Molecular epidemiologic analysis of *Vibrio cholerae* O1 isolated during the 1997–8 cholera epidemic in southern Thailand

S. KONDO¹, U. KONGMUANG¹, S. KALNAUWAKUL¹, C. MATSUMOTO², C. H. CHEN³, AND M. NISHIBUCHI*²

¹ Division of Medical Microbiology, Department of Pathology, Faculty of Medicine, Prince of Songkla University, Hatyai, Songkla, 90112, Thailand
² Division of Human Environment, Center for Southeast Asian Studies, Kyoto University, Yoshida, Sakyo-ku, Kyoto, Japan
³ Graduate School of Medicine, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan

(Accepted 21 February 2001)

SUMMARY

An unusually high incidence of *Vibrio cholerae* O1 infection was observed in southern Thailand between late December 1997 and March 1998. Fifty-seven *V. cholerae* O1 strains were isolated in five provinces during this epidemic and were examined. They were El Tor Ogawa strains exhibiting similar antibiograms. All strains were resistant to tetracycline, which had not been reported in Thailand since 1993. The ribotypes, hybridization patterns with *ctx* and *zot* gene probes, arbitrarily primed PCR profiles, and pulsed-field gel electrophoresis profiles of the representative strains were compared with the clinical strains isolated from patients in India and Bangladesh in 1997 and 1998 and from international travellers originating from various Asian countries during the 1992–8 period. All southern Thailand strains and the 1998 international traveller strain of Thai origin showed indistinguishable genetic fingerprinting patterns that were distinct from those of other test strains. The results suggest that a tetracycline-resistant clone newly emerged in late December 1997 caused the large epidemic in southern Thailand and that the variants with a slightly different antibiogram appeared during the course of the spreading epidemic.

INTRODUCTION

The aetiologic agent of cholera usually belongs to *Vibrio cholerae* serovar O1. Cholera outbreaks due to *V. cholerae* serovar O139 were first observed in the Bengal area in 1992 and rapidly spread to other parts of the world. However, *V. cholerae* O139 infection was soon displaced by *V. cholerae* O1 infection but the former has still been reported in the Bengal area [1]. The cholera cases in Thailand in the 1990s were due to *V. cholerae* O1 of El Tor biotype and Ogawa serotype (El Tor Ogawa) and the cases occurred sporadically except that some *V. cholerae* O139 infections were observed between 1993 and 1995 [2–4]. The patients infected with *V. cholerae* O1 were effectively treated with various antibiotics such as tetracycline (Tc), erythromycin, cotrimoxazole, furazolidone and new quinolones [5, 6]. However, the strains have become resistant to one or more antibiotics. Multiply resistant strains were isolated in Africa, Asia, and Latin America [1, 5–7]. Siddique [8] reported that tetracycline and doxycycline were no longer effective for cholera treatment in the outbreak.
in Zaire. Islam [9] reported that 33.3% of El Tor Ogawa strains were resistant to Tc, ampicillin, cotrimoxazole, nalidixic acid and doxycycline but susceptible to erythromycin and mecillinam in Zaire. The El Tor Ogawa strains isolated in Bangladesh were susceptible to Tc but resistant to ampicillin [10]. However, 3.8% of the strains of El Tor biotype and Inaba serotype and 98.1% of the strains of the classical biotype and Ogawa serotype isolated in the same country were resistant to Tc [11].

In the period 1992–6, there were sporadic cholera cases in 14 provinces of southern Thailand according to a report from The Ministry of Public Health, Division of Epidemiology, Bangkok, Thailand. However, an unusually high incidence of cholera cases was noticed in Songkla Province and the neighbouring provinces of southern Thailand in late December 1997. They were caused by V. cholerae O1 El Tor Ogawa and it was unusual that the strains were resistant to Tc and other antibiotics. Tc-resistant V. cholerae O1 had not been reported since 1993 in Thailand. A high cholera incidence apparently due to the same microorganism was also observed from January to March 1998. To examine the possibility that a new Tc-resistant clone of V. cholerae O1 emerged and caused the epidemic, we analysed the strains isolated during this epidemic in southern Thailand and those strains isolated elsewhere by various genetic fingerprinting methods.

