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INTRODUCTION

The number of works on celestial mechanics has been growing rapidly in these three years
owing to the development of powerful computers and the modern progress in mathematics,
being stimulated by the launching of space vehicles.

The revision of Brown’s lunar theory by Eckert and his colleagues is unprecedentedly
important because of the increase of the accuracy of observations in recent years, notably
in radio technique, not only for the theory itself but also for unveiling the past history of the
Moon.

The planetary theory on the motion of major planets is being continued at the Naval
Observatory by Duncombe and his colleagues by its tradition. It is noted that Musen’s
modification of Hansen’s method of general perturbation allows to compute the perturbation
by iteration to any desired high orders. Several papers were published on the motion of the
satellites of Mars. Maxwell’s theory of Saturn’s rings has been reviewed. The discovery of
Mercury’s rotation period by means of radio-echo observations invoked a new dynamical
problem of resonance. It is a matter of joy that the theory of Jupiter’s Galilean satellites is
being attacked for completing the unfinished work of de Sitter.

Since the radio-echo observations of artificial Earth satellites are now available, the
determination of the geopotential with higher tesseral harmonics has become possible by
means of satellite observations, both photographic and radio-echo. Izsak, Kozai, King-Hele
and Cook, Kaula, and Guier and Newton determined the tesseral harmonic coefficients by
discussing satellite observations, as well as the corrections to the station coordinates. The
theory of motion of satellites under the influence of such complicated geopotential is very
interesting. At the same time the clarification of the nature of orbits with high eccentricities
and inclinations is requested. The study of motion in interplanetary probes is now opening
a new era in the history of celestial mechanics. New problems of optimization have been
raised for a space vehicle with the minimum time of transit and with the minimum fuel or
thrust for transfer or rendez-vous between two types of space trajectories.
~ By the use of electronic computers the complete survey of periodic and non-periodic orbits.
In the restricted three-body problem is in its culmination, not only for clearing up Brown’s
conjecture on the horse-shoe orbits by Rabe, Déprit and Goodrich, and for testing the
hypothesis of capture or escape of an asteroid from Jupiter, but also for the whole ddmains
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of the plane of motion by Bartlett and Hénon. Hénon applied Birkhoff’s idea of surface
transformations for studying the whole evolution of periodic, asymptotic and ergodic orbits
and greatly enlarged the scope of study by Strémgren on the restricted three-body problem,

Marvellously enough algebraic calculations, addition, multiplication, differentiation, and
integration, in a completely literal fashion can now be programmed and the manipulation of

multiple Fourier series was made possible. The operations of Delaunay can be carried out
on computers.

Also modern electronic computers facilitate the numerical solution of the n-body problem
even for n sufficiently large and a new tendency is opened of studying the global characteristics
of stellar assemblies by tracing.each individual trajectories and of comparing with the theory
of statistical stellar dynamics. The nature of the third integral of motion, originally found in

some specialized potential fields for galactic study, is now being cleared up by numerical
works.

The regularizing transformations of 'Thi'ele, Levi-Civita, ' Sundman and Birkhoff are

generalized by Lemaitre, Arenstorf and are applied for computing close encounters of space
vehicles.

The recent progress in the theories of non-linear differential equations, non-linear integral
equations, almost-periodic functions in analysis, as well as in the theories of invariant points
for surface transformations, measurability, ergodicity in topology is enabling us to attack
some simplified models of the three-body problem. Krylov-Bogoliubov’s averaging method
in non-linear analysis and Diliberto’s periodic surface theory are now being applied to the
motion of celestial bodies. Wintner’s and Lichtenstein-Holder’s theories are based on non-
linear integral equations. Siegel-Moser’s theory on the behaviour of motion around equilibrium
points are founded on Birkhoff’s surface transformations and Poincaré’s invariant point
theorem. Merman’s revision of Chazy’s work, Kolmogorov-Arnold’s theorems on Hamiltonian-
systems and the generalization of Liapounov’s idea on stability are worth mentioning.

Publications in book-form appeared during this tri-annual period

J. Kovalevsky, Introduction a la Mécanique Céleste, éd. Armand Colin, Paris, 1963.

D. G. King-Hele, Theory of Satellite Orbits in an Atmosphere, Butterworths, London, 1964.
R. Deutsch, Orbital Dynamics of Space Vehicles, Prentice-Hall, Engelwood Cliffs, N.]J., 1963.
K. Stumpff, Himmelsmechanik 11, Deutscher Verlag d. Wiss., Berlin, 1964.

P. R. Escobal, Methods of Orbit Determination, John Wiley, New York, 1965.

I. 1. Muller, Introduction to Satellite Geodesy, F. Ungar, 1964.

G. V. Groves, ed., Dynamics of Rockets and Satellites, North-Holland Pub. Co., Amsterdam,

1965. _ _

W. M. Kaula, Theory of Satellite Geodesy, Blaisdell, 1966.

V. G. Szebehely, Theory of Orbils in the Restricted Problem of Three Bodies, Acad. Press,
New York, 1967.

V. G. Szebehely, ed., Celestial Mechanics and Astrodynamics, AIAA Astrodynamics Specialist
Conference held at Yale University in 1963, Acad. Press, New York, 1964.

R. L. Duncombe and V. G. Szebehely, ed., Methods in Astrodynamics and Celestial Mechanics,

ATAA Astrodynamics Specialist Conference held at Montery, Calif. in 1965, Acad.
Press, New York, 1966.

E. Stiefel, ed., Matkmsatuc}w Methoden der Hmmelmechamk und Astronautik, Bericht einer
Tagung des Math. Forschungsinstitut Oberwolfach, 1964, Bibliographisches Inst. AG,
Mannheim, 1966. '

J. Kovalevsky, ed.,, IUTAM-IAU-COSPAR Symposium on the Trajectories of Artificial
Celestial Bodies as determined by Observations, held in Paris, 1965, Springer, Berlin, 1966.
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Z. Kopal, ed., Proc. International Conference on Selenodesy, Reidel, Utrecht, 1966.

W. N. Hess, ed Introduction to Space Science, Gordon and Breach, New York, 1965.

G. Veis, ed. Proc IAG Symposium on the Use of Artificial Satellites for Geodesy, Athens, 1966.

M. Roy, ed., Proc. IUTAM Symposium on Dynamics of Satellites at Paris, Springer, Berlin, 1963.

G. Contopoulos, ed., The Theory of Orbits in the Solar System and in Stellar Systems, Proc.
IAU Symposium No. 25, Thessaloniki, 1964, Acad. Press, 1966.

Y. Hagihara, Celestial Mechanics, 1. Transformation Theory, MIT Press, 1967; II. Pertur-
bation Theory; III. Form of Integrals and Convergency; IV. Periodic Solutions;
V. Topological Study.

Lectures in Applied Mathematics, V, VI, VII, Space Mathematics, 1, II, III, Amer. Math.
Soc., 1966 Rhode Is.

The following monographs have been published in Soviet Union, as reported by Chebotarev:

M. B. Bank, Elements of Dynamics of a Space Flight, Moscow, 1965.

V. V. Beletski, Motion of an Artificial Satellite with respect to tke Centre of Mass, Moscow, 1965.

E. A. Grebenikov and V. G. Demin, Interplanetary Flights, Moscow, 1965.

G. N. Duboshin, Celestial Mechanics, Analytical and Qualitative Methods, Moscow, 1964.

V. A. Egorov, Non-Plane Problem of reaching the Moon, Moscow, 1965.

G. A. Chebotarev, Analytical and Numerical Methods of Celestial Mechanics, Moscow-
Leningrad, 1965.

P. E. Eliasberg, Introduction to the Theory of the Flight of Artificial Earth Satellites, Moscow,
1965.

The National Commission on Celestial Mechanics, U.S.S.R., organized a conference
on the theory of the motion of artificial Earth satellites in Riga on May 19-23, 1964. About
20 papers were read. The Commission sponsored a conference on the general problems in
celestial mechanics held in Kiev on January 25-2%7, and 16 papers were read and discussed.
A Plenum of the Commission on Celestial Mechanics was held in Thilisi in October, 1965.
The program included the scientific topics and the organizational part. The following were
elected at the Plenum as new staffs of the Bureau of the Commission on Celestial Mechanics:
G. W. Duboshin (chairman), V. A. Brumberg (wce—chalrman), E. P. Aksenov (scientific
secretary), D. E. Okhozunsln G. A. Chebotarey, I. D. Zhongolovich, E. A. Grebenikov.

TWO-BODY PROBLEM

New methods of orbit determination have been proposed by Sconzo (x) and Kranjc (2).
Sconzo referred to the expressions for p and ¢ of Charlier and applied Lambert’s theorem
to elliptic motions. Fredrich (3) published a new approximation process for solving Kepler’s
equation. Dommanget (4) studied the evolution of a binary system by considering the two-body
problem of variable mass. Hadjidemetriou (5) obtained analytic solutions of the two-body
problem with variable mass and Huang (30) those with mass ejection, and bot.h applied the
idea to binary systems.

Goodyear (6) obtained the solution in a completely general closed form for coordinates
and their derivatives of the two-body problem, The solutions are valid for circular, elliptic,
parabolic, hyperbolic and rectilinear orbits of the attracting force, and for the hyperbolic
and rectilinear orbits of the repulsive force. A digital computer programme capable of
generating and manipulating symbolic mathematical expressions has been used by Sconzo
and his colleagues (7) to derive explicit expressions for the coefficients of the f- and g- series
of Keplerian motions.. Terms up to the twenty-seventh order have been obtained as poly-
nomials in the local invariants of Stumpff (8). Recurrent formulae for computing the coefficients
of f- and g- series were given by Bond (26). Herrick {9) reviewed and generalized the universal
variables to be used with elliptic, hyperbolic and parabolic orbits, including circuldr and
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rectilinear orbits, and showed their relationship to Stumpff’s formulae. Herget (10) has devised
a programme for an IBM 1620 electronic computer for computing preliminary orbits by the
variation of geocentric distances on the basis of as many observations as may be available.
Stumpff (x1) obtained unified expressions for elliptic, hyperbolic and parabolic motions by
taking a new variable in place of the time and by developing the rectangular coordinates in
Taylor series.

Jarnagin (12) published tables of the expansion of functions for the elliptic motion by
revising the tables by Cayley.

Barlier (13) published a method for determining the osculating elements of an artificial
satellite by using short geocentric arcs of the orbit of about ten degrees with the assumed
value of the semi-major axis. The same problem by using the whole revolution is solved for
determining the semi-major axis. He showed that a refined analysis of observations, passage
by passage, permits the determination of zonal harmonics with a small number of observations
and the detection of short-period perturbations. Muller, Barlier, Chassaing (14) studied
theoretically the positions of the instantaneous pole and the values of the velocity on an arc
along the apparent orbit of an artificial satellite at transit. Mrs Morael-Courtois (15) has
given an automatic process and the computing programme for reconstructing a trajectory
from visual, photographic and radio observations, and applied to the first French satellite D-1.
She studied the use of interferometric observations and gave an useful procedure for treating
numerically the atmospheric drag, while Barlier (16) gave a synthetic discussion on satellite
orbits by means of a small number of observations. On the other hand, Zhongolovich (17)
published a method for determining the position of an artificial satellite from simultaneous
observations of its topocentric directions from known stations on the Earth’s surface. Sejnalov
(x8) gave a schema for circular orbit computation of an artificial satellite by means of an
electronic computer and Mamedov (x9) that for a nearly parabolic orbit from three observations
of a comet. o

Popovi¢ published papers on orbit determination method in a Yugoslavian journal.

Sconzo is working on the Fourier series expansion in terms of the mean anomaly of a product
of the form ™7 by his symbols, in order to use in a guidance problem for low thrust powered
trajectories.

The Smithsonian Astrophysical Observatory, the Royal Aircraft Establishment, the
Leningrad Institute of Theoretical Astronomy and the Centre National d’Etude Spatiale
have determined the orbits of a number of artificial satellites by means of a new and improved
programme (20) and carried out the orbit corrections. Kranjc (21) proposed three new methods
for orbit determination. Hertz (22) used short arcs in orbit determination.

Sochilina and Makarova (23) discussed the problem of accuracy of the determination of
the elements of an artificial Earth satellite from optical observations. Miss Sochilina (24)
obtained analytical formulae for errors of the determined elements, which depend on the
distribution of observations along an arc of the orbit. On the basis of these formulae a criterion
for the exclusion of some elements from the improvement was derived for an ill-conditioned
normal system. She also considered the problem of choosing a time interval in which the
systematic errors due to the imperfection of the theory are small.

Batrakov (25) derived a unique system of formulae for the improvement of an orbit by
using optical observations as well as range and range velocity data, which are suitable both in
the case of small and large eccentricities. Herrick (27) substituted, in place of the difference
of two single integrals for a double integral in the equations for the variation of parameters,
other combinations of integrals which are more effective with the parameters associated with
the universal variables. Bohme (28) published tables for computing the initial values in the
special perturbation computation by Kulikov’s method (29) which is based on Cowell’s.
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PERTURBATION THEORY

Bohan (x) applied Wilkens’ numerical-analytic method (2) of expanding the disturbing

ft.mcl:ion. Martynenko (3) published tables for Newcomb’s operators in the expansion of the
dmt:urb‘ing function in powers of eccentricities in the elliptic problem of three bodies. Liakh (4)
derived the general expressions for Newcomb’s operators.

Goodyear (5) has applied the method of variation of parameters for oomputing. the pertur-

batiqns. The initial coordinates of an osculating two-body trajectory were taken as parameters.
Perlin (6) published tables for computing the perturbation of elements with egcentric anomaly
as the independent variable. -
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Danby (7) used his matrix method to derive formulae for the calculation of planetary theory
in rectangular coordinates. Now he (8) developed a theory in a set of polar coordinates which,
he says, is simpler and more convenient in practice, after practical evaluation of the constants.

Musen (9) expanded the perturbation of position vectors of planets in purely periodic
series in powers of planetary masses. The effect of lower order perturbations to higher order
perturbations is expressed as the corresponding terms in the multiple potential in Maxwell’s
expansion. He reduced the differential equations in the form which can be integrated by
mere quadratures. Further Musen (10) has taken Cartan’s integral invariants as foundation
of the theory of variation of elements and obtained the differential equations for the general
perturbation as the first system of Pfaffian equations associated with the linear differential
form appearing in the integral invariant. The equations for general perturbations of the
Gibbsian unit vector, of the Gibbsian rotation vector and of Euler’s parameters are defined.
The utilization of the Gibbsian position vectors represents an extension of B. Strémgren’s
and Musen’s ideas on special perturbations to the problems of general perturbations. Euler’s
parameters find their appllcatlon in Hansen’s lunar theory. Bailie and Fisher (xx) obtained
an analytical representation of Musen’s theory of artificial satellites in terms of the orbital
true longitude, including terms with small divisors derived from the third and fourth harmonics
of the geopotenﬂal Musen (12) included the long-period terms caused by near-commensurability
of mean motions in his theory of the long-range effect based on Halphen’s method, at first
by removing all short-penod terms by numerical process, because no convenient expansion
of the disturbing function is available for large values of eccentricity and inclination and the
ratio of semi-major axes.

