq p_{n+1}$ such that $\left[A_{q_{n+1}}, c_{n+1}\right] \neq 1$, and we must have $q_{n+1} \notin\left\{q_{1}, \cdots, q_{n}\right\}$. Then c_{n+1} does not centralize $\Omega_{1}\left(A_{q_{n+1}}\right)$, and we may take D_{n+1} $=\left[\Omega_{1}\left(A_{q_{n+1}}\right), c_{n+1}\right]$. Since A and G / A are abelian, we easily see that $D_{n+1} \triangleleft G$.

Let π be as given by Lemma 5.3, with $D=D_{1} \times D_{2} \times \cdots$ and X a faithful irreducible algebraically closed \mathfrak{M}_{c}-family for G (see Corollary 2.6). Then by considering D_{π} instead of D and reindexing, we can obtain new sequences c_{1}, c_{2}, \cdots and D_{1}, D_{2}, \cdots such that (7) holds; furthermore we have now a subgroup K of D such that

$$
\begin{equation*}
K \cap D_{i}<D_{i} \quad(i=1,2, \cdots) \tag{8}
\end{equation*}
$$

and for $n=1,2, \cdots$ we have a module $X_{n} \in X$ such that

$$
\begin{equation*}
K \cap\left(D_{1} \times \cdots \times D_{n}\right)=C_{G}\left(X_{n}\right) \cap\left(D_{1} \times \cdots \times D_{n}\right) . \tag{9}
\end{equation*}
$$

Let the primes p_{1}, p_{2}, \cdots be divided in any way into two disjoint infinite
subsets v_{1} and ν_{2}, and write $C=\left\langle c_{1}, c_{2}, \cdots\right\rangle, C_{1}=C_{\mu_{1}}, C_{2}=C_{\mu_{2}}$. Since \boldsymbol{X} is an \mathfrak{M}_{c}-family for G, there is a finite subgroup F_{1} of C_{1} such that $C_{X}\left(F_{1}\right)=C_{X}\left(C_{1}\right)$ for all $X \in X$ such that char $k(X) \notin \pi\left(C_{1}\right)=v_{1}$. Let n be any integer large enough to ensure that $F_{1}<C_{1} \cap\left(\left\langle c_{1}\right\rangle \times \cdots \times\left\langle c_{n}\right\rangle\right)=H_{1}$. Now since $E_{n}=D_{1} \times \cdots \times D_{n}$ is a finite normal subgroup of G, Lemma 2.11 shows that the $k\left(X_{n}\right)[G]$-module X_{n} becomes completely reducible when restricted to E_{n}. In fact, let Z be any irreducible submodule of $\left(X_{n}\right)_{E_{n}}$. Then each $Z g(g \in G)$ is an irreducible E_{n}-submodule of X_{n}, and $\Sigma_{g \in G} Z g=X_{n}$.

Let $L=C_{E_{n}}(Z)$. Then $L^{g}=C_{E_{n}}(Z g)$ and so $\cap_{g \in G} L^{g}=E_{n} \cap C_{G}\left(X_{n}\right)=K \cap E_{n}$ by (9). Now $C_{G}\left(E_{n} / L\right)$ contains A as A is abelian, and hence $C_{G}\left(E_{n} / L\right) \triangleleft G$ as G / A is also abelian. Therefore $\left[E_{n}, C_{G}\left(E_{n} / L\right)\right]$ is a normal subgroup of G contained in L, and so contained in $\bigcap_{g \in G} L^{g}=K \cap E_{n}$. It follows from (7) and (8) that $C_{G}\left(E_{n} / L\right) \cap\left(\left\langle c_{1}\right\rangle \times \cdots \times\left\langle c_{n}\right\rangle\right)=1$, and in particular that $C_{G}\left(E_{n} / L\right) \cap H_{1}=1$. Therefore, by Lemma 5.1, the submodules $Z g\left(g \in H_{1}\right)$ are pairwise nonisomorphic.

Therefore the modules $Z g\left(g \in H_{1}\right)$ generate their direct sum, and if $0 \neq z \in Z$, then $y=\Sigma_{g \in F_{1}} z g$ is a non-trivial element of X_{n} centralized by F_{1} but not by H_{1}, as $F_{1}<H_{1}$. Hence C_{1} does not centralize y. By the choice of F_{1}, we must have char $k\left(X_{n}\right) \in v_{1}$; this holds for all large enough n. But by similar considerations, char $k\left(X_{n}\right) \in v_{2}$ for large enough n. Since $v_{1} \cap \nu_{2}=\varnothing$, we have obtained a contradiction and established Lemma 5.4.