MATERIALS AND METHODS

Bacterial strains

Stool or rectal swab samples were collected from patients with diarrhoea from the provincial hospitals in southern Thailand between late December 1997 and January 1998. The samples were plated directly onto thiosulfate-citrate-bile salt-sucrose agar (TCBS agar; Eiken Chemical Co., Ltd, Tokyo, Japan). The yellow colonies detected on the medium were examined by standard biochemical tests for identification of V. cholerae [12]. The V. cholerae strains thus identified were subjected to serotyping by the agglutination tests with polyvalent anti-O1 antiserum and antiserum specific to serogroup Ogawa and Inaba (Difco Laboratories, Detroit, MI, USA) and a slide latex agglutination kit (Vibrio cholerae AD; Denka Seiken Co., Tokyo, Japan). V. cholerae O1 El Tor Ogawa strains isolated from the patients in Bangladesh in 1998 and in India in 1997 were provided, respectively, by Dr M. John Albert of International Centre for Diarrheal Diseases Research, Bangladesh and by Dr G. Balakrish Nair of National Institute of Cholera and Enteric Diseases, Calcutta, India. V. cholerae O1 El Tor Ogawa strains isolated from international travelers arriving in Japan from various Asian countries between 1992 and 1998 were supplied by Kansai Airport Quarantine Station and Nagoya Airport Quarantine Station, Japan. V. cholerae O1 NIH 41 belonging to classical biotype and Ogawa serotype, included as a reference strain, was obtained from Dr Toshio Shimada of National Institute of Infectious Diseases, Tokyo, Japan.

Detection of virulence genes

The presence or absence of the genes encoding cholera toxin (ctxA), toxin coregulated pilus (tcpA) of El Tor biotype [13, 14] and zonula occludens toxin (zot) [15] were examined by PCR methods as previously reported except that differing thermal cycling was used as described below. All PCR experiments were carried out using DNA thermal cycler 480 (Perkin–Elmer, Norwalk, CT, USA) using the following thermal cycling protocol: 94°C for 4 min for denaturing the template; 30 cycles of 94°C for 1 min and 60°C for 1.5 min and 72°C for 1.5 min and a final extension at 72°C for 10 min. Five µl of the amplification products were separated by gel electrophoresis in a 1.5% agarose gel using TAE buffer (40 mM Tris–HCl pH 8.5, 5 mM sodium acetate, 1 mM EDTA) and visualized with ethidium bromide staining and u.v. transillumination.

Detection of plasmid

Plasmid extraction using the alkaline lysis method was carried out as previously described by Sambrook [16]. The extracted DNA sample was examined by electrophoresis in a 1% agarose gel using TAE buffer (40 mM Tris–HCl pH 8.5, 5 mM sodium acetate, 1 mM EDTA) and visualized with ethidium bromide staining and u.v. transillumination.

Antibiotic susceptibility

The antibiotic susceptibility of test strains was measured by the disk diffusion method of Bauer [17] with the following antibiotics: ampicillin (30 µg), Tc (30 µg), cotrimoxazole (trimethoprim, 1.25 µg; sulfamethoxazole, 23.75 µg), chloramphenicol (30 µg),...
gentamicin (10 µg), nalidixic acid (30 µg), erythromycin (15 µg), ciprofloxacin (5 µg), and norfloxacin (10 µg).

Isolation of total cellular DNA
Total cellular DNA was extracted from *V. cholerae* O1 strains and purified as described previously [18].