The theory of general perturbations in rectangular coordinates is the most direct of all
methods of expansion of the perturbations into series, because it is intimately associated with
the computation of ephemerides and has not the singularity of the zero eccentricity. Brouwer’s
theory of general perturbations in rectangular coordinates makes use of the variation of
elements in the canonical form. But this is not of any advantage if the perturbations are expanded
in trigonometric series with purely numerical coefficients. Davis (13) rewrote Brouwer’s
formulae (14) in terms of the standard elliptic elements but the formulae contain two terms
of degree —1 in the eccentricity. Musen (x5) suggests to use Eckert-Brouwer’s formulae (16)
for the orbit correction as a foundation of the planetary theory. Musen and Carpenter (17)
referred to a vectorial expression for perturbation, which is free from those disadvantages
and is convenient for numerical computation, and suggested to use the method of iteration to
compute the effects of higher orders. Such effects are important not only in the planetary
case but also in the case of artificial celestial bodies moving in orbits in cis-lunar space far
away from the Earth,

Musen (18) developed a numerical lunar theory which can be used to obtain the rectangular
coordinates of a satellite moving in a highly inclined orbital plane. The arguments of the
theory are of the Laplacian: type, that is, the linear functions of the true orbital longitudes
of the satellite and of the Sun. He made use of Hansen’s device to perform the integration
and introduced a fictitious satellite whose true orbital longitude is considered as a constant
until the integration is completed. The perturbations in the orbital plane are obtained by
means of a W-function analogous to the one of the classical Hansen theory. Musen has shown
that the combination of the ideas of Laplace, Hansen and Hill represents a convenient way to
obtain a numerical lunar theory, at the same time as this work represents a further development
and a simplification of the results given by Musen in his previous article (x9). Musen’s
modification (z0) of Hansen’s solution of the lunar problem has been programmed and verified
by duplicating some of Hansen’s series. Charnow (2x) developed methods for manipulating
trigonometric series with numerical coefficients and literal arguments. The programme described
will be used to calculate perturbations and ephemerides of both natural and artificial satellites.
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Hori (22) applied a théorem by Lie in canonical transformations to the transformation
theory of perturbed dynamical systems and worked out a theory of general perturbations
with unspecified canonical variables. All formulae are in the form of canonical invariance,
the osculating variables are given explicitly in terms of the mean variables and the theory
is applicable to the case in which the unperturbed portion of the Hamiltonian depends on
angular variables as well as the momentum variables.

Grebenikov (23) discussed the averaging method in celestial mechanics originally devised
by Krylov-Bogoliubov, in particular by considering the case of near-commensurability of
‘mean motions. He has given a mathematical proof for the justification of Delaunay-Hill’s
‘method of averaging. They proved the stability of the Lagrangian triangular solution in the
elliptic restricted three-body problem for small eccentricities of the disturbing body for an
infinite time interval, provided that the triangles formed by the undisturbed three bodies
and by the disturbed three bodies differ by an infinitesimal amount and that the masses are
subject to certain restrictions. Musen (24) extended the method of Krylov-Bogoliubov to
higher orders and compared with Poincaré’s method. The determination of the elements
affected by the long-period and secular perturbations, as well as the elimination of the short-
period effects, is reduced to the solution of a set of partial differential equations step by step.

Morrison (25) applied the generalized method of averaging to a perturbed vector system
of differential equations by assuming no resonance. Von Zeipel’s procedure is a particular
case of the generalized method of averaging corresponding to an appropriate choice of the
arbitrary functions arising in the averaged equations.

Gormally (26) comments van der Corput’s theory of asymptotic series as a consistent basis
for the perturbation method.

Ritz’s variational method has been applied by Galerkm (23) for solving non-linear periodic
systems of differential equations. Cesari (28) and Urabe (29) worked out the method for
obtaining the solution in trigonometric polynominals with the estimation of errors.

Brumberg (30) discussed the theory of planetary motion represented in purely trigonometric
form. Two methods by using the rectangular coordinates are suggested for the practical
elaboration of such theory with the aid of digital computers. The first method is based on the
use of an intermediary' orbit according to Hill’s method in his lunar theory. The second
method consists in determining the formal trigonometric series for the coordinates and
substituting in the differential equations of the planetary motion, thus it is reduced to solving
an infinite non-linear algebrmc system. The disturbing function is expa.nded by Tisserand-
Lebeuf polynomials, which are simpler and more suitable for close lunar satellites tharr by
an ordinary method (31).

Kovalevsky (32) has worked on the problem of the motion of a satellite with large inclination
and eccentricity. He showed (33) how one can eliminate the terms of -the first and second
orders in the ratio of the mean motions in a closed form in inclination and eccentricity by
von, Zeipel's method. He also discussed the character of the motion of the pericentre whether
there is revolution or libration as a function of the eccentricity and inclination. The theory
is now being applied to Nereid.

Meffroy (34, 35) eliminated short-period terms of a planetary theory of the first order by
means of von Zeipel's method. Newcomb’s operators are used in the expansion of the disturbing
function with the Delaunay variables. He carried out the computation by keeping the third
degree terms in eccentricity and inclination in the disturbing function.

Ferraz Mello (36, 37) analysed von Zeipel’s method and showed that it is equnvalent to
the method of Lindstedt-Poincaré in which only the reduction of the degree of freedom is
intended. The Hamiltonian systems are classified according to the possibility of total reduction
or a partial reduction. In the first case of lunar type the disturbing function does not contain
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long-period terms of the first order. This is the case of non-canonical equations including
the effect of solar radiation pressure on the motion of an Earth satellite. In the second case of

planetary type the disturbing function contains long-period terms of the first order with
moderate eccentricity and inclination.

Miatchine (38) estimated the error of numerical integration of a differential equation by
Stérmer’s method. He (39) also discussed a criterion for changing the integration steps by
Runge-Kutta’s method. Subbotin (40) studied the estimate of accuracy in the methods. of
computing the ephemeris of the inner planets. Foursenko (41).discussed the computation of

the Moon’s ephemeris on Brown’s expansions and estimated the accuracy of the Moon’s
coordinates.

Grébner (42) proposed a method for numerical treatment of ordinary differential equations
by means of Lie’s series. The method has been applied by Knapp (43) to the u-body problem.

Filippi (44) discussed the accuracy of the method of Runge-Kutta-Fehlberg in the solution
of the n-body problem. \

Seidelmann of Naval Observatory is deve10pmg an iterative solution of Hansen’s method
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PLANETARY AND SATELLITE THEORY

Cohen and Hubbard (1) computed the orbits of five outer planets by means of the method
of special perturbation over 120 0coo years. A remarkable libration of the close approaches
of Pluto to Neptune was noticed such that the distance between these planets is never less
than 18 A.u. It is concluded that the orbit of Pluto is safe from any very close approach to
Neptune and no particular instability resulting from the fact that the perihelion of Pluto is
inside the orbit of Neptune. The penod of libration is about 19 670 years and the amplitude
is about 76°. In addition there is a 2° or 3° modulation with a 4300 year period which corresponds
to the period of the great inequality of Neptune and Uranus. A detailed analytical theory of
the motion of Pluto has been published by Sharaf and Budnikova (2). The improved values
of Pluto’s elements based on the observations for the period 1914-18 are found to be in
good accord with observations. Hori and Giacaglia (3) studied the secular perturbation of
Pluto. After short-period terms are eliminated the equations of motion for the secular per-
turbation are of two degrees of freedom. They eliminated the critical argument of period
20 000 years by a method analogous to that of Hori (3a) applied to the motion of an artificial
satellite with critical inclination. The first order theory agrees with the results of numerical
integration by Cohen and Hubbard (x). In particular the theory shows the revolution of the
argument of perihelion in a period of 15000000 years, the change of the eccentricity
0243 < e < 0°266 and .that of the inclination 14°1 < I < 15°%. S

Choudhry (4) studied the motion of asteroids of the Hecuba type by means of von Zenpel’
method. Kovalevsky (5) investigated the behaviour of the long-period terms in the motion
of a satellite as disturbed by the Sun, and found two types of motion: the one type is the |
class of revolutionary motions with rotating pericentres and the orbit is oscillatory in which
the pericentre oscillates around the maximum latitude. Orlov (6). applied Delaunay-von
Zeipel’s method to the differential equations in Hill’s lunar theory and obtained an approximate
analytic representation of the coordinates. These two authors did not refer to the expansion
in powers of the eccentricities and inclinations, sumlarly to Hori’s method (77) on the motion
of the Moon. -

Herget’s programme (8) for the method of variation of arbitrary vectorial constants for the
IBM 1410 includes the perturbations by any or all of the planets from Mercury to Pluto or
Venus to Pluto and has been applied with complete success to more than a dozen asteroids
of small eccentricity and to about 40 other asteroids in all. He also formed a dlfferentlal
correction programme associated with this programme.

Morando {9) developed a numerical method for a general theory of an asteroid disturbed

by Jupiter, in which secular terms appear only in the mean motions and the time s not present
in the coefficients of periodic terms. The preliminary orbit is not Keplerian, but includes
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the motions of the node and perihelion. The first order long-period terms are then obtained.
Finally the short-period terms as well as higher order long-period terms are computed. The
method has been successfully applied to Vesta, for which the maximum amplitude of long-
period terms in eccentricity and inclination does not exceed their mean values and for which
there is no resonance. The results are comparable with those by Perrotin in 1880 computed
by means of Le Verrier’s method as far as short-period terms are concerned. The method can
be easily generalized to more complete planetary problems.

Wilkens is continuing his work on the commensurabilities in the system of asteroids through
an investigation of the spatial motion of the Hecuba type asteroids, after having discussed in
former papers (10) the plane motion of asteroids near the Hestia and Hecuba gaps. The study
is extended to the spatial motion of the Hestia type asteroids. Schubart has generalized his
theoretical work on the characteristic asteroids by including the influence of the orbital
eccentricity of Jupiter, mainly for the Hilda group by neglectmg the effect of short-period
terms. He has seen no indication of instability in the motion of asteroids of this group.

Kotsakis (11) compared the computed orbit in the restricted three-body problem and the
corresponding Kepler orbit and found that the orbits will fill rings round the Sun. In the
case of an exploding planet at a certain distance from the centre of mass of the Sun and Jupiter
the difference is small, but at certain distances the area filled by the fragments is larger in
the restricted three-body problem.

R. B. Hunter, according to a letter from Roy, has carried out a preliminary ¢omputation
dealing with the application of the three-dimensional elliptical restricted three-body problem
to the motions of asteroids and Jovian satellites. From the numerical integration of a large
number of orbits an attempt has been made to map out the regions around Jupiter of stable
and unstable orbits, also the region of the asteroid distribution highly unstable due to the
Jovian perturbation. The Glasgow group, R. B. Hunter, M. W. Ovendon, A. E. Roy, has
obtained two results of interest: (¢) orbits have been found which take asteroids from the
asteroid region to become temporary satellites of Jupiter before being sent into a narrow
belt of quasi-stable orbits about 7 A.u. from the Sun, (#) the group of real asteroids at the
mean motion commensurability 3/2 separates an inner group of fictitious asteroids which

become direct satellites of Jupiter from an outer group of fictitious asteroids which become
retrograde satellites of Jupiter.

Galibina (x2) studied the original and future orbits of comets with eccentricities near unity.
The result of computation of 26 original and 13 future orbits of long-period comets with the
‘true anomaly as the independent variable shows that 21 of the original orbits have been elliptic
and 5 hyperbolic, and that 8 of the future orbits are elliptic and 5 hyperbolic. Kastel (13)
computed the close approach of Comet Brooks II with Jupiter in 1886 by taking into account
the ‘perturbation due to five planets from Venus to Saturn and the oblateness of Jupiter, and
found that the capture to a major planet of a short-period comet is a more favourable hypothesis.
Brady (14) studied the motion of 30 nearly parabolic cometary orbits and showed that 75%
of the original orbits were elliptic before the comet entered the region of the planet and picked
up energy by increasing their eccentricities and might attain hyperbolic velocity and be ejected.
He suggested to study the planetary perturbations after the perihelion passage.

Makover (x5) points out that there exists a stellar encounter causing considerable changes
in cometary orbits owing to the presence of the comet cloud of Oort (16) and thus shows that
there is no difficulty against the capture hypothesis of comets in the solar system, the ejection
hypothesis as the origin of comets being inconsistent. Chebotarev (17) studied the motion of
an infinitesimal mass in the outer region of the solar system under the action of the galactic.
centre and saw considerable perturbation caused on the orbital elements. The same problem
has been attacked by Chebotarev (18) by assuming the disturbing body to be the galactic
nucleus. It is shown that the stable motion of a comet with ¢, = 06 is possible at a distance
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of 80 000 A.U. from the Sun and that the boundaries of the cloud of comets are approximately
60 000 to 100 000 A.U. .

Ferraz Mello (19) has studied the planar motion of the four Galilean satellites of Jupiter in
rectangular coordinates. He has shown that the use of Hill’s method leads to difficulties and
that higher order harmonics of Jupiter’s gravitational potential as well as the relativity
corrections are negligible. He thus proposed a new method based on a normalized form of
the equations by using a functional relation which leads to integro-differential equations as
suggested by the Laplace integral for the motion of the perijoves. The method takes into
account from the very first approximation the effects of the resonances between the satellites
I and IT as well as between II and III. His numerical application gave perturbations of I
by II in good agreement with the classical results. The second order theory is now being
worked out by Ferraz Mello, while Sagnier is engaged in the generalization of the method
for orbits with non-vanishing inclinations.

Lanzano (20) computed the third order theory for the equilibrium configuration of a
rotating planet and its effect on the secular variation of the orbital elements.

Marsden (21) studied the motion of the Galilean satellites of Jupiter. Von Zeipel’s method
was applied for the elimination of the short-period terms and the number of degrees of
freedom was reduced from fourteen to twelve. The long-period and critical terms were
handled essentially by the ad hoc procedure first utilized by Laplace. He is now engaged in
the programming, the addition, multiplication, differentiation and integration of Fourier
series for a computer and planning to extend to a higher degree of approximation in order
to determine new constants by comparing the theory with observations.

Miss A. Bec is working on the determination of the mass of Jupiter by means of the motion
of the satellites VI to XII, while Kovalevsky computed the planetary perturbation of Jupiter
VIII. An important program of algebraic operations on literal trigonometric series of Delaunay
type with four angles and five small parameters in the coefficients is now being carried out in
the Bureau des Longitudes by means of an electronic computer for future theoretical works
on the lunar and satellite theories.

Wilkins (58) is continuing his analysis of the observations of the satellites of Mars.

Fish (22), Redmond and Fish (23) discussed whether the observed secular acceleration of
Phobos is caused by the bodily tidal friction in Mars. They think the hypothesis not inconsistent
that Phobos has been captured or formed in an orbit just inside a synchronous orbit 4:5 x 10°
years ago. Kotsakis (24) discussed the dispersion of the fragments of an exploding planet.
Alfvén (25) by basing on the Yerkes’ photometric observations of asteroids pointed out that’
the rotational period was-not systematically related with the size of asteroids and hence that -
the current hypothesis on the fragmentation of a planet into asteroids could not be reconciled.
He thinks that there must have been some process by which all planets including asteroids
obtain this period of rotation when they are formed by condensation of interplanetary material.
Alfvén suggested a stepwise condensation process. Jaschek and Jaschek (26) found relations
among the absolute magnitudes, frequency and the age of asteroidal families. Anders (27)
found the absolute magnitude distributien of asteroids to be similar to the Gaussian for
brighter members and grading into a logarithmic curve for the fainter. If the asteroids belonging
to Hirayama families were re-assembled into their parent asteroids, then the Gaussian portion
of the frequency curve would be enhanced at the expense of the logarithmic portion. Anders
concluded that the present state of the asteroidal belt is not in a highly fragmented one and
estimated the life of Hirayama families. 2

Sconzo (28)-integrated the equations of motion of a secondary body in the equatorial plane
of a rotational symmetric central body rigorously by using the Weierstrassian elliptig functions.
The results obtained are used to evaluate the shift of the apsidal line of the secondary body
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due to the oblateness of the central body. Applications are made to the two Mars satellites
as well as to the fifth satellite of Jupiter. The numerical results are in good agreement with
observation. The computed perihelion shift of Mercury due to the Sun’s oblateness with
the zonal harmonics coefficient ¥, ~ 0-0o1 amounts to 34%, of the observed value.

Vinogradova and Radzievskii (29) tried to explain the discrepancy of the motion of Phobos
and Deimos by the solar light pressure due to the non-homogeneity of the figure of Mars.
The light pressure accelerates or decelerates the motion according as the orientation of Mars’s
figure.

An interesting paper was published by Goldreich (30) on the secular change of the eccentricity
of satellite orbits in the solar system. One cause will be the tidal effect on a planet by its satellite
which has been the subject of past frequent discussions, and the other will be the tidal effect
on the satellite by the planet. Urey, Elsisser and Rochester (31) proposed this latter mechanism
for facing the satellite’s same phase towards the planet and decreasing the eccentricity of the
satellite’s orbit. Goldreich has computed the dissipation due to the tidal effect on the satellite

and seen the importance of the second effect, except for Phobos, Deimos, the Moon and
Jupiter V.