A further reduction is needed before we can finally establish Theorem A.
Lemma 5.5 Let G be a metabelian \mathfrak{M}_{c}-head containing a normal locally cyclic subgroup A such that G / A is abelian, and let σ be a finite set of primes. Then there is a normal subgroup H of G containing A, such that $|G: H|<\infty$ and, for each prime $q,\left|H / C_{H}\left(A_{q}\right)\right|$ is divisible by at most one prime from σ.

Proof. Suppose if possible that the result is false. Let $C=C_{G}\left(A_{\sigma}\right)$ and suppose that we have obtained n primes $q_{1}, q_{2}, \cdots, q_{n}$ not belonging to σ and such that, if $C_{i}=C_{G}\left(A_{\sigma} \times A_{q_{1}} \times \cdots \times A_{q_{i}}\right)$, then $\left|C_{i} / C_{i+1}\right|$ is divisible by at least two primes in σ for $0 \leqq i \leqq n-1$. Then $\left|G: C_{n}\right|<\infty$ since each Sylow subgroup of A is cyclic or quasi-cyclic, and so by assumption there exists a prime q_{n+1} such that $\left|C_{n} / C_{C_{n}}\left(A_{q_{n+1}}\right)\right|$ is divisible by at least two primes in σ. Clearly $q_{n+1} \notin\left\{q_{1}, \cdots, q_{n}\right\} \cup \sigma$ and the construction proceeds, yielding eventually an infinite sequence q_{1}, q_{2}, \cdots.

Since σ is finite, there must be a pair (p, q) of primes in σ such that $p q \| C_{i-1} / C_{i} \mid$ for infinitely many values of i. Suppose that these values of i form a subsequence $i(1)<i(2)<\cdots$ and let $C_{j}{ }^{*}=C_{G}\left(A_{\sigma} \times A_{q_{i(1)}} \times \cdots \times A_{q_{i}(j)}\right)$. Then $p q$ divides the order of $C_{j}^{*} \cap C_{i(j+1)-1} / C_{j+1}^{*} \cap C_{i(j+1)-1}=C_{i(j+1)-1} / C_{i(j+1)}$. Hence $p q$ divides the order of $\left(C_{j}^{*} \cap C_{i(j+1)-1}\right) C_{j+1}^{*} / C_{j+1}^{*}$, a subgroup of C_{j}^{*} / C_{j+1}^{*}. In other words, we may suppose that

$$
\begin{equation*}
p q\left|\left|C_{i} / C_{i+1}\right| \text { for all } i=1,2, \cdots\right. \tag{10}
\end{equation*}
$$

Let $B=\Pi_{i+1}^{\infty} \Omega_{1}\left(A_{q_{i}}\right)$. We apply Lemma 5.3 to B to obtain a set π of primes and a subgroup K of B as there described. By passing to a suitable subsequence again as above, we may assume that $\pi=\left\{q_{1}, q_{2}, \cdots\right\}$. Then as $B_{q_{i}}$ is cyclic of order q_{i} and $K \cap B_{q_{i}}=1$, we in fact have $K=1$. For each $n \geqq 1$, we have a module X_{n}, belonging to a faithful irreducible \mathfrak{M}_{c}-family X for G

$$
\begin{equation*}
C_{G}\left(X_{n}\right) \cap\left(B_{1} \times \cdots \times B_{n}\right)=1 \tag{11}
\end{equation*}
$$