Arbitrarily primed PCR
Arbitrarily primed PCR (AP–PCR) was carried out in a volume of 30 µl containing 25 ng of *V. cholerae* total cellular DNA, 25 pmol of a primer (primer number 1, 2, 3, 4, 5 or 6) of the RAPD Analysis Primer set (Pharmacia Biotech, Inc., Uppsala, Sweden), 1 U of Ex-Taq DNA polymerase (Takara Ex Taq; Takara, Shiga, Japan), 25 mM deoxynucleoside triphosphate and 3 µl of × 10 buffer containing 20 mM MgCl₂ (Ex Taq buffer; Takara). The sequences of the primers were: 5'-GTTGGCGGGAA-3' (primer 1); 5'-GTTTCGCTCC-3' (primer 2); 5'-GATACCGCCTG-3' (primer 3); 5'-AAGAGCCCGT (primer 4); 5'-AACGCCAAC-3' (primer 5); and 5'-CCCCGTCAGCA-3' (primer 6). Each amplification reaction was performed under a drop of mineral oil in a thermal cycler (Zymoreactor II, model AB-1820, Atto Co., Tokyo, Japan) with the following thermal cycling protocol: 95 °C for 4 min to denature the template; 45 cycles of 94 °C for 1 min, 36 °C for 1 min, and 72 °C for 2 min and a final extension at 72 °C for 7 min. Ten µl of the amplification products were separated by gel electrophoresis in a 1.5% agarose gel in TBE buffer (44 mM Tris–HCl, 44 mM boric acid, 1 mM EDTA [pH 8.0]) and visualized by ethidium bromide staining and u.v. transillumination.

Southern hybridization with the *ctxA* and *zot* probes
The purified total cellular DNA was digested with the appropriate restriction endonucleases: *PstI* or *XbaI* (for the *ctxA* probe); *PstI* (for the *zot* probe). The DNA digest was separated in 1% agarose gel and transferred to nitrocellulose membrane using the Southern blot method [16]. A *HindIII* digest of bacteriophage lambda was included as the molecular weight markers in each gel. The *ctxA* and *zot* probe DNAs were obtained by PCR amplification as described above. The template was the total cellular DNA isolated from *V. cholerae* O1 Vc143 (El Tor biotype Ogawa serotype; a clinical strain isolated during the investigation in Nakhon Si Thammarat Province in 1998). The amplicons were isolated by electrophoresis in a 1% agarose gel followed by extraction and purification using an extraction kit (Qiaex II gel extraction kit; Qiagen GmbH, Dusseldorf, Germany). The nitrocellulose membrane with immobilized DNA restriction fragments were hybridized with the digoxigenin-labelled DNA probe and probe-positive fragments were visualized by the immunological detection system (DIF DNA labelling and detection kit, Boehringer Mannheim, Germany).

Ribotyping
The purified total cellular DNA was digested with restriction endonuclease *BglII*. The fragmented DNA was electrophoresed in a 10% agarose gel and transferred to a nitrocellulose membrane using the Southern blot method [16]. Probe DNA was prepared by PCR amplification. The PCR reaction mixture consisted of 5 µl of 10× Thermophilic DNA Polymerase 10× Buffer, (Magnesium Free; Promega Corp., Madison, WI, USA; containing 100 mM Tris–HCl [pH 9.0], 500 mM KCl, 1% Triton X-100), 1.5 mM MgCl₂, 0.25 mM deoxynucleoside triphosphate, 0.2 mM each of the primers, 10 µl template solution (10 ng DNA/µl), and 1 U Taq DNA polymerase in storage buffer A (Promega Corp., Madison, WI) in a 50 µl volume. The primer sequences (5'-AGAGTTT-GATCCTGGCTCAG-3' and 5'-GGTTACCTTGGT- TACGACTT-3') and the conditions of thermal cycling (30 cycles of 94 °C for 1 min, 50 °C for 1 min, and 72 °C for 1.5 min; and finally 72 °C for 2 min) were as described by Shangkuan et al. [19]. The template DNA was total cellular DNA isolated from *V. cholerae* O1 NIH41. A Genius thermal cycler (model FGENOSTY; Techne Ltd., Oxford, Cambridge, England) was used. Labelling of the probe DNA, hybridization and detection of the probe-positive fragments were performed with the digoxigenin-labeling system as described above.