McCord (53) studied the Neptunian system. By assuming the tidal friction as the dominant
mechanism he has seen that Triton’s orbit was nearly parabolic in the past.

Antonakopoulos (54) studied the restricted three-body problem in a resisting medium and
showed that all three-dimensional orbits developed into planar circular forms, by thinking
it to be the cause of the present configuration of the solar system.

In the absence of satellites an oblate spinning planet will precess about the normal to its
orbital plane. Goldreich (32) considered how a planet might keep satellite orbit in its equatorial
plane as it precesses. He discarded the tidal effect for the cause. The major effect produced
by the oblateness of a planet on its satellite orbits is a secular motion of their pericentres and
nodes. If the satellite’s nodal period is much shorter than the planet’s precessional period,
then the inclination of the satellite orbit relative to the planet’s equator will not vary as the
planet precesses. A satellite formed in an equatorial orbit or brought into the equatorial plane
by the tide will continue to move in the equatorial plane as its planet precesses. Goldreich
showed why satellites are formed in equatorial orbits, thus explained the reason why Phobos
and Deimos are always on the equatorial plane of Mars.

A. F. Cook and Franklin (33) discussed in detail Maxwell’s theory on the stability of Saturn’s,
rings. Maxwell’s two uniformly dense models with collisions neglected on one hand and
incompressibility assumed on the other hand are supplemented by three additional models,
based on a Maxwellian velocity distribution of the constituent particles. The first model
neglects collisions, the second assumes adiabatic compression, and the third isothermal
compression. They criticized Maxwell’s assumptions that the tangential force resulting from
tangential displacements was more important in determining the stability than the radial
force resulting from radial displacements, and that the variation of the angular velocity across
the ring did not significantly alter any stability criterion. They showed that the shearing
effect of differential rotation must not be so underestimated and that radial oscillations which
are unaffected by shear are the ones that govern the ring stability. They made new photometry
of Saturn’s rings and interpreted the result in the most general way. They preferred their
first model for which the radius of frozen transparent droplets on particles is 7 p.

The stability of infinitely thin self-gravitating galaxies, in analogy to Saturn’s ring, has
been considered by Toomre (34), Hunter (35) and Yabushita (36). Toomre applied Fourier-
Bessel analysis to obtain equilibrium figures for galaxies with infinite extension and replaced
the galaxies by a finite number of concentric rings for stability analysis. Hunter referred to a
spheroidal coordinate system and employed Legendre polynomials, and obtained the
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frequencies of free oscillations ‘as functions of an infinite matrix. Yabushita considered the
stability of a ring with differential rotation and that of disk galaxies by making use of a cylindrical
coordinate system and appropriate Bessel functions. Yabushita showed that the frequencies
of free oscillations are given by the eigen-values of a certain infinite matrix and solved the eigen-
value problem numerically. The upper limit of the mass of the ring which is stable against
axisymmetric perturbations was given for several model rings. The numerical values differed
greatly from Maxwell’s due to the consideration of the effect of both edges of the ring, which
was entirely neglected by Maxwell.

Chebotarev and Bozhkova (37) have obtained trigonometric formulae giving precessional
data for long time intervals. The perturbed values of the eccentricity of the Earth are given
up to 3 X 107 years backward. Volkov (38) obtained the equilibrium surface of a liquid mass
slightly different from an ellipsoid in the gravitational field of a remote material point (Roche
satellite problem) by means of Lichtenstein-Liapounov’s method.

Carpenter (39) programmed the computation of first order planetary perturbations using
Musen’s method (loc. cit. PERTURBATION THEORY), and is now working on higher order effects.
He obtained accurate integrations of the equations of motions of the five outer planets from
1800 through 2000 using the rapidly convergent Chebyshev series. These series were also
used in the method of variation of elements for studies of asteroidal motions. Kolenkiewics
applied the method to periodic orbits obtaining a harmonic solution of the very restricted
four-body problem.

O’Keefe and Liu (41), Colombo (42), Colombo and Shapiro (43) suggested that Mercury’s
rotation rate, which had been considered to be 3/2 times faster than its orbital mean motion,
required for stabilizing this resonant spin a sufficient deviation from axial symmetry. Pettengill
and Dyce (45), Peale and Gold (46) determined the sidereal rotation period of Mercury to
be 59 days in contrast to its revolution period of 88 days by means of radar-echo observation.
Liu (40) studied theoretically the libration of Mercury. Goldreich and Peale (44) showed
that tidal friction would bring an axially symmetric planet to an asymptotic rotation rate
which is somewhat faster than its orbital mean motion. In an asymptotic spin state tidal torque
averaged over an orbital period vanishes, and the maximum torque occurs at the perihelion.
The precise value of the final spin is determined by the amplitude and frequency dependence
of the planet’s dissipation function. The existence of resonant spin states at rotation rates
of any half-integer, negative or positive, multiple of the orbital mean motion has been shown
by Goldreich and Peale (44). They derived (B — A)/C ~ 107? for stabilizing the resonance
against the disruptive influence of the solar tidal torque, and thought that there may exist
stable spin states which are both faster and slower than the observed, since it is known that’
for the Moon there exist-stable resonant spin states o5, 1°5, 2, 2°5 times the orbital mean
motion, and hence that Mercury and the Moon have bypassed some of these stable resonances
before attaining the present spin. It is remarked that Iapetus rotates synchronously because
of the high orbital eccentricity. :

Goldreich (48) discussed the spin of a planet or a satellite, which is losing its angular
momentum through tidal friction and may approach one of its possible final states, and derived
a criterion whether the final state attained is one of synchronous rotation.

Goldreich and Peale (47) studied in more detail the spin-orbit coupling and the capture
probability by assuming the type of tidal torques with which MacDonald (49) re-discussed
the tidal effect on the orbital elements of the Moon studied formerly by Darwin (51) and
Jeffreys (52). They noticed two types of resonant spin rate for planets and satellites: the first
Occurs in eccentric orbits at rotation rate of each half-integer multiple of the orbital mean
motion, the simplest being the synchronous rotation; and the second involves the presence
of another planet or satellite with a resonant spin, in which case the planet or satellite always
aligns the same axis toward the second planet or satellite at each conjunction. They derived

1
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the averaged equations of motion for the complete revolution period and formulated the
stability criterion for both types of resonance. Probabilities of capturing a planet or satellite
into one of the commensurable rotation states as it is being despun by tidal friction are
calculated. Application to Mercury reveals the very small value of (B — 4)/C =~ 1078 to be
sufficient to stabilize Mercury’s rotation period at two-thirds of its orbital period. The
probability that Mercury would be captured at this resonance is calculated for several assumed
forms of tidal torques. They say that Venus may be in a resonant spin state of the second
type, and that the sidereal rotation period of 24316 days retrograde, determined by Carpenter
(50) and others, would be commensurable with its synodic motion, requiring (B — 4)/C > 104
for stabilizing this rotation, so that the capture probability at this resonance appears to be
very small, _

According to a letter from Miss Roman of NASA, D. O. Muhleman of the Jet Propulsion
Laboratory has constructed a least-square computer programme that allows for the com-
putation of the astronomical unit and ‘corrections to eight orbital elements of the Sun and
Venus relative to a provisional theory. JPL radar observations of Venus taken during the
period from 1961 to 1964 yield almost 55 ooo normal equations resulting in an estimate for
the A.U. of 149 598 388 + 50 km. The most significant orbital element correction is to the
longitude of Venus relative to that of the Earth, which amounts to 0"g6 + 002 nearly twice
the value derived by Duncombe. A second solution included the optical observations of
Venus from 1943 to 1949. The resulting A.U. estimate was 149 598 439 +-50 km. These
estimates are based on the value 299 7925 km s for the speed of light. Future progress on
this problem awaits an improvement in the provisional theory and the inclusion of modern
optical observations.

Hertz wrote me that he was now engaged in an attempt to determine the mass of Vesta
from perturbations on the asteroid (197) Arete which has approached Vesta to within‘a few
hundredths of A.u. five times since its discovery in 1879. A very preliminary result for the
mass of Vesta is (1°17 + 0°10) X 10710 solar mass.

According to a letter from P. O. Lindblad, Thomas Giuli at the Royal Institute of Technology
in Stockholm is investigating by means of numerical computations the effect of particle capture
on the rotation of a planet. The rotational angular momentum acquired by a planet is calculated
as it gravitationally attracts particles which are initially on heliocentric orbits in the ecliptic.
The calculations have been completed for the case where the particles are initially on circular
heliocentric orbits. The case for particles initially on eccentric heliocentric orbits is now
under investigation.

Duncombe wrote me about the activity of the Naval Observatory. Duncombe himself has
completed nearly the fitting of Clemence’s new theory of the motion of Mars to observations
extending from 1750 to 1960. Jackson has derived improved elements of Ceres, Pallas, Juno
and Vesta from a discussion of over three thousand meridian transit observations extending
from 1920 to 1958. Generation of precise ephemerides and comparison with observations
since discovery, for six asteroids with nearly commensurable mean motions in the ratio 2:1
with Jupiter, has been continued by Klepczynski, O’Handley, Fiala and Duncombe. It is
hoped to derive corrections to the mass of Jupiter from these analysis. Pascu is determining
new positions of the satellites of Mars from photographs with the 61-inch astrometric reflector.

Message (55) and Schubart (56) discussed analytically the motion in the restricted three-body
problem in which the mean motions of the infinitesimal mass and the smaller mass around
the larger mass of the two finite masses are nearly in the ratio (p + 1)/p. There exist periodic
solutions of the second sort of Poincaré when the commensurability is very close and of the
first sort when it is less close. Message studied numerically the equations for the long-period
variations of elements for the Hecuba type asteroids, while Schubart isolated the secular
and critical terms by a numerical averaging process. Message has seen that the effect of the
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large amplitude perturbations néar commensurability on a distribution of asteroids, which
was originally uniform over mean motions, shows a draining off from the vicinity of exact
commensurability of a magnitude large enough to account for the observed gap in the mean
motion distribution. On the other hand, Goldreich (57) showed that special cases of near-
commensurate mean motions are stable under tidal forces.

Lyttleton and Yabushita (59) studied the effect of stellar encounters on planetary motions
by the method of variation of elements. In order to estimate the cumulative effects for a long
series of encounters they assumed a Gaussian distribution of star velocities and derived the
standard deviations of the changes of the orbital elements in terms of the elements, the average
stellar velocity, the mean stellar density, the age of the solar system and the lower bound of
the encounter parameter. Yabushita (60) examined the changes in orbital elements of a binary
star by a distant stellar encounter and their cumulative effects.

It is added that an interesting paper was published by Urey (61) on the chemical evidence
relative to the origin of the solar system.
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LUNAR THEORY

A series of important works in the lunar theory is being continued by Eckert and his
colleagues (1, 2, 3, 4).

Because of the high quality and long acceptance as the standard of comparison Brown’s
lunar theory will, for years to come, play a key role in the discussion of the observed lunar
motion and in the critical examination of new and more precise theoretical developments.
In the modification of Brown’s basic solution to facilitate the comparison with observation

. the full precision of the solution was not preserved since this was not at first considered
necessary. Some of this loss of precision was regained by the ‘Improved Lunar Ephemeris’
in 1952. Eckert, Walker, Eckert (1) have made the full accuracy of Brown’s solution available
for the comparison with observation and to increase the precision of the relations between
the computed coordinates and the parameters on which they are based. The precision of
the solar terms in sine of the parallax is improved by more than one order of magnitude.

Eckert (2) discovered a large concentration of mass immediately inside the lunar surface
by comparing his new determination of the motion of the Moon’s perigee and node with
observations. Eckert based his important discovery on the new solution of the lunar theory
by Eckert and Smith (3) and on the dynamical ellipticity of the Earth determined by artificial
satellites. The parameter giving the radial distribution of the lunar mass is known to be g/,
which is 0+6 for a homogeneous body and 1-00 for a hollow spherical shell. Brown has taken
g = o-50, the same value as for the Earth, but the value of the ellipticity of the Earth came
out a little larger than the one usually adopted. Spencer Jones determined g’ = 0+87 from the
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adopted value of the ellipticity. From Eckert’s values dm = — 31, d} = — 27%9, he
obtained g’ = 0-965.

Eckhardt (5) solved the rotationary motion of the Moon by numerical integration and
studied the forced physical libration.

Klock and Scott (6) determined the coefficients of periodic term 182 in Brown’s lunar
theory from the 6-inch transit observations during 1952-64. The result is in good accord
with the theory of Eckert and Smith (3).

Curott (7) analysed 32 ancient solar eclipse reports to determine the secular decrease in
angular velocity of the Earth. The computation is based on Ephemeris Time and recently
adopted astronomical constants. Secular trends in the Earth’s acceleration are noted although
ambiguous. He obtained /), = — (1°13 + 0-20) x 1072, '

Musen’s attempt in the lunar theory has been alreadydescribed in the section of PERTURBATION
THEORY, page I6.

Petrovskaya (8) continued her study on the convergence of Hill’s series and estimated the
magnitude of neglected terms in the power series in powers of m when the expansion is
truncated at the term of mS. Schubart (9) solved Hill’s problem and obtained plane and
space periodic solutions. He referred to the method of variation of elements in terms of the
components of the disturbing force. He also discussed the convergence of the solution.
Hochstadt (10) discussed the discriminant 4(A) of Hill’s equation as regards the stability of
the solution. The A-axis is separated to an infinite sequence of the stability and instability
intervals. Hochstadt obtained the representation of 4(A) in terms of A, based on the fact
that 4(A) is an entire function of order 1/2. Blumen (11) studied the eigen-values and Levy
and Keller (12) the instability intervals.

It is remarked that Brillouin (x3) proposed new methods for solving Hill’s equation, one
is based on recurrence formulae and the other on the Brillouin-Wentzel-Kramers’ method
often employed in quantum mechanics. De Vogelaere (14) proposed again a new method in
connection with the Stérmer problem of the motion of charged particles in a magnetic field.

Szebehely (15) cleared up with negation the question whether zero-velocity curves are
orbits, and gave the restriction to the initial condition and the field in order to obtain the
affirmative answer, that is, the restriction is that the absolute value of the gradient of the
potential should be proportional to the curvature of the equi-potential line.

It is remarkable that Barton (16) of Cambridge has written a scheme of programmes for
performing the manipulation of multiple Fourier series in an entirely literal fashion on a’
computer. The programmes have been used to derive the lunar disturbing function in terms
of the elliptic elements and the mean anomalies to the tenth order of small quantities. He
has duplicated the first Delaunay operations completely and reproduced a large part of the
second oreration, and thus reproduced Delaunay’s lunar theory by means of these programmes.
He was successful in producing Hill’s variational curve on the computer. Stumpff (17)
discussed again his third order differential equation for the radius vector in Hill’s lunar
problem. ; :

Polanuer (18) worked out a new theory on the physical libration of the Moon, which is free
from resonance terms, on the basis on Lindstedt’s method.

Lyttleton (19) supplemented the effect of meteoritic accretion on the lunar orbit, causing
the contraction of the orbital size, in addition to the tidal dissipative effect. Lyttleton (z0)
further discussed the reduction of the lunar distance through meteroritic impart. He estimated
that in order to reduce the lunar distance by 1/3 an amount of matter of about 1/6 of the lunar
mass would be necessary to interact with the Moon. Smalley (23) concluded the maximum
Capture distance of the Moon was 1-3 times the present distance. Kopal and Lyttleton (21)
argued against the permanent binary hypothesis as the remote history of the Earth-Moon
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system that the closed nature of the zero-velocity curve did not guarantee the permanent
binary hypothesis.

Belorizky (22) compared the acceleration of the Moon in its non-perturbed motion, and the

gravity acceleration at the Earth’s equator by basing on the new values of the astronomical
constants.