Let p_{n} be the characteristic of $k\left(X_{n}\right)$ and suppose there is an infinite subsequence $n(1)<n(2)<\cdots$ such that $p_{n(i)} \neq p$ for all $i=1,2, \cdots$. Let $L=\cap_{i=1}^{\infty} C_{G}\left(X_{n(i)}\right)$ and consider the group $\bar{G}=G / L$, letting $x \rightarrow \bar{x}$ be the natural homomorphism of G onto this group. By Lemma 2.1, \bar{G} has a faithful irreducible \mathfrak{M}_{c}-family $\left\{X_{n(1)}, X_{n(2)}, \cdots\right\}$ of characteristic not containing p. For each $i=1,2, \cdots,(10)$ allows us to choose a p-element x_{i} which centralizes $A_{q_{n}(1)} \times \cdots \times A_{q_{n(i-1)}}$ but not $A_{q_{n(i)}}$. In fact, using Lemma 3.3, we can also arrange that $\left\langle x_{1}, x_{2}, \cdots\right\rangle$ is a p-group, P say. Since $q_{n(i)} \neq p$ and $A_{q_{n}(i)}$ is locally cyclic, we have $\left[B_{q_{n}(i)}, x_{i}\right] \neq 1$ and so, from (11) $\left[B_{q_{n}(i)}, x_{i}\right] \neq L$. Thus \bar{x}_{i} belongs to $C_{P}\left(\bar{B}_{q_{n}(1)} \times \cdots \times \bar{B}_{q_{n}(1-1)}\right)$ but not to $C_{P}\left(\bar{B}_{q_{n}(1)} \times \cdots \times \bar{B}_{q_{n}(i)}\right)$, and we find that \bar{P} does not satisfy Min. However as \bar{P} has a faithful \mathfrak{M}_{c}-family of characteristc not containing p, this contradicts Lemma 3.4. It follows that we must have $p_{n}=p$ for all but finitely many n.

But similarly we must have $p_{n}=q$ for all but finitely many n, and since these two statements are incompatible, we have obtained a contradiction and proved Lemma 5.5.

Now we are ready to establish Lemma 4.7 and thus conclude the proof of our main theorem, Theorem A.

Proof of Lemma 4.7. We have a metabelian reduced \mathfrak{M}_{c}-head G, which we must show is almost a subdirect product of finitely many p^{\prime}-pinched groups. By Lemma 5.4, there is a normal abelian subgroup A of G and a finite set σ of primes such that G / A is abelian and every element of G whose order is a prime not lying in σ, belongs to A. It will be convenient to assume $2 \in \sigma$ and $|\sigma| \geqq 2$; this we may clearly do. We may suppose further that A is chosen maximal subject to satisfying the conditions required of it; then A is actually a maximal abelian subgroup of G and so

$$
\begin{equation*}
A=C_{G}(A) \tag{12}
\end{equation*}
$$

Since G is reduced, A is locally cyclic. By Lemma 5.5 there is a normal subgroup H of G containing A such that $|G: H|<\infty$ and, for each prime $q,\left|H / C_{H}\left(A_{q}\right)\right|$ is divisible by at most one prime from σ. Since A is locally cyclic and σ is finite
we have that $\left|G: C_{G}\left(A_{\sigma}\right)\right|<\infty$, and so, by replacing H by $C_{H}\left(A_{\sigma}\right)$ if necessary, we may suppose that

$$
\begin{equation*}
\left[H, A_{\sigma}\right]=1 \tag{13}
\end{equation*}
$$

It will suffice to show that H is a subdirect product of a finite number of p^{\prime}-pinched groups. Let $\sigma=\left\{p_{1}, \cdots, p_{n}\right\}$. For $1 \leqq i \leqq n$, let $\sigma_{i}=\sigma-\left\{p_{i}\right\}$ and let π_{i} be the set of all primes q such that $\left|H / C_{H}\left(A_{q}\right)\right|$ is divisible by some prime in σ_{i}.

Then

$$
\begin{equation*}
\pi_{i} \cap \sigma=\varnothing \quad(1 \leqq i \leqq n) \tag{14}
\end{equation*}
$$

by (13).
Let x be any σ_{i}-element of H. Then by the choice of π_{i}, we have $\left[x, A_{q}\right]=1$ unless $q \in \pi_{i}$. Therefore $[x, A] \leqq A_{\pi_{i}}$, and we have $A_{\pi_{i}}\langle x\rangle \triangleleft A\langle x\rangle \triangleleft H$. It follows that the normal closure of $\left\langle x A_{\boldsymbol{n}_{\mathrm{i}}}\right\rangle$ in $H / A_{\pi_{i}}$ is a σ_{i}-subgroup, and hence that the set of σ_{i}-elements of $H / A_{\pi_{i}}$ is a subgroup $U_{i} / A_{\pi_{i}}$ of $H / A_{\pi_{i}}$. We shall show that

$$
\begin{equation*}
\bigcap_{i=1}^{n} U_{i}=1 \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
H / U_{i} \text { is } p_{i}^{\prime}-\text { pinched } \tag{16}
\end{equation*}
$$