Pulsed-field gel electrophoresis (PFGE)
The test strain was grown to a mid-log phase (optical densities of 0.9–1.0 at 600 nm) in Luria-Bertani broth containing 1% NaCl. Bacterial cells were harvested...
Table 1. *Antibiograms of V. cholerae O1 El Tor Ogawa strains isolated in southern Thailand and the reference strains isolated in other countries*

<table>
<thead>
<tr>
<th>Antibiogram pattern*</th>
<th>Number of the strains tested from:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Southern Thailand†</td>
</tr>
<tr>
<td>I: Tc(^r)/Cm(^r)/SXT(^r)/Em(^r)†</td>
<td>0 0 0 4 1 0 0 0</td>
</tr>
<tr>
<td>II: Tc(^r)/Cm(^r)/SXT(^r)/Em(^r)/Ap(^r)</td>
<td>8 7 2 34 1 0 0 2</td>
</tr>
<tr>
<td>III: Cm(^r)/SXT(^r)/Em(^r)/Ap(^r)/NA(^r)</td>
<td>0 0 0 0 0 5 10 1</td>
</tr>
<tr>
<td>IV: Ap(^r)</td>
<td>0 0 0 0 0 0 0 4</td>
</tr>
<tr>
<td>V: None</td>
<td>0 0 0 0 0 0 0 4</td>
</tr>
</tbody>
</table>

* The antibiotics examined were tetracycline (Tc), chloramphenicol (Cm), cotrimoxazole (SXT), erythromycin (Em), ampicillin (Ap), nalidixic acid (NA), norfloxacin, gentamicin, and ciprofloxacin. Resistance or sensitivity was determined according to the definition by Bauer et al. [17]: resistant (R), intermediate (I), or sensitive. Only resistant and intermediate reactions are listed and sensitive reaction is omitted in these antibiograms. None, sensitive to all tested antibiotics.
† Abbreviations of the provinces: SR, Suratthani; NK, Nakhon si Thammarat; Pt, Phatthalung; SK, Songkla; NR, Narathiwat.
‡ International travellers arriving in Japan (Osaka Airport Quarantine station, Kansai Airport Quarantine Station, and Nagoya Airport Quarantine Station) from various countries.

RESULTS

Characteristics of the 1997–8 strains isolated from southern Thailand

Fifty-seven strains of V. cholerae O1 isolated in clinical specimens from five provincial hospitals in southern Thailand during December 1997 and January 1998 were examined in this study. The number of patients examined and the isolation frequency of V. cholerae O1 (given in parentheses) were as follows: 8 (100%) from Suratthani, 7 (100%) from Nakhon si Thammarat, 2 (100%) from Phatthalung, 40 (85%) from Songkla, and 2 (50%) from Narathiwat. All the strains belonged to El Tor biotype and Ogawa serotype. The serotyping was performed using the antisera commercially available from two different sources and the results were the same. The ctxA and zot genes and the tcpA gene of El Tor biotype were detected in all the strains using PCR methods. The antibiograms of the strains except for susceptibility to ampicillin were identical (Table 1). All strains were resistant to Tc, chloramphenicol, cotrimoxazole, and erythromycin, and were susceptible to norfloxacin, gentamicin and ciprofloxacin. No plasmids were detected in any of the strains (data not shown).