Van Flandern is making a combined solution of grazing occultations and selected central
occultations by the Moon for the period 1956-66.
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RELATIVITY EFFECT

Aoki (1) derived the difference of the coordinate time and the proper time for the planetary
motion on the basis of Schwarzschild’s line element of the general relativity theory, and
identified the coordinate tirne as the Ephemeris time. Geisler (2) obtained the orbit of a particle
with the coordinates expressed parametrically in terms of the coordinate time, and Geisler
and McVittie (3) derived the orbital period in Schwarzschild’s field of gravitation, in order
to meet the observational test of the relativity theory proposed by Kustaanheimo and Lehti (x0),

that is, the difference between the sidereal period and the anomalistic period for an orbit of
high eccentricity. i

Podurets (4) derived Einstein’s equations for a sphencally symmetrical motion of a con-
tinuous medium, and Zeldovich (5) considered the motion of matter under the mutual
gravitational force in uniform density and velocity distribution. The Newtonian .and
Einsteinian solutions of the problem are compared. Atkinson (6) derived two general integrals

for Einstein’s field equations in static spherically symmetric case, and computed light tracks
near a very massive star. b
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Dicke (7) proposed the regression of the node of Icarus as sensitive measure of the oblateness
of the Sun. Francis (8) derived the observable difference of 50 km between the Newtonian
and Einsteinian theories at a close approach of Icarus to the Earth in 1968. Kustaanheimo (9),
Kustaanheimo and Lehti (10) pointed out the route dependence of the gravitational red shift.

Florides and Synge (1x) computed by successive approximation, in a modified procedure
from that of Das, Florides and Synge (12) the stationary gravitational field due to a fluid
mass, not necessarily of constant density, rotating steadily and slowly about an axis of
symmetry. It was found (12) unexpectedly that the internal structure affects the metric
outside the mass.

Geisler and McVittie (13) have found a coordinate transformation which transforms the
Schwarzschild metric for the field of a spherical body into a special case of the general
axi-symmetric metric originally derived by Levi-Civita (14) and by Weyl (15). The transformed
Schwarzschild metric is perturbed in such a way as to obtain this special form and the field
equations are solved approximately for the perturbing terms. Krause (16) obtained the
relativistic potential of un oblate spheroid by referring to the energy tensor in the interior.
Geisler and McVittie (13) transformed so as not to include the energy tensor in the interior.
With values of the arbitrary constants appearing in the solution, which is formed by a reduction
to the Newtonian theory, the metric obtained is taken to be that of the oblate Earth’s field.
The equatorial orbits of a free particle are discussed and the advance of perigee is calculated.

Roxburgh (17) raised a hypothesis that the inner layers of the Sun rotate more rapidly
than the outer layers which, he says, is not inconsistent with the current cosmogonical
hypothesis and tried to explain the perihelion advance of Mercury as gravitational effect.
Similarly Winer +18) computed the advance of Mercury’s perihelion due to the polytropic
internal structur: of the Sun.
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ARTIFICIAL SATELLITES

Vinti (x) computed his intermediary orbit (2) under the special geopotential, for which the
separation of variables in Hamilton-Jacobi’s method is capable, to the third order harmonic
terms (3). By the inclusion of the third zonal harmonics the potential corresponds to a potential
fitted exactly through the third zonal harmonics and to about two-thirds of the fourth, and
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gains in accuracy due to the absence of small denominators in the eccentricity and inclination.
Vinti (4) studied the invariant properties of the spheroidal potential of an oblate planet by
means of a metric-preserving transformation of the associated Cartesian system. This presumes
separability when the coefficients ¥, and ¥, are taken into account. The inclusion of ¥; depends

on translating the origin of the spheroidal coordinates by a distance } ;7' | #; | equatorial
radii, which amounts to 7 km.

Vinti (5) discussed by von Zeipel’s method the effects of a constant force on a Keplerian
orbit, similarly to the case of Keplerian motion of an electron around a charged nucleus in a

constant electrostatic field. He referred to the parabolic coordinates in analogy to Epstein’s
theory of Stark effect in quantum-mechanics.

Differential corrections to Vinti’s and Izsak’s (6) solution were derived by Allen and
Knolle (7), and the Izsak intermediary orbit specified by only six parameters was shown to
be accurate enough compared with the rotating and precessing ellipse which requires eight
parameters. Borchers (8) has, by extending the result of Izsak on the second order solution
of Vinti’s problem, presented a computational procedure for obtaining the coordinates and
velocity of a satellite from the initial values. Borchers also derived the exact expression for
the velocity in Vinti’s intermediary orbit by using Izsak’s orbital elements, for comparing
with other methods of perturbation by means of the so-called Newton-Raphson iteration
method. One of the drawbacks of the ordinary perturbation method is that they necessitate

frequent multiplications of Fourier series which are inevitably accompamed with the question
of convergence-or divergence of the expansions.

Aksenov, Grebenikov, Demin (9) discussed the two fixed centre problem in connection
with Vinti’s and Kislik’s (10) potentials. Aksenov (11) developed an analytical theory of the
motion of an artificial satellite in the Earth’s gravitational field, with the disturbing action
of the Moon and the Sun taken into account. New formulae are derived for providing with
the perturbations of the elements of the intermediary motion, which is described by the
equations of the two fixed centre problem. The properties of the disturbed motion are studied.
They (12) and Yarov-Yarovoy (x3) solved the problem and, as well as Vinti (14), showed
that the physical significance of Vinti’s potential is the translation of the origin of the spheroidal
coordinates by a distance — % ¥;/¥, times the equatorial radii, which is larger than any change
produced by J;. According to Vinti (14) it is related to the long-period terms of perturbation
theory and turns out to be equal to the displacement by ¥, of the plane of symmetry of those
exactly elliptical polar orbits which are possible solutions with the spheroidal model. Recently,
Alekseev (15) and Deprit (16) discussed in detail the motion of a particle attracted by two
fixed mass centres and classified various kinds of possible real motions in three dimensions.
Degtjarov and Ewdokimowa (17) analysed the stability of circular orbits in the two-fixed
centre problem and plotted the regions of stability and instability. Marchel (18, 19) studied
the effect of perturbations due to other bodies in this problem. If the masses of those centres

are different, then the odd harmonics J; can be accounted for. Perturbations of this solution
due to other causes are developed.

Garfinkel (20) published an improved theory of his former method of 1959. He revised the
potential for his intermediary orbit so as to incorporate the known secular variations up to
the second order furnished by the perturbation theory. The assumed form of the geopotential
preserved the gross features of the actual geopotential such as axial and equatorial symmetry,
singularity at the origin and the vanishing -at infinity like the reciprocal of the distance, at the
same time as it satisfies the Stickel conditions for Hamilton-Jacobi separability by leading
to a solution in terms of elliptic integrals. The revised algorithm provides a more accurate
final orbits, incorporating a substantial fraction of the Keplerian secular variation of the third
order. An internal check of the theory is carried out by comparison of the natural frequencies
of the orbit with those of a perturbed ellipse. Garfinkel and McAllister (2x) extended the
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known solution of the main problem of the artificial satellite theory to include the effects of
all higher order zonal harmonics of the geopotential. By supposing that ¥,, m > 2, are at least
of order 7% Garfinkel and McAllister used the von Zeipel method to derive general expressions
for all the secular and long-period variations of orders ¥, and ¥,/7, respectively for any m.
With*the aid of the addition theorem due to Groves (22), Garfinkel (23) and Izsak (24) and
of Legendre’s integral form for the Legendre polynomials the result is exhibited in terms
of the associated Legendre polynomials in (1 — ¢2)-/2 and in cos 1.

Then Garfinkel (25) extended the research to tesseral harmonic perturbation of an artificial
satellite. For a close satellite the method of von Zeipel is used for calculating the long-period
variations of order 7 ¥, ,/w, where n is the mean motion and w the angular velocity of the
Earth’s rotation. With the aid of the addition theorem (23) for spherical harmonics the results
are expressed in a most compact form. Further Garfinkel (26) expanded the spherical harmonics
of the type r™1 Y, , (6, ¢) in Fourier polynomials of argument @ = av + ug + A4,
where v is the true anomaly, g and A are the Delaunay variables, and then of argument
© = al + pg + A with Newcomb’s polynomials in e as coefficients. He also formulated
the long-period part for an Earth satellite in resonance with the Earth’s rotation.

Aksnes (27) is attempting to include some of the main secular variations in an intermediary
orbit and to solve in finite form with the separation of variables.

Kovalevsky (28) studied various applications of separability of the equations of motion
in the solution of the artificial satellite problem. A. H. Cook (29) discussed the condition
under which exact solutions may be obtained to the problem of orbits in free space. He
considered the problem of finding potentials, which satisfy Laplace’s equation and enable
the Hamilton-Jacobi equation to be separated.

Grebenikov (30) applied Hill’s method of rectangular coordinates to the motion of artificial
satellites. Giacaglia (31) extended Brouwer’s theory (32) to higher order terms. Von Zeipel’s
method is shown to be very powerful still. The secular and long-periodic variations in
Delaunay’s elements of an artificial satellite are obtained for zonal harmonics of any order.
Fisher (33) compared the von Zeipel and the modified methods as applied to artificial satellites.
Formulae were derived for osculating elements when the modified Hansen theory of Musen (34)
is expressed in terms of orbital true longitude, instead of eccentric anomaly as in Bailie and
Bryant’s (35) work, to any prescribed order of J,, in which high precision is aimed at.

Orlov (36) computed the secular and long-period perturbations which agreed with Brouwer’s
(32) and Kozai’s (37), and developed an analytical theory of the influence of the Sun’s attraction
on the motion of satellites. On the basis of the circular and elliptical restricted three-body"
problem the formulae are derived for defining the perturbations up to the third order.
Kholshevnikov (38, 39), by studying the secular perturbations in the disturbed motion of
celestial bodies, discussed the stability of the orbital motion in the field of an oblate planet.
Allan and Cook (40), Cook and Scott (41) and Gooding (42) discussed the long-periodic motion
of the plane of a distant circular orbit by taking the oblateness and the luni-solar gravitational
force into account, where the two perturbing effects become comparable, in analogy to the
motion of Iapetus. A general solution is obtained for simultaneous precession of any number
of fixed axes around which the precessions occur. Cook {43) has shown that for nearly circular
orbits with ¢ < 0-005 the rate of rotation of the major axes can be markedly non-linear or
even oscillatory while the variation in eccentricity is no longer sinusoidal, in contrast to the
case of moderately eccentric orbits. Especially Cook discussed the effect of general odd
harmonics on the motion in orbits of small eccentricity.

Kaula (44) discussed the gravitational and other perturbations, including radiation pressure
but excluding drags either mechanical or electromagnetic, of a satellite orbit and formulated

analytically the partial derivatives of the orbital rectangular components of position and
velocity.

https://doi.org/10.1017/50251107X00030388 Published online by Cambridge University Press


https://doi.org/10.1017/S0251107X00030388

32 COMMISSION 7

The usual expressions, which are suitable for not too small values of eccentricity, for
perturbation of the Keplerian elements are extended by Batrakov (45) fot the computation
of coordinates without loss of accuracy to the case of small eccentricity.

Miss Shute (52), for studying Moon-to-Earth trajectories, employed a reduced form,
obtained by considering the selenocentric velocity asymptotes, of the patch conic method
for determining the initial elements of a particle launched or ejected from the Moon’s surface
with any arbitrary starting conditions, and derived explicit analytic functions for geocentric
energy, the Jacobi constant, the angular momentum, standard orbital elements and the
conditions for Moon-to-Earth trajectories. Percents of randomly ejected material which
initially strike the Earth are seen to-be in retrograde motion or to go into heliocentric orbits.

Miss Shute and Chiville (46) estimated the lunar-solar effect on the orbital life-times of
artificial Earth satellites with highly eccentric orbits.

Gaska (47) determined periodic orbits of artificial satellites by considering the harmonics
up to the sixth order in the geopotential and obtained the radius of convergence of the penodxc
series.

Sconzo and Benedetto (48) obtained for the motion of an equatorial satellite a simplification
of expressing the radius vector in a form similar to that for a revolving conic, and determined
the apsidal motion which agreed not only with the orbits of artificial Earth satellites but also

with those of Martian satellites. They say that the apsidal motion of Mercury, is partly due
to the oblateness of the Sun.

Finally it is remarked that King-Hele and Quinn (49) pubhshed tables of the launched
artificial Earth satellites. Herzberg (50) found unpredicted period, and Hiller (51) discrepancies

in the eccentricity and argument of perigee, in the orbital motion of the Alouette I artificial
Earth satellite.

Recently Kyner and Bennett (53) modified the classical Encke method for mtegratmg thc
equations of motion of a near-Earth satellite so that the intermediary, which they call nominal,
and the instantaneous orbits are forced to remain close for many revolutions by rotating the
nominal ellipse slowly in a plane which is rotating slowly in space.
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Critical inclination

Chapront (1) has shown that the libratory motion in the orbits of the critical inclination
is produced around the value of the argument of latitude of the perigee equal to + go° if the
coefficient ¥, is only considered, but it occurs around different points if higher harmonics
are taken into account, especially the harmonics J; and ¥, play a fundamental role, the character
of the libration of the perigee around the node can be reversed, and the odd harmonics shift
the libration centre by a large amount. Chapront (2) then used the energy integral and saw
how great is the influence either of the variation of the value of the even harmonics or of the
introduction of odd harmonics.
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Effect of tesseral harmonics

The asymmetric character of the Earth’s equator has been discovered by Kozai, Izsak,
Kaula, King-Hele and others (1) by the observable effects on the orbits of Earth satellites.
In the first approximation the motion is studied by taking the tesseral harmonic expansion
of the geopotential. If ¥,, is only considered, then there are two equilibrium points in the
orbit of a satellite along the major and the minor axes of the equatorial section of the geo-
potential level surface, the former being unstable and the latter stable. The motion of a 24-hour
satellite is of libration around the stable equilibrium point and is of revolution around the
unstable one. Allan (2) discussed the libration of period about two years by a differential
equation in the form of the one for a spherical pendulum by taking the regression of the
orbital plane due to the luni-solar gravitational force into account. Stumpff (3) discussed the -
libration at the equilibrium points of a 24-hour satellite in analogy to the libration around the
equilibrium points of the restricted three-body problem.

Cook (4) computed the long-period effect of all the coefficients of the tesseral harmonic
expansion. Blitzer (5, 6), on the other hand, computed the perturbation of the polar coordinates.
He takes the first approximate positions of the equilibrium points as those corresponding to
Fae- The latitudinal deviation of the first approximate equilibrium points occurs from odd
zonal harmonics and tesseral harmonics with # — 7 odd in ¥,,,, and the longitudinal deviation

from tesseral harmonics with # — m even. There are 2m equilibrium longitudes corresponding
to Fum in the form

A0.=}"2=1'|'%“r (s=o, I, 2, 3) o

for m = n = 2, for example. The equations of motion for the deviation from the equilibrium
positions are solved.

Recently Doppler shifts in radio observation of satellites revealed the coefficients of harmonic
terms of the geopotential. The experiment and method of observation have been described
by Newton (7) and Guier (8). Guier (9) determined the non-zonal tesseral harmonics from
Doppler data. Guier and Newton (10) gave the coefficients of the tesseral harmonic terms.
They noticed the resonance effects of satellite orbits with the geopotential. Anderle (xx)
analysed the Doppler data and gave values for the gravity coefficients for (n, m) = (15, 13),
(13, 13) and (15, 14). Yionoulis (x2) studied more in detail and gave the equations which
enable to determine which harmonics will contain near-resonant contributions for a given
satellite orbit. The coefficients associated with the harmonics of degree and order (n, m) = (13, 13),
(14, 14) and (15, 14) are found. The resonance effects provide with a means of obtaining

additional harmonic coefficients whose contributions might otherwise have been too small
to be detected.

