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Abstract

We investigate the behaviour of the function Lα(x) =
∑

n≤x λ(n)/nα, where λ(n) is the Liouville function
and α is a real parameter. The case where α = 0 was investigated by Pólya; the case α = 1, by Turán.
The question of the existence of sign changes in both of these cases is related to the Riemann hypothesis.
Using both analytic and computational methods, we investigate similar problems for the more general
family Lα(x), where 0 ≤ α ≤ 1, and their relationship to the Riemann hypothesis and other properties of
the zeros of the Riemann zeta function. The case where α = 1/2 is of particular interest.
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1. Introduction

Let λ(n) denote the Liouville function, the completely multiplicative arithmetic
function determined by λ(p) = −1 for each prime p. It is well known (see [10, p. 6])
that

∞∑
n=1

λ(n)
ns

=
ζ(2s)
ζ(s)

(1.1)

if σ > 1. (We follow the usual convention that s = σ + it with σ and t real throughout
this paper.) The Liouville function arises in a natural way in many problems in analytic
number theory.

In 1919, Pólya [7] studied the function L(x) =
∑

n≤x λ(n), proving that if p is a
prime greater than 7 and Q(

√
−p) has class number 1, then L((p − 3)/4) = 0. He

also computed the values of L(x) for x up to approximately 1500, noting all zeros
that occurred, and remarked that L(x) is never positive across this range (after x = 1).
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In addition, Pólya remarked that the Riemann hypothesis would follow if one could
establish that L(x) eventually has constant sign. The assertion that L(x) is never
positive for x ≥ 2 is often called ‘Pólya’s conjecture’ in the literature, although it
appears that Pólya never in fact stated this as a conjecture, at least not in print. We
label an inverted version here as Pólya’s problem.

P́’ P. Show that L(x) changes sign infinitely often, and determine the
smallest x ≥ 2 where L(x) > 0.

In 1942, Ingham [4] noted that if L(n) is eventually of constant sign, then not
only would the Riemann hypothesis follow, but also the zeros of ζ(s) would all be
simple, and further there would exist infinitely many linear dependencies over Z of the
imaginary parts of the zeros of ζ(s) in the upper half plane.

In 1948, Turán [11] investigated some properties of a weighted sum involving the
Liouville function. Let T (x) =

∑
n≤x λ(n)/n. In connection with some studies of partial

sums of the Riemann zeta function, Turán showed that if there exists a positive constant
c such that T (n) > −c/

√
n for all sufficiently large n, then the Riemann hypothesis

would follow. He also reported that several assistants had verified that T (n) > 0 for
n ≤ 1000. The statement that T (n) > 0 for all n is often called ‘Turán’s conjecture,’
but, as with Pólya’s problem, Turán never stated this as a formal conjecture. (In fact,
Turán took issue with the term in a later paper [12].) We label the inverted form here
as Turán’s problem.

T́’ P Show that T (x) changes sign infinitely often, and determine the
smallest x ≥ 1 where T (x) < 0.

In 1958, Haselgrove [3] used the results of Ingham [4] to answer the first part of
both problems, proving that both L(x) and T (x) change sign infinitely often. However,
he did not determine any particular values where L(x) > 0 or where T (x) < 0. An
explicit crossing point for L(x) was first computed by Lehman in 1960 [5], who
found that L(906 180 359) = 1. The smallest x (other than 1) where L(x) > 0 was not
determined until 1980, when Tanaka [9] showed that this occurs at x = 906 105 257.
An explicit crossing point for T (x) was not discovered until recently. In 2008,
Borwein, Ferguson, and the first author [1] determined that the smallest x where
T (x) < 0 is x = 72 185 376 951 205.