Genetic fingerprinting patterns

Based on the antibiogram, place and frequency of isolation, seven representative southern Thailand strains were selected for genetic fingerprinting analyses (Table 2, designations A–G). The following V. cholerae O1 El Tor Ogawa strains were obtained as reference strains and were briefly characterized: multiply antibiotic-resistant strains isolated in India in 1997 and 1998 (randomly selected five strains) and in Bangladesh in 1998 (randomly selected 10 strains);
Table 2. Characteristics of the representative V. cholerae O1 El Tor Ogawa strains based on ribotyping, hybridization with ctxA and zot probes and AP–PCR

<table>
<thead>
<tr>
<th>Designation and name of strain</th>
<th>Isolation year</th>
<th>Place*</th>
<th>Antibiogram†</th>
<th>Ribotype pattern</th>
<th>Hybridization pattern with the probe:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ctxA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PstI</td>
</tr>
<tr>
<td>A: Vc118</td>
<td>1998</td>
<td>S. Thailand (SK)</td>
<td>I</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>B: Vc134</td>
<td>1998</td>
<td>S. Thailand (SR)</td>
<td>II</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>C: Vc138</td>
<td>1998</td>
<td>S. Thailand (NK)</td>
<td>II</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>D: Vc12</td>
<td>1998</td>
<td>S. Thailand (PT)</td>
<td>II</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>E: Vc26</td>
<td>1998</td>
<td>S. Thailand (SK)</td>
<td>II</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>F: Vc22</td>
<td>1998</td>
<td>S. Thailand (SK)</td>
<td>II</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>G: Vc38</td>
<td>1998</td>
<td>S. Thailand (SK)</td>
<td>II</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>H: KX-C22</td>
<td>1998</td>
<td>IT-Thailand</td>
<td>II</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>I: AS646</td>
<td>1997</td>
<td>India</td>
<td>III</td>
<td>2</td>
<td>b</td>
</tr>
<tr>
<td>J: KX-C23</td>
<td>1997</td>
<td>IT-India</td>
<td>III</td>
<td>3</td>
<td>b</td>
</tr>
<tr>
<td>K: 2329/98</td>
<td>1998</td>
<td>Bangladesh</td>
<td>III</td>
<td>4</td>
<td>b</td>
</tr>
<tr>
<td>L: AQ1061</td>
<td>1992</td>
<td>IT-Thailand</td>
<td>IV</td>
<td>5</td>
<td>c</td>
</tr>
<tr>
<td>M: AQ1062</td>
<td>1992</td>
<td>IT-China</td>
<td>V</td>
<td>6</td>
<td>_**</td>
</tr>
<tr>
<td>N: KX-C1</td>
<td>1994</td>
<td>IT-India</td>
<td>IV</td>
<td>7</td>
<td>b</td>
</tr>
<tr>
<td>O: KX-C3</td>
<td>1994</td>
<td>IT-India</td>
<td>V</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>P: KX-C16</td>
<td>1995</td>
<td>IT-India</td>
<td>V</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>Q: KX-C17</td>
<td>1996</td>
<td>IT-Vietnam</td>
<td>V</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>R: KX-C20</td>
<td>1996</td>
<td>IT-Thailand</td>
<td>IV</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>S: KX-C21</td>
<td>1997</td>
<td>IT-Philippines</td>
<td>V</td>
<td>1</td>
<td>a</td>
</tr>
<tr>
<td>T: NIH41</td>
<td>1941</td>
<td>India</td>
<td>V</td>
<td>8</td>
<td>d</td>
</tr>
</tbody>
</table>

† See Table 1 for designations.
§ Results obtained with primer 2 (explained in text).
* S. Thailand: southern Thailand; The abbreviation for the provinces (SK, SR, NK or PT) are given in the parentheses. The abbreviations are explained in the footnote of Table 1.
IT: international traveller; the origin of the travel is described after the hyphen.
‡ Restriction enzyme used to digest total cellular DNA.
** No probe-positive band was detected.