thereby completing the proof.
Now by its construction, U_{i} is a $\pi_{i} \cup \sigma_{i}$-group. It follows from (14) that $\pi\left(\bigcap_{i=1}^{n} U_{i}\right) \leqq \bigcap_{i=1}^{n} \pi_{i}$. Now if q is a prime in this intersection, then $\left|H / C_{H}\left(A_{q}\right)\right|$ is divisible by some prime in σ_{n}, that is, by some p_{i} with $1 \leqq i \leqq n-1$. But as $q \in \pi_{i},\left|H / C_{H}\left(A_{q}\right)\right|$ is divisible by some p_{j} with $j \neq i$. Thus $p_{i} p_{j}| | H / C_{H}\left(A_{q}\right) \mid$, which contradicts the choice of H. Hence $\bigcap_{i=1}^{n} \pi_{i}=\phi$ and (15) is established.

To obtain (16) takes a little more work. First let $q \in \pi_{i}$. Then there is a $\sigma_{i}-$ element $x \in H$ such that $\left[A_{q}, x\right] \neq 1$. Since A_{q} is cyclic or quasi-cyclic and $q \notin \sigma_{i}$ (by (13)), we have $\left[A_{q}, x\right]=A_{q}$. Hence $A_{q} \leqq H^{\prime}$. Now it also follows from (13) that $q \notin \sigma$, and so every element of order q of H lies in A. Therefore every elementary abelian q-subgroup of H is cyclic. Hence every abelian q-subgroup of H is cyclic and so, since the assumptions that $2 \in \sigma$ implies that q is odd, every finite q-subgroup of H is cyclic (Gorenstein (1968) Theorem 5.4.10). Since $1 \neq A_{q} \leqq H^{\prime}$, every q-element of H lies in a finite subgroup F of H such that $F^{\prime} \cap A_{q} \neq 1$. The remarks above show that the Sylow q-subgroups of F are cyclic, and so, by a wellknown transfer theorem, q does not divide $\left|F / F^{\prime}\right|$ and every q-element of F lies in F^{\prime}. Therefore every q-element of H lies in H^{\prime} and so in A. Since this holds for every $q \in \pi_{i}$, we have shown that $A_{\pi_{i}}$ is the set of π_{i}-elements of H, and so

$$
\begin{equation*}
H / U_{i} \text { is a }\left(\pi_{i} \cup \sigma_{i}\right)^{\prime} \text {-group } \tag{17}
\end{equation*}
$$

as $U_{i} / A_{\pi_{i}}$ was defined as the set of σ_{i}-elements of $H / A_{\pi_{i}}$.
Let $x \rightarrow \bar{x}$ be the natural homomorphism of H onto $\bar{H}=H / U_{i}$. Referring to the definition of p^{\prime}-pinched given before Lemma 4.6 , we see that we have that \bar{A} is a locally cyclic normal subgroup of \bar{H} such that \bar{H} / \bar{A} is abelian. Let q be any prime $\neq p_{i}$ such that \bar{H} contains an element of order q. Then from (17), $q \notin \pi_{i} \cup \sigma_{i}$. Since U_{i} is a $\pi_{i} \cup \sigma_{i}$-group, every element of order q of \bar{H} is the natural image of an element of order q of H. Since $q \notin \sigma_{i}$ and $q \neq p_{i}$, we have $q \notin \sigma$, and so every element of order q of H lies in A. Hence every element of order q of \bar{H} lies in \bar{A}.

Now let $P_{i} / U_{i}=O_{p_{i}}(\bar{H})$. Then \bar{P}_{i} centralizes $\bar{A}_{p_{i}^{\prime}}$, and so P_{i} centralizes $A_{p_{i}}, U_{i} / U_{i}$, which is H-isomorphic to $A_{p_{i}} / A_{p_{i}^{\prime}} \cap U_{i} \cong A_{p_{i}} / A_{\pi_{i} \cup \sigma_{i}} \cong A_{\left(\pi_{i} \cup \sigma\right)^{\prime}} \cdot$ Let $y U_{i} \in P_{i} / U_{i}$. Then we may choose y to be a p_{i}-element of H, and the preceding remarks show that y centralizes $A_{\left(\pi_{i}, V_{\sigma}\right)^{\prime}}$. But the definition of π_{i} shows that every p_{i}-element of H centralizes $A_{\pi_{i}}$ and hence, using (13), we find that y centralizes A. Therefore $y \in A$, by (12), and we have $O_{p_{i}}(\bar{H}) \leqq A$.