It is interesting that negative values appear to dominate in L(x), while positive ones
dominate in T (x). In this paper, we explore this further by considering a natural
generalisation of the problems of Pólya and Turán. For α ≥ 0, let

Lα(x) =
∑
n≤x

λ(n)
nα

,

so that L0(x) = L(x) and L1(x) = T (x). If α > 1, then Lα(x) converges absolutely to
ζ(2α)/ζ(α) > 0 by (1.1), and so only finitely many sign changes may occur in this
situation. The cases where 0 ≤ α ≤ 1 are therefore those of interest in this paper.
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In this paper we show that the family of functions Lα(x) for 0 ≤ α ≤ 1 is closely
tied to questions about the Riemann zeta function. In particular, we show that
sign constancy in certain expressions involving Lα(x) for α in this range implies
the Riemann hypothesis, as well as the simplicity of the zeros of the zeta function
(see Theorem 2.4). We also prove that Ingham’s result on the existence of linear
dependencies among the zeros of the zeta function on the critical line has a natural
analogue in this generalised setting (see Theorem 3.3). We then pose a natural
generalisation of the problems of Pólya and Turán for 0 ≤ α ≤ 1, and present a similar
problem for the case α = 1/2 which would imply the Riemann hypothesis and a bound
on the multiplicity of the zeros, but does not appear to be connected to the linear
dependence question. Finally, we report on some empirical investigations of these
problems.

This paper is organised as follows. Section 2 establishes connections between the
behaviour of Lα(x) and the Riemann hypothesis, and Section 3 generalises Ingham’s
results on the linear independence question. Section 4 discusses some open problems
regarding sign changes in expressions involving Lα(x) for various α, and Section 5
describes some computations regarding the functions Lα(x) for particular values of α.

2. Lα(x) and the Riemann hypothesis

It is well known that the Riemann hypothesis is equivalent to the statement that
L0(x) = O(x

1
2 +ε), and that the prime number theorem is equivalent to the statement that

limx→∞ L1(x) = 0. We begin by extending these statements to the case of more general
α. The proofs of the following two results are similar to those of related statements
involving the Möbius function found in [10, Section 14.25].

T 2.1. If the Riemann hypothesis holds, then for all α ∈ (1/2, 1] and all ε > 0,

Lα(x) =
ζ(2α)
ζ(α)

+ O(x
1
2−α+ε).

Conversely, if

lim
x→∞

Lα(x) =
ζ(2α)
ζ(α)

for all α ∈ (1/2, 1], then the Riemann hypothesis is true.

P. We employ Perron’s formula [10, Lemma 3.12] on the function

f (s) =
∑
n≥1

λ(n)
nα+s

=
ζ(2(α + s))
ζ(α + s)

for σ > 1 − α, to obtain some information on the functions Lα(x). We find that for any
α ∈ [0, 1],

Lα(x) =
1

2πi

∫ 2+iT

2−iT

ζ(2(α + w))
ζ(α + w)

·
xw

w
dw + O

( x2

T

)
. (2.1)
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Using (2.1), we see that

Lα(x) =
1

2πi

(∫ 1
2−α+δ−iT

2−iT
+

∫ 1
2−α+δ+iT

1
2−α+δ−iT

+

∫ 2+iT

1
2−α+δ+iT

)
ζ(2(α + w))
ζ(α + w)

·
xw

w
dw

+
ζ(2α)
ζ(α)

+ O
( x2

T

)
,

where 0 < δ < α − 1/2. If the Riemann hypothesis holds, then ζ(σ + it) = O(tε) and
1/ζ(σ + it) = O(tε), so the first and third integrals above are O(T−1+ε x2), and the
second is O(x

1
2−α+δ

∫ T

−T
(1 + |t|)−1+ε dt) = O(x

1
2−α+δT ε). Consequently,

Lα(x) =
ζ(2α)
ζ(α)

+ O(x2T−1+ε) + O(x
1
2−α+δT ε),

and choosing T = x3 produces the required estimate. Conversely, if Lα(x) converges
for α > 1/2, then Ls(x) converges uniformly in the half plane σ ≥ σ0 > 1/2, and thus
represents an analytic function in this region. The limit function is certainly ζ(2s)/ζ(s)
when σ > 1, as one may verify easily by using the Euler product representation for the
zeta function in this region, and so this must also be the case for σ > 1/2. Thus, the
Riemann hypothesis follows. �

T 2.2. If the Riemann hypothesis holds, then for all α ∈ [0, 1/2] and all ε > 0,

Lα(x) = O(x
1
2−α+ε). (2.2)

Conversely, if this estimate holds for some α ∈ [0, 1/2], then the Riemann hypothesis
is true.