11 strains isolated between 1992 and 1998 from international travellers originating in various Asian countries. The ctx, zot and tcp genes were detected using the PCR methods in all strains but one (an isolate from an international traveller). The antibiograms of the strains are summarized in Table 2. The two strains showing the same antibiogram pattern (II) as that of the majority of southern Thailand strains were isolated from the international travelers originating in Thailand in December 1997 and February 1998. Twelve representative strains were selected from these reference strains for comparison by the genetic fingerprinting methods (Table 2, designations H–S). In addition, a V. cholerae O1 strain of the classical biotype and Ogawa serotype, NIH41, was included as another reference strain in the genetic fingerprinting analyses (Table 2, designation T).

These 20 representative strains were compared for their genetic fingerprints by ribotyping. Southern hybridization with the ctxA and zot probes, AP–PCR and PFGE (Table 2). The BglII-digested total cellular DNA of the test strain was used for ribotyping (Fig. 1, Table 2). With one or more bands being clearly different, the ribotypes were considered different and the ribotypes were arbitrarily designated as shown in Figure 1. All strains isolated in southern Thailand (Table 2, designations A–G) and the strains isolated from the international travellers originating in Thailand, India, Vietnam and Philippines between 1994 and 1998 (Table 2, designations H, and O–S) showed indistinguishable ribotype patterns.

The Southern hybridization of PstI- or XbaI-digested total cellular DNA with ctxA probe and of PstI-digested total cellular DNA with zot probe were performed to examine the restriction fragment length...
polymorphism of the probe-positive fragments. Different hybridization patterns were given arbitrarily designsations in each hybridization test. An example, the PstI-digested total cellular DNA hybridized with the ctx probe, is presented in Figure 2. The results of the three hybridizations are summarized in Table 2. Distribution of the hybridization patterns among the test strains were essentially the same in all hybridizations. The hybridization patterns of all southern Thailand strains (designations A–G) were indistinguishable. This pattern was also indistinguishable from those of five strains isolated from international travellers between 1994 and 1998 (designations H and O–S) but were different from those of the rest of the test strains (designations I–N and T).

The AP–PCR profiles of the 20 test strains were compared using a set of commercially available primers. The profiles of all 19 El Tor Ogawa strains (Table 2, designations A–S) were indistinguishable when 5 of 6 primers were used (data not shown). However, when primer 2 was used, four different AP–PCR profiles were observed (Fig. 3, Table 2). Using this fingerprinting method, the southern Thailand strains (Table 2, designations A–G) could be distinguished from the four strains (Table 2, designations O–S) that were isolated from international travels.
travellers between 1994 and 1997 and showed indistinguishable ribotype and hybridization patterns when using the southern Thailand strains. The strain isolated in 1998 from the international traveller of Thai origin (Table 2, designation H) exhibited an indistinguishable profile compared to southern Thailand origin strains using this AP–PCR analysis.

The PFGE analysis of NotI-digested DNA that has a high discriminating power for *V. cholerae* O1 strains [21, 22] was performed. With one or more bands being
clearly different, the PFGE profiles were considered different and the PFGE profiles were given arbitrarily designations as shown in Figure 4. Eight PFGE profiles were detected among the 20 test strains. All strains isolated in southern Thailand (Table 2, designations A–G) and the strain isolated from the international traveller originating in Thailand (Table 2, designation H) showed indistinguishable PFGE patterns (designation a) and other strains exhibited different PFGE patterns (designations b–h).

DISCUSSION

The 57 strains isolated from different provinces in southern Thailand over a 4-month period had identical biochemical and antigenic characteristics. However, some strains showed a slightly different antibiogram compared to the majority of the strains. In addition, two strains isolated from international travellers exhibited identical antibiograms to those of most of the southern Thailand strains (Table 1). The result prompted us to compare the test strains using genetic methods. Plasmid analysis did not distinguish the strains since none of the test strains had a plasmid. The DNA fingerprinting analyses demonstrated the genetic identity of the southern Thailand strains and their relatedness with the strains isolated from other sources. The genetic fingerprints of the southern Thailand strains exhibiting slightly different antibiograms (antibiograms I and II, Table 1) were identical. The results suggest the minor difference in the antibiogram between the two groups is probably due to a mutation in the gene(s) associated with resistance to ampicillin and that the two groups may be derived from the same clone. Of the non-southern Thailand strains compared, the two strains isolated from the international travellers originating in Thailand showed antibiogram II. Both strains were isolated from the international travellers during the period of the epidemic in southern Thailand. The strain representing this group (Table 2, strain H) exhibited the same genetic fingerprint as that of the southern Thailand clone. The results strongly suggest that the southern Thailand clone was carried outside of Thailand by the travellers.