It remains to establish (iv) of the definition. To this end, we notice that as \bar{P}_{i} is contained in the locally cyclic subgroup \bar{A} and U_{i} is a p_{i}^{\prime}-group, \bar{P}_{i} contains a unique minimal subgroup $Z=\left\langle z U_{i}\right\rangle$, where z is an element of order p_{i} of A. Since G is an \mathfrak{M}_{c}-head, there exists an irreducible \mathfrak{M}_{c}-module X for G over some field k such that $\langle z\rangle \cap C_{G}(X)=1$. By Gardiner, Hartley and Tomkinson (1971) Lemma 3.2, and the fact that $z \in O_{p_{i}}(G)$, we have char $k \neq p_{i}$. Hence, if $K_{1}=C_{G}(X)$, Lemmas 2.1 and 3.4 give that G / K_{1} satisfies Min- p_{i}. Hence, if $K=H \cap K_{1}$, then H / K satisfies Min- p_{i} and \bar{H} / \bar{K} satisfies Min- p_{i}. If $\bar{z} \in \mathbb{K}$, then we obtain $z \in K U_{i}$, and hence, as $K \triangleleft K U_{i}$ and U_{i} is a p_{i}-group, we find that $z \in K$, which is not the case. Therefore $O_{p_{i}}(\bar{H}) \cap \bar{K}=1$, and we have shown that \bar{H} is p_{i}^{\prime}-pinched. Therefore Lemma 4.7 and Theorem A are established.

6. Consequences of the Main Theorem

Theorem A allows us to answer many questions about the structure of locally soluble \mathfrak{M}_{c}-heads, since the structure of p^{\prime}-pinched groups is reasonably transparent in many respects. For example, a p^{\prime}-pinched group clearly contains a self-centralizing locally cyclic normal subgroup. Since the automorphism group of such a group clearly has cardinal at most $2^{\text {No }}$, the cardinal of a p^{\prime}-pinched group is at most $2^{\text {No }}$. Hence we have using Theorem A,

Corollary A1. If G is a locally soluble \mathfrak{M}_{c}-head, then $|G| \leqq 2^{\text {No. }}$.
It is not hard to see that this bound can be attained - see for example the group QP constructed after Corollary C 1 in Hartley (1972). Rather than pursuing locally soluble \mathfrak{M}_{c}-heads in general, however, we revert to those which arise in the
context of our main applications, which are Theorems B and C. By Hartley (1971a) Lemmas 4.7-4.8 and Theorem E, such \mathfrak{M}_{c}-heads are of finite rank.

Lemma 6.1. (i) A pinched group is p^{\prime}-pinched for all primes p.
(ii) A p^{\prime}-pinched group of finite rank is almost pinched.

Proof. (i) We recall that a group G is pinched, if G contains a locally cyclic normal subgroup A which has abelian factor group and contains every element of prime order of G, and furthermore every 2 -subgroup of G is abelian. It follows from the definition and Gorenstein (1968) Theorem 5.4.10, that every subgroup of prime power order of G is cyclic. Thus G satisfies Min-p for all primes p. We may suppose A chosen maximal subject to satisfying the conditions required of it; then $A=C_{G}(A)$. But $O_{p}(G)$ centralizes A as $O_{p}(G)$ is abelian; thus $O_{p}(G) \leqq A$ and a glance at the definition reveals that G is p^{\prime}-pinched.
(ii) Let G be p^{\prime}-pinched, and let A be a locally cyclic normal subgroup of G as in the definition (p. 18). By an argument given in the sufficiency proof of Theorem A, we may assume that $A=C_{G}(A)$.

Now since G has finite rank, G satisfies Min- q for all primes q. If Q is any q-subgroup of G with maximal radicable subgroup Q^{0}, then Q^{0} centralizes A as A is locally cyclic, and so $Q^{0} \leqq A$. Therefore the Sylow q-subgroup of G / A is finite for each prime q. Let H / A be the Sylow $\{p, 2\}^{\prime}$-subgroup of G / A. Then $H \triangleleft G$ and $|G: H|<\infty$. Then A is locally cyclic, H / A is abelian, and as A contains every p-element of H and every element of prime order $q \neq p$ of G, A contains every element of prime order of H. Since A also contains every 2element of H, every 2 -subgroup of H is abelian.