P. Let α ∈ [0, 1/2] and ε > 0. Using Perron’s formula as in the proof of
Theorem 2.1,

Lα(x) = O(x2T−1+ε) + O(x
1
2−α+εT ε)

under the assumption of the Riemann hypothesis, since the path of integration does
not surround the origin, nor the poles on the 1

2 − α line. Selecting T = x2 then
produces (2.2). For the converse, if 0 ≤ α ≤ 1/2 and (2.2) holds, then by partial
summation

lim
x→∞

Ls(x) = (s − α)
∫ ∞

1
Lα(t)t−(s+1−α) dt

for σ > 1/2, and so Ls(x) converges for σ > 1/2, and the Riemann hypothesis follows
by Theorem 2.1. �

Ingham [4] proved that constancy in sign of L0(x) implies both the Riemann
hypothesis and the simplicity of the zeros of the zeta function. In fact, he proved
that these results follow under the weaker hypothesis that L0(eu)eu/2 is either bounded
above by a constant for all u, or bounded below by a constant. We adapt his argument
here to the more general case. We first define several required functions.
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First, for 0 ≤ α ≤ 1, define Lα(x) by

Lα(x) =



Lα(x) if 0 ≤ α < 1/2 or α = 1,

Lα(x) −
log x

2ζ(1/2)
if α = 1/2,

Lα(x) −
ζ(2α)
ζ(α)

if 1/2 < α < 1.

(2.3)

Next, define
Aα(u) =Lα(eu)e(α− 1

2 )u

for u ≥ 0, and for complex s set

fα(s) =
ζ(1 + 2s)

(s − α + 1/2)ζ(s + 1/2)
. (2.4)

Finally, let

Fα(s) =



fα(s) if 0 ≤ α < 1/2 or α = 1,

fα(s) −
1

2ζ(1/2)s2
if α = 1/2,

fα(s) −
ζ(2α)

ζ(α)(s − α + 1/2)
if 1/2 < α < 1.

(2.5)

Before stating a generalisation of Ingham’s result for L0(eu)eu/2, we show that Fα is
the Laplace transform of Aα.

L 2.3. Let α ∈ [0, 1]. With Fα(s) and Aα(u) defined as above,

Fα(s) =

∫ ∞

0
Aα(u)e−su du, (2.6)

and this integral converges for σ > 1/2. Further, under the Riemann hypothesis, it
converges for σ > 0.

P. We use partial summation on (1.1) to write

ζ(2s)
ζ(s)

= (s − α)
∫ ∞

1
Lα(t)t−(s+1−α) dt. (2.7)

Suppose first that 0 ≤ α < 1/2 or α = 1. Since |λ(n)| = 1, one easily obtains the trivial
estimate Lα(t) = Lα(t) = O(t1−α+ε) for any α ∈ [0, 1], and so (2.7) certainly converges
for σ > 1. By Theorem 2.2, Lα(t) = O(t

1
2−α+ε), assuming the Riemann hypothesis, and

so (2.7) converges for σ > 1/2 under this assumption. For 1/2 < α < 1, we begin by
noting that

ζ(2s)
ζ(s)

−
ζ(2α)
ζ(α)

= (s − α)
∫ ∞

1
Lα(t)t−(s+1−α) dt
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for σ > 1, and, using Theorem 2.1, we see that this integral converges for σ > 1/2
under the Riemann hypothesis. Finally, for the case α = 1/2, we see that

ζ(2s)
ζ(s)

−
1

(2s − 1)ζ(1/2)
=

(
s −

1
2

) ∫ ∞

1
L1/2(t)t−(s+1/2) dt

for σ > 1, and if the Riemann hypothesis holds, then L1/2(t) = O(tε) by Theorem 2.2,
and so this integral converges for σ > 1/2 under this assumption. In all three
cases, employing the change of variable t 7→ eu and replacing s by s + 1/2 in these
expressions produces the required statement. �

We may now prove the following theorem.

T 2.4. Suppose that α ∈ [0, 1] is a fixed real number. If there exists a constant
C for which Aα(u) −C has constant sign for all sufficiently large u, then the Riemann
hypothesis follows, and all the zeros of the zeta function are simple. In addition, if there
exists a constant C for which L1/2(x) −C has constant sign for all sufficiently large x,
then the Riemann hypothesis follows, and each nontrivial zero of the zeta function has
order at most two.