In order to explain the resonance effects of satellite orbits with the geopotential Blitzer (13)
discussed the motion of a satellite under the influence of the longitude-dependent terms of
the geopotential in a frame of reference rotating with the mean rotation of the satellite by
using the differential equations of Kaula (14) and the coordinate transformation formulae
of B. Jeffreys (x5). The orbits are assumed to be nearly circular but unrestricted with respect
to inclination. . In general, the effect of the tesseral harmonics is to induce short-period -
perturbations of small amplitude. However, when the satellite’s mean motion is commensurable
with the Earth’s rotation, Blitzer has seen two distinct types of resonance to set up. Dynamical
resonances occur when the impressed frequency due to some ¥, term is equal to the natural
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frequency of the satellite’s orbital ‘motion, and the amplitude of the induced oscillation builds
up with time, the eccentricity increases and the orbit is unstable in the sense that it is driven
out of the resonance state. For the other commensurabilities librational resonances- occur
when the satellite is in a localized potential well in the moving frame and the motion is
analogous to a pendulum motion, and is a long-period libration in longitude of the ground
track of the satellite. For nearly equatorial motion only the 24-hour orbit is librational and
orbits in dynamical resonance are confined to the range from 12 to 48 hours, clustering around
but not including the 24-hour orbit.

Bennett (16), Steg and De Vries (17) studied the effect of the Sun on the Earth-Moon
libration point.

Garfinkel (18) treated the theory of resonance in dynamics in a formal solution in the
problem of small divisors. There the Bohlin-von Zeipel technique was used to solve the ideal
resonance problem to O(kV2), where % is the small parameter, and to express the results in
terms of the elliptic functions sn, cn, dn, and the Jacobi Zeta function. The general results
have been applied to the problem of a 24 hour satellite and the critical inclination. The results
confirm the work of Kevorkian et al. (19) who need the methods of non-linear mechanics to
match the resonance solution in the vicinity of the critical inclination with the classical solution
with a singularity.

BIBLIOGRAPHY

. Trans. IAU, 12 A, 23, 1965.

. Allan, R. R. Planet. Space Sci., 11, 1325, 1963 ; 12, 283, 1964; R. Aircraft Estab. Techn.
Rep., 64078, 1965; Proc. R. Soc., A 288, 60, 1965; Proc. 16th IAF Conference, Athens,
1965, 6, 119, 1966; Planet. Space Sci., 1966 (to appear). -

. Stumpff, K. Mathematische Methoden der Himmelsmechanik und Astronautik, 113, 1966.

Cook, G. E. Planet. Space Sci., 11, 797, 1963. .

. Blitzer, L. J. geophys. Res., 70, 3987, 1965.

. Blitzer, L. Amer. Rocket Soc. ., 32, 714, 1962. _

. Newton, R. R. Appl. Phys. Lab. Rep., TG-571, 1963; T'G-627, 1964; ¥. geophys. Res.,

69, 3619, 1964. :

. Guier, W. H. Appl. Phys. Lab. Rep., TG-503, 1963.

. Guier, W. H. Nature, 200, 124, 1963.

. Guier, W. H., Newton, R. R. F. geophys. Res., 70, 4613, 1965.

. Anderle, R. J. F. geophys. Res., 70, 2453, 1965. .

. Yionoulis, S. M. J. geophys. Res., 70, 5991, 1965; 71, 1289, 1966; Appl. Phys. Lab. -

Rep., TG-633, 1964. -

13. Blitzer, L. J. geophys. Res., 71, 3557, 1966.

14. Kaula, W. M.  Geophys. ¥., 5, 104, 1961.

15. Jeffreys, B. Geophys. ¥., 10, 141, 1965.

16. Bennett, A. G. Boeing Sci. Res. Lab., D2-23307-1964. £

17. Steg, L., De Vries, J. P. Space Sci. Rev., 5, 210, 1966. o e

18. Garfinkel, B. Astr. ¥., 71, 657, 1966, - .

19. Eckstein, M., Shi, Y., Kevorkian, J. Proc. IAU Symp. No. 25, 291, Thessaloniki, 1964.

N

-

-
NHOWOOR Io001dhW

Light-pressure effect

The study of the effect of the solar-light pressure on the motion of an Earth satellite has
been continued by Poljakchova (x). by the method of variation of elements with special
reference to the resonance case in which the motion is affected by long-periodic variations with
large amplitude. Sehnal (2) discussed the Poynting-Robertson effect (3)- He (4) also computed
the perturbations of the orbital elements of artificial satellites caused by the radiation pressure
reflected from the Earth. Cunningham (5) defined and computed the eclipse factor for the
solar radiation effect. His eclipse factor-is the time interval between the immersion in and
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the emersion from the shadow of the Earth divided by the orbital period. Escobal (6) computed
the orbital entrance and emergence from the shadow.

Eremenko (%) described a method of solving the equations for obtaining the point of
intersection of an orbit of a satellite with the Earth’s shadow. These points of intersection
are necessary for the calculation of the perturbation due to the solar radiation pressure. The
same problem was discussed by Batrakov (8) for the case of small eccentricities.
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Effect of air drag

King-Hele (x, 2, 3) with his colleagues continued a detailed study of the effect of the Earth’s
atmosphere on the motion of satellites. Cook, King-Hele and Walker (4) and King-Hele (5)
at first supposed that the air density at a given height in a spherically symmetric atmosphere
varies sinusoidally with the geocentric angular distance from the maximum density direction
which occurs almost overhead of the Sun’s altitude. They showed how the perigee distance
and the orbital period vary with the eccentricity through the satellite’s life and how the
eccentricity varies with time, and expressed the life-time and the air density at the perigee
in terms of the ratio of change of the orbital period. King-Hele and Quinn (6) estimated the
life of a satellite of nearly circular orbit. Then Cook, King-Hele, Walker (7) and Cook and
King-Hele (8) considered the atmospheric oblateness. Together with Groves (9), Parkyn (xo),
Lee (xx) and Po (12), King-Hele (x3) derived formulae for determining the density distribution
in a rotating oblate atmosphere. The evidence for the oblateness has been shown by Nigam (14)
and Anderson (14a). Allan and Cook (x5) showed the symmetry of a geocentric dust belt
and the zodiacal light, and Cook (16) studied the effect of aerodynamic lift on satellite orbits.
A more generalized theory, in which the effect of luni-solar perturbations and the Earth’ '
oblateness can be expressed in similar form, has been completed.

Fominov (17) considered the problem of determining the parameters of the atmospherlc
model proposed by himself. He obtained analytical expressions for the perturbation of the
elements of a satellite caused by the atmospheric drag for .the revolutionary period of the
satellite in the case of large orbital eccentricity and also when the oblateness of the atmosphere
depends on the altitude. The formulae obtained are applicable for the case when the atmo-
spheric oblateness is considerable, as well as for the case when it is small.

Cook, King-Hele (x8) and King-Hele (3a) discussed the day-to-night variation of the air
density. Cook and Plimmer (19), Cook (20, 21) and King-Hele (22) considered the oblate

rotating atmosphere, King-Hele (23) treated further the effect of a meridional wind on
satellite orbits.

Fominov (24) considered the -effect of the solar activity, in addition to the diurnal effect
on the oblate Earth atmosphere, by distinguishing the pole of the diurnal effect and the pole
of the Earth’s rotation. He also discussed the variation of density distribution in the atmosphere
by the tidal effect of the Moon and the Sun. The orbital evolution due to the tidal dmnpatlon
by solid friction of the Earth’s mantle has been considered by Kaula (25). > -

Iu .
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Cook (26), Smith (27), Jacchia and Slowey (28) and Jacchia (28a) discussed the drag effect
and the life-time of a satellite. Katsis (29) followed Brouwer-Hori’s method (30) for computing
the drag effect. Sehnal and Mills (31) computed the short-period drag perturbations of the
orbits of artificial satellites.

* Sconzo, Rossoni, Greenfield, Champion (32) determined the atmosphenc density from
satellite observations. The result shows that the method is sensitive enough to reveal small
oscillations of the atmospheric density which are in phase with the decimetric solar radio flux.

Cook and King-Hele (x8) observed that dissipative effect, either tidal or due to Poynting-
Robertson drag for a micro-satellite, gives a mechanism for permanent or semi-permanent
capture leading to secular changes in orbital inclination. They say. that this appears to give a
partial explanation of the formation and structure of Saturn’s rings. 3

King-Hele (33) with his collaborators determined the upper atmosphere density and its
time variation between the recent sunspot maximum and minimum. Cook and Scott (34)
derived the exospheric densities near solar minimum, and ng-Hele (3a) the sexm-annual

variation.
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Rotation of a satellite

Beletski (1), Beletski and Zonov (2), and Zonov (3) discussed in detail the rotational motion
. of an Earth satellite along its orbit and classified various kinds of rotational motion. Hagihara (4)
studied the rotational motion of an Earth satellite during its flight along its orbit by taking
into account of the geomagnetic field, the field of the solar wind of charged particles and the
effect of electrostatic and magnetic induction to the body of the satellite. The effect of Earth’s
oblateness to the rotational motion was studied by Sarychev (5). Morgan (6) studied the
effect of librating motion on the orbit of a dumb-bell-shaped satellite. Volkov (%) discussed
the translational-rotational motion of a satellite by Hamilton-Jacobi’s method and deduced
the series representation of the periodic motion in a gravitational field of a sphere, then
constructed a general approximate solution in the vicinity of such a periodic translational
and rotational motion, which corresponds to a periodic solution of the first sort of Poincaré.

Morrison (8) discussed the damping due to a roll-vee, gyrostabilized system, wherein the
pitch axis of the satellite remains perpendicular to the orbital plane. It is shown that, no
matter how large the initial local angular velocity of the satellite is, this velocity reaches any
given smaller value in a finite time, and how it is possible to obtain a bound on their damping
time and how the satellite settles in one of two possible Earth-pointing positions.

Demin () studied the satellite problem by means of qualitative methods. In particular
the stability in Liapounov’s sense and in Kolmogorov-Arnold’s sense has been discussed
for the case of translational-rotational motion.

Kondurar (x0) is contmumg his work on the theory of the translauonal-rotat:onal motion
of artificial satellites in the gravitational field of a planet.
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Lunar orbiters and artificial satellites of j:clauets

Kaula (1) computed the life-time of a lunar orbiter by means of the Runge-Kutta method
by taking into account the important part of the disturbing function which is of long-periodic
Earth effect with respect to both the lunar satellite and the Earth-Moon orbit. He noticed
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the importance of the ¥, term of the Moon’s gravity field. Chebotarev and Kirpichnikov (2)
studied by numerical integration the motion of an artificial lunar satellite and its stability.
Forga is carrying out his work on the application of Hill’s method on the motion of a lunar
satellite. Roy is continuing his attempt to produce an analytical theory of a close artificial
lunar satellite taking into account the disturbing effect due to the second harmonics in the
Moon’s gravitational field, together with the Earth and the solar effects. The secular part
and the main periodic part of the second order theory have been derived. The theory is now
being programmed for computation.

A particular attention should be paid to the problem of the motion of the lunar satellites,
as was pointed out by Kovalevsky (3), for an orbit with small inclination, due to the fact that
there is no dominant second harmonics in the lunar gravitational field as in the Earth’s field
and that the disturbing force produced by other harmonics is comparable in magnitude with
the attraction due to the Earth. For moderate inclinations and eccentricities the problem has
been tackled by the technique already used for large inclinations and eccentricities by
Kovalevsky (4). By discussing the motion of the peri-selenium he showed that the perturbation
can be extremely large so that the life-time of the orbit may become short.

Goudas (5) discussed the moments of inertia, the gravity field and the non-homogeneity
of the Moon. Poljakchova (6) studied the effect of solar radiation pressure on the motion
of an artificial lunar satellite.

Milder (7) estimated the probability of the lunar impact of a lunar orbiter or the escape
of a satellite from its primary on the basis of the ensemble averages of statistical mechanics.
The restricted three-body configuration is used as a model in calculating the mean orbit
life-times between impacts of a lunar satellite in bounded: orbits of various energies.

Szebehely and Pierce (8) studied a group of Earth-to-Moon trajectories with consecutive
collisions, that is, those which pass through the centres of both the Moon and the Earth,
by means of regularization of the equations of motion for a model restricted three-body problem.

Mrs Stellmacher-Amilhat (9) studied the motion of an asteroid during close approach to
a planet. She compared various analytical solutions obtained by considering planeto-centric
coordinates within the spheres of different radii. Numerical comparison was made. also for
the orbit of Mariner II. This method permits to define more accurately the idea of the sphere
of influence of a planet. A similar problem was discussed by Stiefel (10) who put emphasis -
on problems of regularization. ’

Breakwell and Ralph (1x), and Wolaver (12) extended the restricted three-body problem °
for the Earth-Moon system to include the effect of the Sun by means of von Zeipel’s method.
Breakwell and Perko (13) matched heliocentric ellipses, corrected for the influence of planetary’
attraction, in the vicinity of a planet with local hyperbolas. It is found that the attraction due
to the destination planet alone causes both a displacement of the-arrival asymptote and a
time-of-arrival correction which consists of two parts: a gross time bias and a local time bias.
The latter depending only on the eccentricity of the arrival hyperbola. The computation of
fly-by interplanetary trajectories, such as a trajectory from the Earth to Mars via Venus, would
be greatly simplified if the planetary attractions' could be neglected and the trajectory be

~ idealized as two heliocentric Keplerian orbits joined as one massless planet point.

Dl}sek (x4) studied the motion in the vicinity of the equilibrium points of a generalized
restricted three-body problem by including accelerations caused by low-thrust forces in such
a2 way that the conservative character of the problem is preserved, and discussed the stability
of the motion by Liapounov’s method. '

Cheb.ot:_irev and Bozkova (15) studied thie motion of artificial satellites of Mars, Venus and
Mercury in the sphere of activity of the respective planet, and in particular the motion of
polar satellites. ' :
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Kaula (16) recently determined the tesseral harmonic coefficients of the lunar gravitational
field by analysing lunar satellite orbit perturbations. Chebotarev and Kirpichnikov (2) com-
puted numerically the orbit of a lunar orbiter. Yarov-Yarovoi (17) invented an analytical
theory of the motion of a space vehicle to the Moon. A method was given for finding the
polynomials of the lowest power in an auxiliary variable, which represent with a given accuracy
the rectangular coordinates, the velocity components and the time in which the orbits pass
close to the Earth and the Moon.

Magnaradze (18) studied the motion of a space vehicle with a variable mass during the
ﬂight to Venus in the gravitational field of the Sun, Earth, Venus, and Jupiter. The power
series in time have been built up and their convergence has been proved for a sufficiently
small time interval. To define the coefficients of the series, recurrent relations are derived

which may be used for calculations on modern computers. The errors due to the truncating
at the first several terms are estimated.

Giacaglia (19) and Oesterwinter (20) studied the motion of a lunar orbiter characterized

by a relatively large value of ¥,,, the former by taking the lunar equator as reference plane and
the latter the ecliptic.

Miss Shute (21) studied the initial conditions for Moon-to-Earth trajectories.
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HEw oupnaw

Optimization problem
The problem of moving in a minimum time between two points in a central gravitational
field located at set distances from the centre of attraction has been solved by Lebedev and
Rumyantsev (1) by assuming that the space vehicle’s motor develops an acceleration: which

is constant in magnitude. The Lagrange method is used leading to the solution of the boundary
value problem for a set of differential equations. Kelley (2) used an adjoint technique for.
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obtaining the values of the Green function at the terminal points. Jurovics (3, 4) discussed
the optimum steering problem for the entry of a multi-stage vehicle into a circular orbit.
Kholshevnikov (5) studied the astro-correction of the encounter of two vehicles at a fixed
time by means of one-impulse transfer. Novoselov (6) studied the optimal two-impulse transfer
between orbits of small inclinations and eccentricities. Novoselov (7) considered the problem
of applying the methods of analytical dynamics to the theory of optimal transfers. The problem
of the determination of non-planar optimal transfer to a given circular orbit around a central
body with spherical symmetry is studied (8). Kirpichnikov (9) is dealing with some problems
of the construction of optimal impulse trajectories in the central field with complicated
boundary values. Tarushkin (10) proposed a method of successive optimization for solving
non-linear problems. :

Hiller (xx) discussed the so-called Hohmann transfer between non-coplanar circular orbits
and also dealt with the transfer between a circular and a non-coplanar elliptic orbits. Recently
Hiller (x2) considered the transfer between one or two semi-elliptic paths which needs at
most three impulses. He assumed the transfer to occur only at the apsides of the ellipses and
the whole plane change to take place at coincident apocentres of these elliptic paths, the
assumption which had been justified by Barrar (13). Hiller optimized the total characteristic
velocity for impulsive transfer between non-coplanar elliptic orbits having a common centre
of attraction and collinear major axes in the same sense. He has seen that for three-impulse
transfers the optimum mode is to transfer between pericentres of the initial and final elliptic
orbits and for two-impulse transfer the optimum mode is to transfer from the pericentre of
the inner ellipse to the apocentre of the outer ellipse. Krasinsky (14) studied the optimum
transfer between close coplanar Keplerian orbits. Kirpichnikov (15) discussed the cosmic
trajectories of minimum time and gave expenditure of mass. Sconzo (16) solved the one
impulse rendez-vous problem by using Lambert’s thcorem and the transition matrix. The
36 elements of the matrix have been computed explicitly.