Now it is immediate that every subgroup of a pinched group is pinched. A routine argument now allows us to deduce from Theorem A:

Theorem 6.2. Let G be a locally soluble group of finite rank. Then G is an \mathfrak{M}_{c}-head if and only if G is almost subpropinched,
recalling that a subpropinched group is just a subdirect product of finitely many pinched groups.

Proof. Let G be a locally soluble \mathfrak{M}_{c}-head of finite rank. Then by Theorem A, G contains a normal subgroup H of finite index and finitely many subgroups $K_{1}, \cdots, K_{n} \triangleleft H$ such that each H / K_{i} is p^{\prime}-pinched for suitable p and $\bigcap_{i=1}^{n} K_{i}=1$. By Lemma 6.1, H / K_{i} contains a pinched normal subgroup L_{i} / K_{i} of finite index. There is a normal subgroup L of finite index in G and contained in $\bigcap_{i=1}^{n} L_{i}$. Then $L / L \cap K_{i} \cong L K_{i} / K_{i} \triangleleft L_{i} / K_{i}$, and so $L / L \cap K_{i}$ is pinched. Hence L is subpropinched, as required.

Theorem B is now a rather immediate consequence of Theorem 6.2 and Lemma 6.3, which was stated in the introduction and remains to be proved.

Proof of Lemma 6.3. We consider first a Sylow π-sparse group $L=H K$, where H is a normal locally soluble π^{\prime}-subgroup of L and K is a π-group. If \boldsymbol{X} is
the set of composition factors of (K on H), then the remarks preceding the statement of Lemma 6.3 in Section 1 show that \boldsymbol{X} can be thought of as a family of irreducible K-modules over various fields Z_{p}. Let A be any subgroup of K. Then a straightforward extension of Hartley (1971a) Lemma 4.3, using the fact that L is Sylow π-sparse, shows that there is a finite subgroup F of A such that $C_{H}(F)$ $=C_{H}(A)$. Let $X \in X$ and identify X with a K-composition factor U / V of H. Arguing as in Lemma 2.3 and using the fact that the fixed points of a finite π-group T acting on a finite π^{\prime}-group U are preserved by T-homomorphism of $U($ Gorenrenstein (1968) Theorem 6.2.2) we find that $C_{U / V}(F)=C_{U}(F) V / V=C_{A}(F) V / V$ $\leqq C_{U / V}(A)$, and equality must hold. Thus X is in fact a classical \mathfrak{M}_{c}-family for K. Furthermore, $C_{K}(X)$ clearly staailizes a series of H, and hence, using say Gardiner, Hartley and Tomkinson (1971) Lemma 4.11, we obtain $C_{K}(X)=C_{K}(H)$.

Conversely, let X be a given $\mathfrak{M n}_{\boldsymbol{c}}$-family for a π-group K, and suppose $0 \neq p(X) \notin \pi$ for all $X \in X$. We form the direct sum H of the modules in X and the semidirect product $H K$. Clearly $C_{K}(X)=C_{K}(H)$ in this case. It is also clear, since X is classical, that each subgroup A of K contains a finite subgroup F such that $C_{H}(A)=C_{H}(F)$. Since every countable subgroup of $H K$ is contained in one of the form $H_{1} K_{1}$, where H_{1} and K_{1} are countable subgroups of H and K respectively and K_{1} normalizes H_{1}, Hartley (1971a) Lemma 4.3 shows that $H K$ is Sylow π-sparse.

Proof of Theorem B. To see the necessity of the given conditions we note that Lemma 6.3 shows that G is a classical locally soluble \mathfrak{M}_{c}-head. Therefore G has finite rank by Lemma 3.4, and so G is almost subpropinched by Theorem 6.2. Clearly there exists a prime $q \notin \pi$.

For the sufficiency, it is enough by Lemma 6.3 to show that a group G which is almost subpropinched admits a faithful irreducible \mathfrak{M}_{c}-family whose characteristic is any given prime $q \notin \pi(G)$. Theorem A shows that G admits some faithful irreducible \mathfrak{M}_{c}-family, and if we recall that a pinched group is p^{\prime}-pinched for every p, we see that the argument used to show that G has a faithful irreducible $\mathfrak{M}_{\boldsymbol{c}}$-family (end of Section 4) also shows that the characteristic can be chosen as desired.