P. Suppose that α ∈ [0, 1] is fixed, and suppose without loss of generality that
there exists a constant C for which Aα(u) <C for all u ≥ 0. Define the function Gα(s)
for σ > 1/2 by

Gα(s) =

∫ ∞

0
(C − Aα(u))e−su du =

C
s
− Fα(s), (2.8)

where the last expression follows by Lemma 2.3. Since the integrand has constant sign,
the domain in which (2.8) is valid may be extended to the left of σ = 1/2, upon appeal
to Landau’s theorem [6, Exercise 2.5.19], to the first real singularity of C/σ − Fα(σ).
Since there are no zeros of ζ(s) along the positive real axis, it follows from (2.4)
and (2.5) that Fα(σ) has its first real singularity at σ = 0. Thus (2.8) defines an analytic
function for σ > 0. This means that Gα(s), and hence Fα(s), is regular for σ > 0. This
implies the Riemann hypothesis. Furthermore,

|Gα(s)| ≤
C
σ
− Fα(σ). (2.9)

The function Fα(σ) has only simple poles as σ→ 0+, whence the right-hand side of
(2.9) is O(σ−1). This means that G(s), and therefore F(s), can have no multiple pole
on σ = 0, and thus that all the zeros 1

2 + iγn of ζ(s) are simple.
For the second statement, if L1/2(x) −C has constant sign for all x ≥ 1, then for

σ > 1/2, ∫ ∞

0
(C − L1/2(eu))e−su du =

1
2ζ(1/2)s2

+
C
s
− F1/2(s), (2.10)

and appealing to Landau’s theorem again produces the Riemann hypothesis. However,
the pole of order two at s = 0 in f1/2(s) implies that (2.10) is O(σ−2) as σ→ 0+, so no
zeros of the zeta function on the critical line have multiplicity greater than two. �
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3. Lα(x) and linear independence of the zeros

Throughout this section, we assume the Riemann hypothesis and the simplicity of
the zeros of the zeta function. From (2.4) and (2.5), it is easily seen that Fα(s) has a
simple pole at s = 0 for 0 ≤ α ≤ 1. This function also has a simple pole at s = iγn for
n = ±1, ±2, . . . , where γn denotes the magnitude of the ordinate of the nth zero of ζ(s)
on the critical line, and γ−n = −γn. Further, Fα(s) has no other poles in the half plane
σ ≥ 0.

We compute the residue of Fα(s) at each of its poles in this half plane:

Res(Fα, 0) =


1

(1 − 2α)ζ(1/2)
if α ∈ [0, 1/2) ∪ (1/2, 1],

γ

ζ(1/2)
−

ζ′(1/2)
2ζ(1/2)2

if α = 1/2,

(3.1)

where γ denotes Euler’s constant, and

Res(Fα, iγn) =
ζ(2ρn)

(ρn − α)ζ′(ρn)
(3.2)

for 0 ≤ α ≤ 1. In [4, Theorem 2], Ingham established that the sum∑
n≥1

|Res(F0, iγn)| =
∑
n≥1

∣∣∣∣∣ ζ(2ρn)
ρnζ′(ρn)

∣∣∣∣∣
diverges. (His proof of this is similar to the argument in Titchmarsh [10, Section 14.27]
that

∑
n≥1 1/(|ρnζ

′(ρn)|) diverges.) Since |ρn − α|
−1� |γn|

−1� |ρn|
−1, it follows by the

comparison test that
∑

n≥1 |Res(Fα, iγn)| diverges as well for 0 ≤ α ≤ 1. We record this
result in the following lemma.

L 3.1. Assume the Riemann hypothesis and the simplicity of the zeros of the zeta
function. If 0 ≤ α ≤ 1, then

∑
n≥1 |Res(Fα, iγn)| =∞.

We next generalise two principal results of Ingham [4]. Let T be a fixed real number
with T > 1, and let N = N(T ) be the number of zeros ρ = 1

2 + iγ of the zeta function
with 0 ≤ γ ≤ T . For α ∈ [0, 1], define F∗α(s) = F∗α,T (s) by

F∗α(s) =
Res(Fα, 0)

s
+

N∑
|n|=1

Res(Fα, iγn)
s − iγn

,

so that Fα(s) − F∗α(s) is regular in the region σ ≥ 0, −T ≤ t ≤ T . Let A∗α(u) = A∗α,T (u)
be the inverse Laplace transform of F∗α(s), so

A∗α(u) = Res(Fα, 0) +

N∑
|n|=1

Res(Fα, iγn)eiγnu.
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Finally, let B∗α(u) = B∗α,T (u) denote the smoothed trigonometric polynomial defined by

B∗α(u) = Res(Fα, 0) + 2 Re
∑

0<γn<T

(
1 −

γn

T

)
Res(Fα, iγn)eiγnu.