Hiller (17) studied the optimum impulsive transfers between non-coplanar elliptic and
circular orbits and between non-coplanar elliptic orbits with collinear major axes. King-Hele
(18) considered the enlargement of elliptic satellite orbits by continuous micro-thrust.

Mission analysis requires the selection of initial conditions and control parameters giving
a trajectory that satisfies a set of objectives subject to numerous constraints. In addition to
the non-linearity of the dependence of the objectives and constraints on the inputs, their
respective numbers may not agree, and the optimization is necessary. Campbell, Moore and
Wolf (19) have given a general formulation of the problem which reduces to finding the
minimum length of a vector. The method of solution is with iteration. Van Dine, Fimple
and Edelbaum (20) gave a new numerical approach to the solution of the non-linear two-point
boundary value problem with application to optimum low-thrust space trajectories, consisting
of a finite-difference Newton-Raphson algorithm. Munick (21) discussed the problem of
finding the thrust programme so that a specified payload is delivered in Vertical flight to a
desired altitude with the least fuel expenditure. He considered this Goddard problem for a
wide class of drags of physical interest. Ehricke (22) studied interplanetary manoeuvers in
manned helio-nautical missions. The manoeuvers considered are perihelion brake, off-perihelion
acceleration and retro-manoeuvers, and heliocentric planet approach manoeuvers. Goldstein
and Seidman (23) considered fuel optimal controls for a ferry vehicle attempting rendez-vous
with an orbital satellite under the additional constraint.
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Numerical values of the coefficients of geopotential

New determinations of the harmonic coefficients of the geopotential were made by Kozai (x),
Smith (2), King-Hele (3), King-Hele and Cook (4), and their collaborators (5,"6, 7, 8).
Kozai (1) used Baker-Nunn camera observations of nine satellites. For odd harmonics
King-Hele, Cook and Scott (6) analysed the change in the eccentricities of six satellites with
orbital inclinations spaced as uniformly as possible between 28° and ¢6° and found the most
satisfactory representation of the potential to be in terms of four coefficients 10%¥; = — 256,
10%%s = — 015, 10%%, = — 044, 10%¥, = o-12. For even zonal harmonics (4, 7) the authors
took the inclinations to be higher than 28°. The numerical values are given in Table 1. .

Table 1
King-Hele et al.
Kozai (x) Smith (2) (3:4,5:6,7,8)
10%7, 1082-645 1082°64 1082:64
10%%, ; —1'649 —1'70 —1'52
10%%s 0646 073 0’57
10%%s —0'270 —0°46 0'44
10%0 —0'054 —0'17 —
10%%:, —0'357 —0°22 —
10%%. 0’179 o'19 L% —
10%, —2'546 — . —256
10%¥;s —0°210 — N —-0°'15
10%, —0'333 — —0'44
10%%, —0'053 — 012
10%%, 0°302 — - —

10%;, —0'114 — —
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The coefficients of tesseral harmonic expansion of the geopotential are determined by
means of photographic observations by Izsak (9) with the notation

Cﬂm = Nnm Cnm) Sﬂm = Nnm Snms

2(2n+ 1) - (n—m)!]V/2
Ny = (2n + 1'%, Npp = [_—(};—4}?)!“_ , (m 7 0),
The result is shown in Table 2.
Table 2 Table 3
Izsak (9) Guier and Newton (11)
108, C 10%. S 10%. A 0% B
Ce= 117 Spp= —005 A;= 753 Bi= —379
Ca= o081 Sy=-—o25 Aé = 690 Bij= o080
Css = 024 Sp= —o025 i= 456 I= —2354
3= —050 Sp= 093 A3 = 247 Bi= 366
Cy=—o018 Sy= —o25 i=—239 Bi=-18
Cype = — 011 S = 023 A= 17 2 =  1-88
Ciu= o028 Sis = — 008 A; = 3'59 B; = o003
4 = — 008 Sia = 029 A} = — 089 B = o081
Cu=—o09 Su= o9 4= oty Bi= - o8
Cig = 031 S5 = — 0'50 1= 136 2= —1358
Ces = —072 Sp= o11 Ai= o043 Bi= o049
Ca= —018 Su= ot $- _229 Bi= 122
Cs = o018 Sss = — 0°42 A = — o016 3= — 314
Eu = — 001 E“ = 013 Aé = 000 Bé = OS5I
Cos = 016 Sez = — 0'37 A5 = — o082 B = — 079
Ces = o014 Ses = — 017 A= 270 B} = o026
Ces = — 020 Ses = — 041 $= — 156 B¢ = — 2:59
Ces = — 040  Sgs = — 028 A= —o90 Bi= — 260
Ces = — 053 Sgg = — 041 A¢= oo7 Bi= —118
(six degree solution) (eight degree solution) .

On the other hand, Guier (x0), Guier and Newton (11) deduced from the Doppler tracking
of five satellites the coefficients of zonal harmonics of odd orders through the ninth, the
non-zonal harmonics of orders from the second through the eighth and the sectorial harmonics
to the thirteenth order. By combining these values with King-Hele’s (3) they computed a
shape of the geoid and studied the distribution of the magnitude of the harmonics. They
found no apparent relation with the harmonics of the topography and saw that the harmonic
coefficients of the geoid are consistent with random density variations with negligible spatial
correlation beyond about o-o1 of the Earth’s radius, which begin near the top of the mantle
and continue to an undetermined depth. Guier and Newton expanded the geopotential in

the form
R\* [(n — m)I]V2 gy @™Pa (c08 6) -
“’Zm (,-) [(n i m)'] (r — x?) g [A47} cos mA + B} sin mA]

and gave the coefficients A7 and BZ as in Table 3. Yionoulis (12) computed the coefficients
(n,m) = (13, 12), (13, 13), (15, 13).
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Kozai (13) discussed all recent determinations of the harmonic coefficients by means of
artificial satellites and the future programmes for improving the results and detecting the
effects due to Earth tide and any other time variations of the potential to the satellite motion.

A. H. Cook (14) published an account of a comparison between various determinations of
the even zonal harmonics of the geopotential from satellite observations by paying particular
attention to the problem of estimation that arises for the fact that there are more parameters
to determine than the independent data. He (x5) discussed also these questions in connection
with the motion of the Moon.

Simultaneous observations of artificial satellites facilitate the determination of the correction
to station coordinates at the same time as the geopotential. Zhongolovich (16), Kaula (17),
and Izsak (1g) discussed the problem. Kaula (x8) also discussed the Earth mantle, and the
tidal dissipation of solid friction, mcludmg thermal effect and even a similar effect on the
Moon (20).

Zhongolovich (21) studied the general theory of using simultaneous observations of artificial
Earth satellites in geodesy and geophysics. Zhongolovich (16) derived the general equations
and then the methods of space triangulation (21). The deviation of the geodetic system of
<oordinates (16) and the satellite positions in geodetic system (22, 23, 24) are determined.
‘The project of the unique world space triangulation is proposed (2x). He also dealt with the
methods of discussion and the use of INTEROBS observations for determining the atmo-
spheric fluctuations of short periods (22, 25). Batrakov (26) considered the problem of the
possibility of using resonant satellites for the determination of the coefficients of the geopotential.
He (26a) also developed a general theory of defining the mutual positions of observational
stations by simultaneous or nearly simultaneous optical and radio observations of a satellite
at several stations.

Kaula (27) reviewed the tesseral harmonic determination from ‘the. dynamics of satellite
orbits and compared and combined the satellite determination of the Earth’s gravity field
with other results for geodetic parameters, such as the gravimetric determination. Kaula (28)
published his new determination of the 44 tesseral harmonic coefficients, together with 36
station coordinates and 511 orbital elements, from 7234 Baker-Nunn camera determinations
of five satellites. Supplementary observations on the accelerations of 24-hour satellites and
directions between tracking stations for simultaneous observations are also included in the
reduction.

It is noted that the factor GM of the expression for the geopotential, among other constants,
has been determined from the radio tracking of Mariner (Venus) and Ranger III-VII Ilmar
missions to be 3986009 x 10 m®s~? by Sjogren and Trask (29).
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THREE-BODY PROBLEM: REGULARIZATION

Lemaitre’s transformation (x) for the regularization of the three-body problem has been
worked out by Deprit and Delie (2), Deprit and Roels (3). Deprit and Broucke (4) applied
Lemaitre’s regularizing transformation to the restricted problem of three bodies in the form
convenient for numerical work on electronic computers. Broucke (5) generalized the
regularizing transformation in the form

Z=3@+LM, Z =% cos n{,

where 7 is a finite non-zero real number and {, Z are complex variables. The first form
reduces to Birkhoff’s for » = 1 and to Lemaitre’s or to Arenstorf’s (6) for » = 2. The second
form reduces to Thiele’s for n = 2. Broucke deduced the formulae through conformal
mapping in the general case and formulated the canonical equations of motion.

Sconzo (7) carried out the formal series expansion up to the eighteenth order terms of the
solution of the three-body problem when the Sundman type variable is used. In particular,
Levi-Civita’s variable u defined by d¢ = V" du, where V is the total potential, is used throughout
the expansion. This expansion will be obtained by means of iterative procedure similar to that
in the method of Peano-Picard for constructing the solution of a system of differential equations.

Szebehely and Giacaglia (8, 9) presented the equations of motion of the restricted three-
body problem by allowing non-zero eccentricity of Jupiter’s orbit with the true anomaly of
the primaries as independent variable and of dimensionless pulsating coordinates as dependent
variables, first introduced by Scheibner in 1866 and later by Nechvile. The short- and
long-period effects of the eccentricity are discussed in connection with the generalized Jacobi
Integral. The similarity between the equations for the circular and for the elliptic c#ses permits
the introduction of regularizing transformations by following the methods applicable for the

.~
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circular case. The major effect of the eccentricity is that the regularized equations are in the
form of integro-differential equations. Szebehely (x0) then expanded the terms appearing in
the regularized equations according to the powers of a dimensionless parameter associated
with the mass-ratio of the primaries.

Szebehely (xx) attempted to give the power series solution of the restricted three-body
problem by using the Thiele-Burrau regularization transformation. Since real singularities
are eliminated in this way, the only remaining singularities are on the imaginary regularized
time axis. They may be eliminated by Poincaré’s time transformation and the general solution
of the restricted problem may be represented in convergent Taylor series.

According to Sundman it is known that, if the total angular momentum of the three bodies
is not zero, the coordinates and the time are expressed by analytic functions of the regularizing
variable 7 in the strip of the complex plane = defined by |Rer| < o0, | IJm 7| < 2, where
(9] depcnds on the masses and the initial condition, that the coordinates and the time are
expanded in convergent Taylor series about any real value of = within a circle of radius'larger
than or equal to £, and that the series can be continued analytically.

Cesco (12, 13) has shown by an example that Borel’s integral method of summability of
divergent series, conveniently adapted for numerical computation, can be used for this
purpose even outside the circle of convergence of the Taylor series solution.

Brumberg (14) has numerically applied Mittag-Leffler’s theorem on the expansion of an
analytic function defined by a Taylor series in series of polynomials. The infinite strip of
Sundman is contained in Mittag-Leffler’s star region so that the series of polynomials are
convergent for any real value of r and accordingly of 2.

Léper Garcfa (15) improved and extended the classical ephemeris computed by Zumkley
(x6) of a planar problem with equal masses. Cesco (17) applied this method to find the quasi-
asymptotic solution of a hyperbolic-elliptic type of the three-body problem. Cesco (18)
derived the differential equations for the Keplerian elements in the n-body problem and
solved without referring to the method of variation of elements. Cesco says that this straight-
forward derivation simplifies and completes the results obtained by Chazy (19).

Kustaanheimo (20), Kustaanheimo and Stiefel (21) transformed by conformal mapping
the Keplerian motion in the three-dimensional space to that in the four-dimensional manifold
in which the equations of motion reduce to linear differential equations with constant
coefficients completely regular at the attracting centres. The theory is based on spinor analysis
developed by Kustaanheimo himself (22) and Kustaanheimo and Nuoto (23) in real matrix
form. They tried to generalize to higher dimensions by applying Hurwitz-Radén theorem
for quadratic forms.

Rossler (24) applied this Kustaanheimo-Stiefel ‘transformation for computing the per-
turbation by combining with the three-dimensionally generalized form of Levi-Civita’s
regularization. Numerical experiment has been made and it is shown that the regularized
computation is in many cases, particularly for orbits of high eccentricity, superior to classical
methods. The disturbing function is expanded in terms of eccentric anomalies after Hansen,
and the theory is applied to Vesta and compared with Leveau’s classical work (25).

Further Stiefel and Waldvogel (26) generalized Birkhoff’s regularizing transformation to
three dimensions along the line of Kustaanheimo and Stiefel. A Kustaanheimo and Stiefel
transformation is combined with two inversions. A mapping can be constructed which makes
possible a simultaneous regularization of both singularities in the three-dimensional restricted
three-body problem. An extension to the three-dimensional elliptic restricted three-body
problem is suggested. Stiefel (27) discussed some methods for coordinate perturbation with

ized coordinates. Waldvogel (28) showed the connection between regularization and
the theory of functions of complex variables.
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A four-dimensional spinor regularization was given by Kustaanheimo (29) by basing on
the Lorenz-invariant spinor square root of a four-dimensional vector in the Minkowski space
time. He (30) also gave the spinor form of the energetic identities which he treated in vector
form in 1963.

Belorizky (31) proved once that the regularizing variable w of Sundman can not in the whole
w-plane make the coordinates of the three bodies holomorphic functions of w in the triangular
equilibrium solution of Lagrange. Now he (32) extended it to the general three-body problem.

Recently Pierce (33) obtained a solution in the form of trigonometric series of Levi-Civita’s
regularized equations by the method of general perturbations. The solution shows some of
the characteristics of typical lunar or planetary theory. Then he computed four different
orbits both circular and collision orbits without restriction on the eccentricity. He has seen
the improvements of long-term accuracy by replacing the osculating reference orbit with a
mean reference orbit.
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THREE-BODY PROBLEM: NUMERICAL SURVEY

.. Extensive numerical works have been carried out in search for periodic orbits not only
around the equilibrium points and the masses but also remote from these singularities in the
restricted three-body problem:due to the recent development of electronic computers which
facilitate the numerical treatment in a great deal.

Szebehely and Williams (1) published tables showing pertinent information regardmg the
collinear equilibrium points of the restricted three-body problem. General applications to
problems of cosmogony, stellar dynamics, space science are pointed out by Szebehely (2).
He (3) also reviewed the linear and non-linear aspects of the problem of motion around the
equilibrium points with special reference to the restricted problem.