To prove Theorem C we must first establish Lemma 6.4.
Proof of Lemma 6.4. If $L \in \mathfrak{U}$ and $R=\rho(L)$, then the set of chief factors of L below R forms in a natural way a family \boldsymbol{X} of irreducible L-modules over various fields Z_{p}. Let $A \leqq L$ and let $\pi=\pi(A)$. Then any $X \in X$ such that chark $(X) \notin \pi$ can be viewed as a chief factor of L below $R_{\pi^{\prime}}$. From the definition of the class \mathfrak{U}, the group $R_{\pi^{\prime}} A$ is Sylow π-sparse, and so, by the extension of Hartley (1971a) Lemma 4.3 already mentioned, there is a finite subgroup F of A such that $C_{R_{-}}(F)=C_{R_{r}},(A)$. Arguing as in the proof of Lemma 6.3 we find that $C_{X}(F)=C_{X}(A)$ for all $X \in X$ such that char $k(X \notin) \pi$, and so X is an irreducible \mathfrak{M}_{c}-family for L.

By Hartley (1971) Theorem 2.8, R is the intersection of the centralizers of the chief factors of L below R, and so, by Lemma $2.1, X$ can be viewed as a faithful irreducible \mathfrak{M}_{c}-family for $G=L / R$.

For the converse, let G, X and R be as given. Then any countable subgroup of $L=R G$ lies in one of the form $H K$, where H and K are countable subgroups of R and G respectively and K normalizes H. Let A be any π-subgroup of K. Then from the construction of R, there is a finite subgroup F of A such that $C_{R_{-}}(A)=C_{R_{\pi}}(F)$. Hence $C_{H_{-}}(A)=C_{H_{-}}(F)$. It follows by the argument of Hartley (1971a) Lemma 7.1 that $H K \in \mathfrak{U}$ and hence, by Hartley (1972) Lemma 2.1 and the obvious fact that L is finitely radical, that $L \in \mathfrak{U}$.

Let $T=\rho(L)$. Then $T \geqq R$ and so $T=R(T \cap G)$. Let $S=T \cap G$. Then S_{p} is a normal p-subgroup of G, and so, by Gardiner, Hartley and Tomkinson (1971) Lemma 3.2. S_{p} centralizes every irreducible G-module over a field of characteristic p. However S_{p} centralizes R_{p}, as $\left\langle S_{p}, R_{p^{\prime}}\right\rangle$ is locally nilpotent, an so S_{p} centralizes $X_{p^{\prime}}$. Hence $S_{p} \leqq C_{G}(X)=1$, and so $\rho(L)=R$ as claimed.

Proof of Theorem C. Suppose that $G \cong L / \rho(L)$, where $L \in \mathfrak{U}$. Then $G \in \mathfrak{U}$ as \mathfrak{U} is image-closed. By Lemma $6.4 G$ is a locally soluble \mathfrak{M}_{c}-head, and by Hartley (1971a) Theorem E, G has finite rank. Hence by Theorem 6.2, G is almost subpropinched.

Conversely, let G be an almost subpropinched \mathfrak{U}-group. By Lemma 6.4, it suffices to show that G admits a faithful irreducible $\mathfrak{M}_{\boldsymbol{c}}$-family of characteristic not containing zero. This follows by the argument used to construct \mathfrak{M}_{c}-familes in the proof of Theorem A (end of Section 4).

It seems appropriate, in view of Theorems B and C, to conclude with a few remarks about the structure of pinched and almost subpropinched groups. We have seen that if G is pinched, then every subgroup of prime power order of G is cyclic. Thus G^{\prime} and G / G^{\prime} are locally cyclic, and G is countable. It is well known that if F is any finite group with cyclic Sylow subgroups, then $\left|F^{\prime}\right|$ and $\left|F / F^{\prime}\right|$ are relatively prime. It follows easily from this that $\pi\left(G^{\prime}\right) \cap \pi\left(G / G^{\prime}\right)=\varnothing$ and hence, since G is countable, that G splits over G^{\prime} (e.g. Hartley (1971a) Lemma 2.1). We have established part of

Lemma 6.5. Let G be a group. Then G is pinched if and only if G can be written as a semidirect product $G=B C, B \triangleleft G, B \cap C=1$ of locally cyclic subgroups B and C such that $\pi(B) \cap \pi(C)=\varnothing$ and $C_{C}(B)$ contains every element of prime order of C.

Furthermore, $G \in \mathfrak{U}$ if and only if each subgroup D of C contains a finite subgroup F such that $C_{B}(D)=C_{B}(F)$.