Ingham established the following theorem for the case α = 0, and we adapt it here to
the broader setting. We use the notation above.

T 3.2. Let α ∈ [0, 1] and T > 1 be fixed real numbers. Then

lim inf
u→∞

Aα(u) ≤ lim inf
u→∞

B∗α(u) ≤ B∗α(v) ≤ lim sup
u→∞

B∗α(u) ≤ lim sup
u→∞

Aα(u),

for any positive real number v.

P. We establish the rightmost inequality; the leftmost one follows from a
symmetric argument. Fix a number α ∈ [0, 1] and a real number T > 1. We may
suppose that lim supu→∞ Aα(u) <∞, since otherwise there is nothing to show, and we
may further assume that this value is negative by adding an appropriate constant to
both B∗α(u) and Aα(u). Thus, we assume that Aα(u) < 0 for u > u0. Define

Dα(s) = Fα(s) − F∗α(s).

Since F∗α(s) and Dα(s) are both regular along the positive real axis, the function Fα(s)
is as well, so by Landau’s theorem the integral in (2.6) converges and this equation
holds for σ > 0. Thus

Dα(s) =

∫ ∞

0
Aα(u)e−su du −

∫ ∞

0
A∗α(u)e−su du (3.3)

for σ > 0. Now define

k(t) = kT (t) =

1 − |t|/T if |t| < T ,

0 if |t| ≥ T ,

and let

K(v) = KT (v) =
4 sin2(Tv/2)

Tv2
,

so that
∫ ∞
−∞

k(t)e−itv dt = K(v) and
∫ ∞
−∞

K(v)eitv dv = 2πk(t). Multiplying (3.3) by
k(t)eitw with w > 0 and integrating in t over [−T, T ],∫ T

−T
Dα(σ + it)k(t)eitw dt =

∫ ∞

0
Aα(u)K(u − w)e−σu du

−

∫ ∞

0
A∗α(u)K(u − w)e−σu du (3.4)

for σ > 0, after switching the order of integration in the latter two integrals. (The
integrals in (3.3) are uniformly convergent for t in this range for each fixed σ > 0.)
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Since Dα(s) is continuous over σ ≥ 0 and t ∈ [−T, T ], the left-hand side of (3.4)
is a continuous function of σ for σ ≥ 0. Also, for fixed T and w, the last integrand
in (3.4) is O(u−2) as u→∞, so this integral is absolutely convergent at σ = 0, thus
also continuous in σ for σ ≥ 0. The first integrand on the right-hand side of (3.4)
is nonpositive for u > u0, so this integral either diverges to −∞ as σ→ 0+, or is
continuous on σ ≥ 0, and the first possibility cannot occur due to the behaviour of
the other two integrals. Therefore, we may set σ = 0 in (3.4) to obtain∫ T

−T
Dα(it)k(t)eitw dt =

∫ ∞

0
Aα(u)K(u − w) du −

∫ ∞

0
A∗α(u)K(u − w) du.

Now let w→∞. Certainly the left-hand side of this equation tends to 0 by the
Riemann–Lebesgue lemma, and so∫ ∞

0
Aα(u)K(u − w) du =

∫ ∞

0
A∗α(u)K(u − w) du + o(1)

as w→∞. Next, for any y ∈ (0, w), we see that∫ ∞

0
Aα(u)K(u − w) du ≤

(
sup

−w≤v≤y−w
K(v)

) ∫ y

0
|Aα(u)| du

+

(
sup
u≥y

Aα(u)
) ∫ ∞

y−w
K(v) dv.

Letting w→∞, then y→∞, we conclude that

lim sup
w→∞

∫ ∞

0
Aα(u)K(u − w) du ≤ lim sup

u→∞
Aα(u)

∫ ∞

−∞

K(v) dv = 2π lim sup
u→∞

Aα(u).