Danby (4) discussed the variational stability of the triangular equilibrium points in the
elliptic restricted problem by taking the mass ratio p and the eccentnctty e of the primary’s
orbit as two parameters, and found the region in the (u, e)- plane in which there is stability.
For the general problem of three bodies with masses m,, m,, mg it is known that this configuration
is stable if (mgmg + mgm, + mymy)[(my + my + mg)® is less than some quantity depending
only on e. Grebenikov (5) discussed the same problem on the stability in the sense of Liapounov.
Bennett (6) computed the characteristic exponents of the same problern and refined and
extended Danby’s transition curve for the stability and instability regmns by the use of the
symmetry character of the Hamiltonian systems. In the unstable region not considered by
Danby it is found that the instabilities are due to three different types of the characteristic
roots. The curves separating these three regions are extensions of the curves for transition
between the stable and unstable regions. For the collinear points there is no value of x and e
for which variational stability exists. Bernstein and Ellis (7), by a method similar tq the one
by Danby and Bennett, gave a criterion for the boundedness of all solutions of a linearized
non-homogeneous equations with periodic coefficients for the motion of an infinitesimal
mass in the neighbourhood of the triangular equilibrium points. Szebehely (8) discussed the
effect of the Coriolis term on the stability characteristics of the triangular equilibrium points.
It is known that the stability of these points is due to the Coriolis term, which when neglected
gwes unstable solutions. The relation between the critical mass-ratio at which mstabxhty
gets in and the magnitude of the Coriolis force is discussed.

Rabe (9) is continuing his research on the restricted Trojan problem. He takes the rather
accurately determined long-period solutions of the restricted problem as reference or inter-
mediate orbits in his work for the existence of additional classes of periodic librations about
the triangular equilibrium pomts (9) in the fundamental planes of the circular and the elliptic

. problems (xo0, 1x1) as well as in the three-dimensional space. For the plane restricted problem
a third order stability analysis of the most general non-periodic Trojan librations incorporating
long- and short-period terms has been undertaken also on the basis of some selected reference
solutions of long period. Certain stability limits were found to exist in the form of an upper
émax for the heliocentric eccentricity e of such Trojans. This limit ey,, decreases with the
increasing size of the basic libration of long period. The approximate results are ep,; = 0°19
for every small basic amplitude, epnsy = 0°16 for a reference libration extending over almost
21° in longitude, and en,; = 0°08 for a basic libration of 43° total amplitude. Since epay
seems to decrease roughly in proportion to the second power of the increasing libration
amplitude, these findings tend to explain rather well the actually observed maximum
eccentricities and librations of the Trojan asteroids. As a product of this stablhty study the
existence of several families of commensurability-related periodic solutions incorporating
short-period oscillations has been also studied, from the occurrence of certain integral values

of the characteristic exponents as a function of the amplitude of these superposed short—penod
terms (12).
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Another series of works have been published by Deprit and his colleagues. Deprit and
Price (x3) started the integration of the differential equations by referring to the method of
Steffensen (14), in which the coordinates are expanded in powers of time, and computed the
chdracteristic exponents by the variational equations. Deprit (15), Deprit and Henrard (16)
computed symmetric orbits which are doubly asymptotic to one of the three collinear equili-
brium points. Numerical interpolation gave thirty-five special values of the mass-ratio which
give rise to doubly asymptotic orbits: three for the L;-point, two for the L,-point, and thirty
for the Ly-point. Two of these values are of particular interest since they are near the mass-ratio
of the Earth-Moon system. Then Deprit (17) and Deprit and Delie (18) studied numerically
the motion in the vicinity of the triangular equilibrium points. It has been seen that short- and
long-period elliptic oscillations of the first order theory can be extended to two families of
periodic motions except for a denumerable set of critical mass-ratios for which the long-period
librations are in resonance with the short-period oscillations. Thus Brown’s conjecture is
justified after Rabe on the horse-shoe orbits which go through orbits doubly asymptotic to
the L,, L,, Ly-points successively.

Deprit (19) has shown further that Routh’s criterion on the existence of periodic solutions
around L, is valid only in the first order, by expanding the analytical relation between the
mass-ratio and the lower bound of the orbital parameter in power series up to the fourteenth
order, and that the limiting orbits are of the stable type for mass-ratios as high as o0-044, the
orbits evolving from infinitesimal ellipses into large-sized asymmetrical ovals. Deprit and
Palmore (20) studied that analytic continuation of the family of short-period orbits around
L, and saw that the characteristic exponents are of the stable type, in contradiction to
Goodrich’s conclusion (21).

Roels has studied the resonance effect in the vicinity of the triangular equilibrium points
(22), in particular, those periodic orbits with periods twice that of Jupiter (23). An expansion
of the solution in Fourier series is suggested, which is not of d’Alembert characteristic and
which can be obtained by leaving some parameters at first arbitrary and then adjusted at the
next approximation. The behaviour of the families of orbits is given in the neighbourhood
of the critical mass-ratio. Delie (24) has given the d’Alembert series for the long-period
solutions around those equilibrium points. Roels (25) gave a new method which enables to
discover families of periodic orbits for all mass-ratios even for those discrete values for which
the classical series expansions do not exist. A general solution in the vicinity of the collinear
equilibrium points is discussed by Henrard (26). Henrard and Rom are applying the same
technique for normalizing the problem at L,.

Deprit, Henrard, Rom. (27) carried out Birkhoff’s (28) normalization about a stable equi-
librium for a conservative Hamiltonian system with two degrees of freedom by building up
explicitly the necessary canonical transformation by the method of indeterminate coefficients.
The normalizing canonical transformation expresses the Cartesian phase variables in a form
of double Fourier series in two angular coordinates whose coefficients are power series in
the square roots of two action momenta. In the normalized part of the transformed Hamiltonian
the angular coordinates are ignorable. They implemented such a Birkhoff’s normalization on
an electronic computer. The characteristic exponents along the singular families of long and
short period orbits around L, are developed as power series of the orbital parameter. Then
the procedure was applied to the equilateral triangular centre of libration for the Earth-Moon
System up to order 13. Breakwell and Pringle (29) also had computed the same problem up
to order four with only partial normalization. The question on resonance has been treated
by Gustavson (30).

Goodrich (31) studied particularly the short-period periodic orbits around the triangular
equilibrium points, in contrast to Rabe’s work for long-period periodic orbits. Power series
expansions are used and the coefficients are determined by recurrence formulae. Goodrich

https://doi.org/10.1017/50251107X00030388 Published online by Cambridge University Press


https://doi.org/10.1017/S0251107X00030388

50 COMMISSION 7

found two types of short-period orbits. - The Jacobi constant increases as the orbital size
increases. The Jacobi constant is smaller and the initial velocity is larger for a short-period
orbit compared with a long-period orbit. For small values of the orbital parameter representing
the deviation from the equilibrium point the orbit begins with elliptical (type I), and then for
a certain value of the orbital parameter there occur two branches, type I and type II, of which
the latter type orbits are asymmetrical and cut the JS-axis. Later for a larger value of the
orbital parameter the type I orbits can cross the JS-axis.

These years are flourishing in the survey of families of periodic orbits by means of powerful
electronic computers. Bartlett (32) computed periodic solutions with Thiele’s variable and
by means of a modified Runge-Kutta method, in particular asymmetric periodic orbits in
the restricted problem with two equal masses for which Stromgren and his colleagues have
made very extensive study. Bartlett found seven new classes different from Strémgren’s.
Hénon (34), after the manner in which Hénon and Heiles (33) studied the third integral in
the dynamical problem of the galaxy, obtained periodic orbits which cut twice the straight
line JS joining the two finite masses. Hénon’s procedure is to study the behaviour of the
successive intersection of a trajectory with the surface of section. Thus Hénon found twenty-one
classes, of which six are new. He discussed the stability character of the invariant points,
which represent periodic orbits, for the transformation of a point on the surface of section
to its consecutive intersection of the trajectory with the surface. G. Zech of the Astronomisches
Recheninstitut is studying several families of periodic orbits of the restricted three-body
problem by numerical integration.

Goudas (35) computed numerically nine doubly-symmetric periodic orbits in three dimen-
sions and examined their stability through the eigen-values of the Jacobian. Goudas called
the least unstable orbits to be quasi-stable, for which all eigen-values are unity. He showed
that the mass-ratio p has only a quantitative effect on the problem such that it does not produce
any new type of periodic orbits, that almost all periodic orbits which are highly inclined to
the plane of motion of the two primaries are very unstable, and that all periodic orbits going
round the straight line equilibrium points are very unstable whatever their inclinations are
and in general that the families of periodic orbits change in a more or less regular way as p
varies. The discussion is greatly facilitated by the assumption of the doubly-symmetric
character. :

Then Hénon (36) started an exhaustive and systematic explorative study of the periodic
and non-periodic orbits of the problem for two equal masses. He found three types of orbits,
quasi-periodic, semi-ergodic and escape orbits. For high values of Jacobi’s constant C all
orbits in the vicinity of the main bodies are quasi-periodic. As C decreases, the region occupied
by the semi-ergodic orbits appears and extends. When C < 3°4568...., Jacobi’s limit
opens and the semi-ergodic orbits become escape orbits, at the same time the region occupied
by quasi-periodic orbits shrinks and eventually vanishes. The behaviour of small island
sub-regions is quite interesting. This elegant work of Hénon is promising an extensive theory
on the behaviour of various types of orbits as C varies and as the period passes through
rational and irrational numbers. A work of Wintner discussing the genealogy of various classes
of Strémgren’s periodic orbits is reminded.

Hénon and Heiles (33) studied by numerical experiment the problem of the existence of
the third integral and found that the third integral exists only for a limited range of initial
conditions. A trajectory is integrated to the next point at which the trajectory cuts a fixed
surface. An invariant point for such a transformation to the next intersection corresponds to
a periodic trajectory. The transformed points are seen to cluster in some limited regions,
which they call islands. The set is dense everywhere but the islands do not cover the whole
area but leave a so-called sea between islands in which the ergodic trajectory is dénse every-
where. Barbanis (37) studied the behaviour of the hodographs of galactic orbits by means
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of a formal third integral. Contopoulos (48) gave tables of this third integral. Contopoulos (39)
classified the integrals of motion into isolating, quasi-isolating and ergodic, and proved by
means of von Zeipel’s method that near any given Hamiltonian in the form of a series there
is a separable Hamiltonian.

Contopoulos (40), Contopoulos and Montsoulas (4x) discussed the general case of resonance
in an axially symmetric potential field in which the unperturbed frequencies in two directions
are in a rational ratio p/q. It has been seen that the general form of the third integral is not
valid but a new integral is found which can be used as a third integral. For p 4+ ¢ < 4 the
case shows quite a peculiar character. In particular Contopoulos discussed the case p = ¢
and the role of small divisors in a third integral. Contopoulos and Woltjer (42) discussed the
third integral in the case of non-smooth potentials. Contopoulos (43) studied by numerical
process the periodic orbits. Periodic orbits in the vicinity of a periodic orbit, which oscillates
p times along the x-axis and ¢ times along the y-axis, are called tube orbits, which can be
studied by the third integral. He discussed the transition from a tube orbit to an ordinary
box orbit. Barbanis (44) studied the transition from the case of the isolating third integral
to that of the non-isolating third integral by numerical experiment with a potential similar
to Contopoulos’s (40) or to Hénon-Heiles’s (33). He has seen that the third integral ceases
to be isolating for a large range of initial conditions with increasing total energy, but that even
for energies higher than the energy of escape there is a set of orbits which do not escape to
infinity, indicating the existence of a very nearly isolating integral. Anderle (45) discussed
a special form of the third integral.

Contopoulos (38) applied the idea to the restricted three-body problem and also in the
elliptic problem in the form of series. Numerical integration by Bozis (46) indicates the
existence of a new non-isolating integral besides the isolated Jacobi integral in the restricted
three-body problem. Bozis transformed the equations of motion by Birkhoff’s regularizing
transformation in order to include collision and near-collision orbits. With various values
of the initial conditions he computed various orbits. The boundaries and the invariant curves
are given analytically in the regularized system for the two-body problem where the two
integrals are known to exist. He, found the boundaries of the orbit by using a series-type
integral of Contopoulos.

Barbanis (44) studied the behaviour and topology of the family of periodic orbits of the
problem. Hénon’s papers (34, 36) on the numerical exploration of the restricted three-body
problem have been discussed by Bozis and Szebehely (47).
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THREE-BODY PROBLEM: ANALYTICAL THEORY

Nahon (1) derived a simplified form of the differential equations for the planar three-body
problem when the position variable is the virial of Sundman defined as the moment of inertia

of the three masses with respect to their centre of mass. D’Ambly (41) discussed the collinear
central figure of the n-body problem.

Pius (2) obtained the bounds of the variation of the semi-major axes in the restricted
three-body problem for small values of the disturbing mass.

Jefferys (3) proved the existence of doubly-symmetric periodic orbits in the three-dimensional
restricted problem by the method of analytic continuation for sufficiently small mass-ratios.
Krasinsky (4) studied the closed path of double collision with the larger mass in the plane
circular restricted problem and obtained the existence of some types of paths both symmetric
and asymmetric with respect to the x-axis by the method of a small parameter.

Richards (5) showed the asymptotic instability of the triangular equilibrium points, not
by means of the linearized system of variational equations of motion but by means of the
Jacobi integral only, by discussing the variation of the potential and the behaviour of the
zero-velocxty curves. Lanzano (6) studied the periodic motions around one of the primaries
in the restricted problem, which can be generated from circular Keplerian orbits and are
valid for any mass-ratio, by extending the procedure of Siegel for the lunar theory. The
Fourier series representation is obtained, in which the coefficients are expanded in powers.
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of the parameter related to the orbital period, and is shown to be convergent for small values
of the period and for any value of the mass-ratio p of the primaries. On the other hand,
Arenstorf (7) found periodic solutions representing the analytic continuation of a Keplerian
elliptic motion by a more general periodicity condition than Poincaré’s, and proved the
existence of such periodic solutions as holomorphic functions of the mass-ratio u and the
parameter € which represents the deviation of the complex radius vector from the generating
orbit. Danby (8) discussed the inclusion of extra factors, such as the variation of the law of
attraction, the non-sphericity of the bodies, and the addition of a fourth distant body. The
possible existence of such solutions is considered and where they exist, their stability is studied.
Omarov (9) solved the restricted problem with variable mass of the primaries.

Choudhry (x0) proved the existence of analytic continuation and its parametric representation
for u % o corresponding to the circular orbits for p = o in the restricted problem in a
three-dimensional coordinate system by referring to Birkhoff’s work on the three-body
problem. Barrar (1x1) proved the existence of periodic solutions of the second sort of Poincaré
in the restricted problem.

Jefferys (12) has shown the existence of a class of inclined periodic solutions of the restricted
problem, which form a continuous sequence with eccentricity as parameter and a discrete
sequence with mean motion as parameter. They exist only for special values of the inclination
and if the ratio of the mean motions to that of Jupiter is sufficiently small or sufficiently great.
These are Poincaré’s periodic solutions of the third sort.

Grémillard (x3) published in a series of papers the existence of periodic solutions of the
third sort of Poincaré by revising the former work of von Zeipel. He proved the existence of
periodic solutions in which two eccentricities are zero at the initial epoch but are expanded
in powers of a parameter p for p — g even, where n/n’ = p/q is the ratio of mutually prime
integers, and the existence of periodic solutions in which the initial eccentricities are not
zero but inclinations are small for p — ¢ odd and greater than unity. He also proved von
Zeipel’s result that there does not exist any solution other than those for which A = 7 (7/2)
forp—qodd and X =7rw for p — geven (r =0, + 1, + 2,...), where X = pA,’ — g,
with the initial mean longitudes X, and A,. He is now constructing numerical examples for
the case p — ¢ = 2. Choudhry (14) showed the existence of periodic solutions of the third
sort in the elliptic restricted problem and proved the stability of the generating solution.

Hénon is now studying periodic orbits of the second species of Poincaré -which exist in
the restricted problem when the second mass vanishes and which are characterized by a series
of encounters between the second and the third masses.

~ Alekseev (15) estimated by Merman’s method (16) the perturbation of a hyperbolic motion
1n the three-body problem basing on Merman’s theorems in the theory of perturbed motions.

Pius (17) applied the theory of symmetric periodic orbits of the Schwarzschild type as a
first approximation to the motion of Hecuba. Barrar (18) gave a new proof for the existence
of periodic orbits which are closed after several revolutions after the fashion of Moser (19).

Moser referred to the invariant curves of area-preserving mappings of a torus according to
Birkhoff.