Proof. If G is pinched, then taking $B=G^{\prime}$, we obtain a subgroup C such that $G=B C$ and $\pi(B) \cap \pi(C)=\varnothing$, as described above. Clearly C and B are locally cyclic. Now the fact that every subgroup of prime power order of G is
abelian implies that any two abelian normal subgroups of G commute elementwise, and so if A is a maximal abelian normal subgroup of G containing all the elements of prime order of G, then $A \geqq B$. Hence $A=B(A \cap C), A \cap C \leqq C_{C}(B)$, and so $C_{\mathbf{C}}(B)$ contains every element of prime order of C.

Conversely if $G=B C$ as given, we take $A=B C_{C}(B)$. Then A is locally cyclic as $\pi(B) \cap \pi(C)=\varnothing$. Clearly G / A is abelian and every element of prime order of G lies in A. Since 2 can belong to at most one of $\pi(B)$ and $\pi(C)$, every 2-subgroup of G is abelian.

Finally, the condition for G to belong to \mathfrak{U} follows from Lemmas 4.3 and 7.1 of Hartley (1971a).

Lemma 6.6. Let G be almost subpropinched. Then
(i) G is countable.
(ii) G is almost metabelian.
(iii) G is almost parasoluble.
(iv) G has finite rank.
(v) For almost all primes q, every q-subgroup of G is abelian.
(vi) There is a finite set σ of primes such that the elements of G whose orders are primes not lying in σ generate an abelian subgroup.

Proof. It is a straightforward exercise to verify that pinched groups possess all these properties and that they are preserved by taking subgroups, finite extensions and direct products with finitely many factors. The concept of parasolubility was introduced by Wehrfritz (1971); a group G is called parasoluble if G has a finite series $1=G_{0} \leqq G_{1} \leqq \cdots \leqq G_{n}=G$ of normal subgroups with abelian factors and such that every subgroup of G_{i} / G_{i-1} is normal in G / G_{i-1} $(1 \leqq i \leqq n)$. In showing that pinched groups are parasoluble, notice that every subgroup of a locally cyclic group is characteristic.

References

S. N. Cernikov (1951), 'On locally soluble groups which satisfy the minimal condition', Mat Sbornik 28, 119-129 (Russian)
A. D. Gardiner, B. Hartley, and M. J. Tomkinson (1971), 'Saturated formations and Sylov structure in locally finite groups', J. Algebra 17, 177-211.
Ju. M. Gorčakov (1964), 'The existence of abelian subgroups of infinite rank in locally solubl groups', Dokl. Akad. Nauk. SSSR, 156, 17-20 (Russian) (Soviet Math. Dokl 5 591-94.)
D. Gorenstein (1968), Finite groups (Harper and Row, New York, 1968.)
B. Hartley (1971a), 'Sylow subgroups of locally finite groups', Proc. London. Math. Soc. (3) 23, 159-92.
B. Hartley (1973), 'A class of modules over a locally finite group I', J. Austral. Math. Soc 16, 431-442.
B. Hartley (1972), 'Sylow theory in locally finite groups'. Compositio Math. 25, 263-280.
B. Hartley (1971), 'ff-abnormal subgroups of certain locally finite groups', Proc. London Math Soc. (3) 23, 128-58.
B. Huppert (1967), Endliche Gruppen (Springer-Verlag, Berlin, 1967).
M. I. Kargapolov (1959), 'Some problems in the theory of nilpotent and soluble groups', Dokl. Akad. Nauk SSSR, 127, 1164-1166 (Russian).
D. J. S. Robinson (1964), Infinite soluble andnilpotent groups. (Queen Mary College Mathematics Notes, Queen Mary College, London 1968).
J. E. Roseblade (1965), 'Groups with every subgroup subnormal', J. Algebra 2, 402-411.
V. P. Sunkov (1970), 'On locally finite groups with the minimal condition for abelian subgroups', Algebra i Logika 9, 579-615 (Russian).
B. A. F. Wehrfritz (1968), 'Soluble periodic linear groups', Proc. London Math. Soc. (3) 18, 141-157.
B. A. F. Wehrfritz (1971), 'Supersoluble and locally supersoluble linear groups', J. Algebra 17, 41-58.
B. A. F. Wehrfritz, (1971a), 'On locally finite groups with Min-p', J. London Math. Soc. (2) 3, 121-128.

Mathematics Institute
University of Warwick
Coventry CV4 7AL
England