The *V. cholerae* O1 El Tor Ogawa strains previously reported from Thailand [2]. Accordingly, the Tc-resistant southern Thailand clone appears to have newly emerged in December 1997 in Thailand. The incidence of *V. cholerae* O1 infection during the 1994–8 period from the 14 provinces of southern Thailand was compiled from a report from the Division of Epidemiology and is presented in Figure 5. *V. cholerae* O1 infection occurs sporadically throughout the year in southern Thailand. High monthly incidence (> 100 isolations per month) was recorded in March and April in 1994 and 1996. However, it was unusual that high incidence was recorded in not only March but also January and February in 1998. It seems therefore that the new Tc-resistant clone emerged in December 1997 and is responsible for the large epidemic that spread to the entire region of southern Thailand over the 4-month period.

The emergence of a Tc-resistant clone and its rapid spread is important. However, it is not clear whether this clone originated in the environment of southern Thailand or was imported from outside Thailand. This clone was shown to be different from the multiply-antibiotic resistant strains isolated in India and Bangladesh, the endemic area, in 1997 and 1998. Many workers have used *Bgl* I ribotyping for epidemiological analysis of *V. cholerae* infection because of its discriminatory power. The southern Thailand clone belonged to ribotype 1 of our designation. The strains isolated from international travellers originating in various Asian countries between 1994 and 1998 also showed this ribotype (Table 2). In addition, this ribotype resembles the ribotypes B21a [23], V/B21a [24], V [19], and 6a [25] reported by other workers. The strains showing these ribotypes are distributed in various parts of the world. Therefore, an additional genetic fingerprinting method(s) was sought. Analysis of the restriction fragment length polymorphism of *ctx* - and *zot*-bearing DNA fragments, a commonly used fingerprinting method, was less discriminatory than was the ribotyping. The AP-PCR using primer 2 proved to be a useful additional genetic fingerprinting method. The combination of the *Bgl* I ribotype and the AP-PCR profile fingerprinting discriminated the southern Thailand clone and the 1998 international traveller strain of Thai origin from other test strains (Table 2). The PFGE of *Not*I-digested DNA alone had the same discriminating power (Table 2). These genetic fingerprinting methods and examination of antibiogram could be very useful for the further epidemiological investigation of the southern...
Thailand clone. If the Tc-resistant clone had persisted in the environment of southern Thailand and caused the outbreak due to some environmental change, the possibility exists that another outbreak might occur in the same area. This possibility has to be critically studied in the future.

ACKNOWLEDGEMENTS

We are grateful to all involved in supplying strains, equipment, and facilities for this study. We thank Mr Charn Wareerat for the photograph and Ms Yōko Takeda for their technical assistance. This research was supported in part by funds from the Prince of Songkla University, by a Grant-in-Aid for Monbusho International Scientific Research Program in Japan, by the fund for a research worker abroad and the COE programme on ‘Making Regions: Proto-Areas, Transformations and New Formations in Asia and Africa’, by the funds from the Ministry of Education, Science, Sports and Culture, Japan, from ‘Research for the Future’ Programme from The Japan Society for the Promotion of Science (JSPS-RFTF97L00706), and from the US–Japan Cooperative Medical Science Programme, Cholera and Related Diarrheal Diseases, Japanese Panel.

REFERENCES