Petrovskaya (20) constructed a periodic solution of the first sort in the plane restricted
problem in the form of power series in p and BY2 where u denotes the mass-ratio and B the
ratio of the radii of the undisturbed orbit of the infinitesimal mass and of the relative orbits of
the primaries. She found that the series are convergent foro < | u| < 0-00o1,0 < |B| < 04480
for the inferior motion of the infinitesimal mass and 026 < |B| < 042785 for the exterior
motion, '

Eckstein, Shi and Kevorkian (21) have studied the motion of a close satellite to the smaller
of the two finite masses by taking as the independent variable, instead of the time, the angle
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between the radius vector of the satellite and the instantaneous node of its orbit around the
primary. The equations of motion first given by Struble (23) are solved by a generalized
asymptotic expansion procedure involving three variables to the second order as regards the
smaller of the two finite masses. The three variables differ each other by one order of magnitude
in the small parameter, and give the measure of the periods of the node and the pericentre.
It is shown that rather large amplitude oscillations in the eccentricity, inclination and pericentre
occur over the longest of these three periods for a moderate value of the inclination. They (22)
demonstrated that the energy integral or any known exact integral of motion can be used to
determine certain higher-order terms in the time history of the satellite motion after the
geometry of the orbit is obtained. They showed how the loss of accuracy due to the presence
of secular and long-period terms in such cases is to be overcome.

Szebehely, Pierce, Standish (24) computed by using Birkhoff’s regularization a family of
orbits with the property that they are non-periodic and collide with both primaries. Szebehely
(25) discussed the problem of capture and of so-called ‘swing-by’ orbits and outlined the
application of Tisserand’s criterion for identifying comets to a new problem of space research.

Szebehely (26) reviewed recent results on the restricted problem as an irreducible dynamical
system with two degrees of freedom.

Shibahara and Yoshida (27) sharpened the theorem of Birkhoff and Merman (28) in the
general three-body problem. Alekseev (29) discussed with examples the interchange of a
hyperbolic motion and an elliptic motion, and he (30) derived a criterion for hyperbolic and
hyperbolic-elliptic motions according to the idea of Chazy and Merman.

Arenstorf (31) expanded the solution of the differential equations in the perturbation theory
as functions of the initial values from which useful estimates and a sufficiently detailed
description can be obtained by comparing with the unperturbed solutions so as to enable
solution of the boundary-value problem for the perturbed system, and applied to the periodic
solutions in the restricted three-body problem.

Conley (32) obtained a denumerably infinite number of long-periodic solutions of the
planar restricted problem on the basis of Poincaré’s fixed point theorem for torus mappings.

Schubart and Stumpff (33) developed an n-body programme of high accuracy for the
calculation of disturbed ephemerides of planets and comets, and tested it successively by the
high-speed computers at Heidelberg and Darmstadt. Schubart (34) succeeded in rediscovering
the lost comet Tempel-Tuttle 1866 I by identifying it with 1965 7 according to a calculation
of the perturbations of 1866 I on the basis of this n-body problem. By means of another pro-
gramme which allows generally the calculation of the orbits of a system of numerous mass
points Wielen (35) studied the motion in a fictitious open cluster consisting of 100 stars. He
considered three models differing in the distributions of the initial velocities and of masses.
The analytical and statistical properties of stellar clusters known from stellar dynamics, such
as time of relaxation and rate of escape, have been verified.

The n-body problem when 7 is sufficiently great is now being attacked by means of com-
puters in view of application to stellar dynamics for unveiling the global characteristics by
examining the behaviour of each individual constituent. Indeed, Miller (36) has shown that
stellar dynamical systems possess the macroscopic irreversibility characteristic of statistical
mechanical systems by means of a computer calculation of an n-body system. Aarseth (37)
studied numerically the evolution of an isolated n-body system with n = 100, in order to
determine the dynamical age of the system. The equipartition effect leads to pronounced mass
segregation with the formation of a dense nucleus of heavy members and an extended halo
of mainly light bodies. Von Hoerner (38), by taking » = 16 and n = 25 for globular clusters,
found that within two to four times of relaxation all clusters with different starting conditions
approach an isothermal polytrope and a Maxwellian velocity distribution, and that in much

https://doi.org/10.1017/50251107X00030388 Published online by Cambridge University Press


https://doi.org/10.1017/S0251107X00030388

MECANIQUE CELESTE _ 55

longer times the deviations from such a configuration become important. The virial theorem
and Chandrasekhar’s time (39) of relaxation are approximately verified. Miller (40) took
n =4, 8, 12, 16, 24, 32 and observed that two similar systems evolve simultaneously and
the separation of their representative points in phase space grows exponentially ‘with time
because of encounter effects. The time constant of this exponential growth is short, about
four times the mean time between binary collisions of one particle divided by the number 7.
The n-body systems with inverse-square law forces are seen to behave as tightly coupled
systems.

Aarseth (42) further studied the advanced stages of dynamical evolution. The overall
relaxation time is in good agreement with that predicted by Chandrasekhar’s theory for
centrally concentrated clusters but the mean relaxation time for each mass group is well
correlated with a pronounced mass segregation, the heavy members forming a dense nucleus.
Aarseth does not find any approach to the equipartition of kinetic energy for the clusters as a
whole. The total velocity distribution develops an excess at high and low velocities as oompared
with the Maxwellian. He found some evidence for selective escape among light members in
isolated clusters and the total mass loss to be greater than in the case of an equal mass dis-
tribution. The dispersion of the binding energy increases with time and may be used to show
the dynamical age of simulated clusters.
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PERIODICITY, ERGODICITY, STABILITY

Nahon (1) studied by referring to the virial a class of potential which is a generalization of
radial potential and which admits trajectories on the equi-potential surfaces with constant
velocity, In some cases (2) the Lagrangian function shows that all trajectories of a given
energy have damping oscillations around a unique iso-kinetic trajectory of the same energy.
Nahon gave a procedure of constructing all fields which admit equi-potential orbits. Further
Nahon (3), by limiting to conservative systems of two degrees of freedom, defined a field of
directions and gave the necessary and sufficient condition for an initial field to be permanent.
He (4) then, starting from particular solutions of the Hamilton-Jacobi equation, deduced
their asymptotic property and showed the invariance with respect to Birkhoff’s conformal
transformation. The study is intended to draw conclusions on stellar dynamics. Mrs Losco
found by this method force fields in which level lines are spirals (4a). In such cases a quanti-
tative study can be made as to the asymptotic behaviour of trajectories -for ¢— + oo,
independently of the knowledge of the first integral, either isolating or non-isolating. Miss
Ghertzman (5) studied the motion of a particle in a force field with axial symmetry as a function
of a parameter which represents, if it is not small, the ¥, term of the potential of an oblate
planet. She followed numerically the solution for various values of the parameter and found
its critical value which limits the two regions of different characteristics of motion, i.e.
revolution and libration, of the mean anomaly.

Moser (6) discussed the combination tones for Duffing’s problem with forcing terms by
referring to Kolmogorov and Arnold’s theory, and Struble and Yionouli {7) the general
perturbation of the harmonically forced Duffing’s equation, and Struble (8) the oscillations of
a pendulum under parametric excitation. Hale (9) discussed the successive approximations of
the solution of differential equations containing a small parameter. Harvey (x0) and Villari (x I)
showed the existence of periodic solutions of the same type of differential equations with forced
terms, and Ezeilo the existence of almost-periodic solutions of a certain type of differential
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equations with a dissipative term. Silnikov (12) studied the case of the existence of a denumerable
number of periodic solutions. Knobloch (13) presented after Wazewsky a new method of
approximation for periodic solutions of a non-linear differential equation of the second order.

Brumberg (14) discussed the solution in the form of series of polynomials in the three-body
problem according to the idea of Mittag-Leffler (x5), Painlevé (16), Goursat (17), Belorizky
(18). Merman (19) studied the asymptotic solutions of a canonical system of one degree of
freedom in the case in which the characteristic exponents are zero, by referring to the indices
of a singular point. He (20) proved the existence of unstable regions of periodic solutions of
canonical systems in the near-resonance cases.

Moser is working on the convergence proof of the expansions for quasi-periodic motions.
Moser (2x) showed that an expansion of the motion in trigonometric series is convergent
provided that the frequencies are rationally independent, and accordingly succeeded in the
rigorous existence proof of quasi-periodic solutions and justified the series expansions
commonly used in celestial mechanics if properly interpreted in his own sense. Jefferys and
Moser (22) applied these results to the three-body problem and established the existence of
inclined quasi-periodic motions with three frequencies (two mean motions and a nodal
precession) in the unstable case where the inclination I exceeds I, such that sin?/, = 3/s.
Also they found inclined quasi-periodic motions with four independent frequencies for
smaller inclination. These results hold for small masses or in the lunar case.

Krasinski (23) proved the existence of quasi-periodic solutions close to circular orbits in

the plane n-body problem.

The stability of a Hamiltonian system of differential equations, especially a system of
linear canonical differential equations with periodic coefficients, has been studied recently by
Moser (24), Gelfand and Lidskii (25), and Segal (26) with the variational equations. Glimm
(27), by extending the idea of Kolmogorov, Moser and Arnold (28), discussed the formal
stability of a Hamiltonian system. Salvadori (29) studied the stability of an equilibrium in
the critical case according to Liapounov. Pliss (30) showed that the stability problem of the
trivial solution of the system

Bl pl ) YV By +qx9)
in z-dimensional vector notation is reduced to that for the existence and construction of an
n-dimensional vector function p*(x) such that the above stability problem is equivalent to
the stability problem of the trivial solution of a system

(_c;.;: = Ax + p*(x).

The construction of Liapounov’s functionals (31, 32, 33), by means of which the stability -
Statement is obtained, has been described by Brayton and Moser (34) with application to
electric circuit net works. By extending this idea to partial differential equations for a non-linear
mixed initial boundary value problem Brayton and Miranker (35) constructed Liapounov’s
functiona's and showed that complete stability follows from the existence of a Liapounov
functional, and gave a number of examples. Yoshizawa (36) constructed Liapounov’s functional,
and showed the existence of a bounded solution and discussed the asymptotic behaviour of
the solution of a system of differential equations. He also obtained theorems on the extreme
stability and almost-periodic solutions of functional-differential equations after Hale (37) and
La Salle (38). Halkin (39) extended a theorem of Liapounov on the closeness and connectivity
Of. a set. Dearman and Le May (40) made a survey of various techniques for generating
Liapounov functionals.

https://doi.org/10.1017/50251107X00030388 Published online by Cambridge University Press


https://doi.org/10.1017/S0251107X00030388

58 COMMISSION 7

Fomin (41) studied the perturbation method in the theory of dynamical stability of systems
with distributed parameters by reducing the stability problem to the study of linear Hamiltonian
systems in separable Hilbert space. Almkvist (42) discussed the stability of linear differential
equations with periodic coefficients in Hilbert space by means of the perturbation method.
Ura and Kimura (43) studied the stability in the topological dynamics of Gottschalk and
Hedlund (44) on the basis of Zubov’s condition for the stability of a closed invariant set.
Ura (45) studied the stability, relative stability and saddle points on the flow, that is, the
trajectories outside a closed invariant set. Schwartz (46) considered a compact analytical
mapping of Banach space and Conley (47) applied the idea to an area-preserving disk mapping
into itself associated with the satellite problem in an axially symmetric field. Minty (48),
Browder (49) and Shinprot (50) proved the fixed point theorem in Hilbert space.

Moser (51) and Arnold (52) studied the area-preserving mapping of a torus onto itself
by developing the idea of Birkhoff. The results assert the existence of curves near the circle
r = constant, which are invariant under the mapping in polar coordinates

v =71+ pF(r,6), 6 =0+ B+ pl«dr) + G(r,6)],
a<r<hb, b—a>1, o< I, B = constant,

where F and G are p > 4 times continuously differentiable. The invariant curves exist
not for every rotation number (53) w, but only for those w which lie in the interval
af@) + € < (w— B)[p < o(b) — w and which satisfy the infinitely many inequalities
|nw —27m| > pen—1+) for some o > o and for every non-zero integers m and =.
The theorem is applied by Jefferys (54) with numerical computation of periodic orbits in
the restricted three-body problem. By judging from the behaviour of the trajectories in the
neighbourhood of an invariant point Jefferys studied the stability and the ergodicity of the
motion and the transition between stability and instability.

A motion near a periodic solution is characterized by the eigen-values of the linear terms
of the differential equations in local coordinates. Diliberto (55) has shown that when these
local coordinates have purely imaginary characteristic roots the possibility of stability exists
and that when these roots are commensurable with the frequency of the periodic solution
the system is in general unstable. It was believed that there were an infinite set of algebraic
conditions necessary for formal stability. Diliberto (56) reduced these conditions to two for
a Hamiltonian system with two degrees of freedom.

Kyner (70) studied the relationships among the classical Delaunay theory, the Diliberto
periodic surface theory and the Krylov-Bogoliubov method of averaging, and saw that the
first two methods produce the same second order approximations and that there exists a formal
expansion of a family of periodic two-surfaces if a monotonicity condition is satisfied.

Diliberto’s theory (57, 58) of periodic surfaces has been applied to the satellite orbit problem.
It was shown by Haseltine (59) in the case of satellite motion that the process of iteration did
not break down at higher approximations and the dynamical system was formally stable.
In the case of incommensurable periods there always exist formal expansions and no non-trivial
example of convergent expansions. For the case of commensurable periods there is an algebraic
difficulty. Diliberto (55) recently solved this difficulty in two cases and he (56) proved that
the doubly-periodic expansions in the case of commensurable periods are possible for satellite
motion around an oblate Earth with even zonal harmonics.

The ergodic theorem (65) has been discussed recently by several authors, such as Dowker
(60), Brunk (61), Blum and Hanson (62), Chacon and Ornstein (63). Furstenberg (64) studied
the strict ergodicity and transformations in almost-periodic processes.

Let A be a diffeomorphism (52) of a plane ring which conserves the area, and y be 2
simple curve in the ring which is not homologous to zero. Then Poincaré’s theorem tells

https://doi.org/10.1017/50251107X00030388 Published online by Cambridge University Press


https://doi.org/10.1017/S0251107X00030388

MECANIQUE CELESTE 59

that the curves y and Uy have at least two common points. Arnold (66) calls the operation
A: 2 — 2 is globaly canonical if it is homotopic to the identity and

. $pdg=¢pdg.  (pdg=pudg + ... + pudg),
¥ Ay

for each closed curve y C Q. Let P(x) = p(Ax), O(x) = g(Wx). The operation A is globaly
canonical if and only if '

AR = [ Q- 9dP+(p—P)dg

defines a monovalent function (x). Let T be a torus p = o in 2 and AT be the image of T’
by a globaly canonical operation 2. The tori 7" and AT have at least 2" common points
provided that T satisfies p = p(g), | dp /dg | < co. Arnold proved that, if 9 is a globaly

canonical operation sufficiently near U, : p, ¢ —p, ¢ + w(p), such that for det | 20 | |#£ o

| 0p |
there exists a point p, for which wy(p,) are commensurable, i.e., w(p,) = 2wmi/N, with
integers N and m;, 7 = 1, 2, ..., n, then the operation 9~ has at least 2" fixed points in the

neighbourhood of the torus p = p,.

Arnold (67), by extending his former theory (68), considered the k-dimensional vector
differential equations containing a small parameter ¢ and with an analytic w (/)

¢p=w(l)+ef(,9)
I=cF(I, o),

where the components of w are non-commensurable and f, F are analytic and periodic with
period 2 7 in the angular variable ¢, such that [Jme | < o, in comparison with

J=eRy,  FD=CEnt[[Foede

He proved for k = 2, but not yet for k > 2, that with positive constants C and C’ we have

C e < |I(t) — ¥t) | < C" Je (log 1/e)?
for o < 7 < 1fe.

Arnold (69) discussed stationary motions and their stability on the modern version of
differential geometry of Lie groups of infinite dimensions, in contrast to the groups of
diffeomorphism, and applied it to hydrodynamics of perfect fluid.
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