For convenience, define γ0 = 0, and let rn = Res(Fα, iγn) for each integer n. We then
see that as w→∞,∫ ∞

0
A∗α(u)K(u − w) du =

N∑
n=−N

rneiγnw
∫ ∞

−w
K(v)eiγnv dv

= 2π
N∑

n=−N

rneiγnwk(γn) + o(1)

= 2πB∗α(w) + o(1),

and the inequality follows.
Finally, let v be a fixed positive real number. By Dirichlet’s theorem on

simultaneous approximation, there exist infinitely many positive integers q = u − v
such that γnu is as close as we desire to γnv (mod 2π), for each γn < T . This implies
that lim infu→∞ B∗α(u) ≤ B∗α(v) ≤ lim supu→∞ B∗α(u). �
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We remark that this proof would not seem to apply in the case where α = 1/2 if we
were to replace A1/2(u) by L1/2(eu), due to the pole of order two at the origin in its
Laplace transform.

Ingham also proved that if L0(x)/
√

x is either bounded above by a constant or
bounded below by a constant, then there exist infinitely many linear dependencies
over Z of the imaginary parts of the zeros of the zeta function lying in the upper half
plane. We show that this statement has a natural analogue for the cases α ∈ [0, 1].

T 3.3. Let α ∈ [0, 1]. If the imaginary parts γ1 < γ2 < · · · of the distinct zeros
of ζ(s) lying above the real axis are connected by at most a finite number of linear
relations of the type

∑N
n=1 cnγn = 0, where the cn are integers, not all zero, then

lim inf
x→∞

Lα(x)xα−
1
2 = −∞ and lim sup

x→∞
Lα(x)xα−

1
2 =∞.

P. In view of Theorem 2.4, we may assume the Riemann hypothesis and the
simplicity of the zeros of the zeta function. Select S so that no nontrivial integer
relations exist among the γn with γn > S , and define C(S ) by

C(S ) = 2
∑

0<γn≤S

|Res(Fα, iγn)|.

Select T > 2S . Since the γn with S < γn < T are linearly independent, by Kronecker’s
theorem on simultaneous approximation there exist arbitrarily large values of u for
which γnu (mod 2π) is as close as we desire to −arg(Res(Fα, iγn)), for each γn ∈ (S , T ).
Therefore,

lim sup
u→∞

B∗α(u) ≥ Res(Fα, 0) −C(S ) + 2
∑

S<γn<T

(
1 −

γn

T

)
|Res(Fα, iγn)|

≥ Res(Fα, 0) −C(S ) +
∑

S<γn<T/2

|Res(Fα, iγn)|,

and this is unbounded as T grows large by Lemma 3.1. By Theorem 3.2, we conclude
that lim supu→∞ Aα(u) =∞, and this establishes the latter conclusion of the theorem.
The former part may be proved in a similar manner. �

We remark that there appears to be little numerical or heuristic evidence for linear
dependencies among the γn (see [8]).

4. Formulas and problems

Throughout this section we assume the Riemann hypothesis as well as the simplicity
of the zeros of the zeta function. Using these assumptions together with Perron’s
formula (2.1), we obtain an asymptotic estimate for Lα(x) for each α in [0, 1]. Again,
we denote the complex zeros of ζ(s) in the upper half plane by ρn = 1

2 + iγn, with {γn}

an increasing sequence.
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If α ∈ [0, 1], we move the line of integration in (2.1) to the left to 1
2 − α − δ ± iT , for

some small positive δ. Employing the residues listed in (3.1) and (3.2), and arguing as
in the proof of Theorem 2.1, we find that if α , 1/2 then

Lα(x) = x
1
2−α

( 1

(1 − 2α)ζ( 1
2 )

+
∑
|γn |<T

ζ(2ρn)xiγn

ζ′(ρn)(ρn − α)

)
+ E(x, T ), (4.1)

where E(x, T ) denotes an error term that tends to 0 as T →∞, and

L1/2(x) =
γ

ζ( 1
2 )
−

ζ′( 1
2 )

2ζ( 1
2 )2

+
∑
|γn |<T

ζ(2ρn)xiγn

iγnζ′(ρn)
+ E(x, T ). (4.2)

In the former case, the sum in (4.1) is highly oscillatory, so one would expect the
constant term 1/(1 − 2α)ζ(1/2) to dominate in this expression for most values of x.
When α = 0, this term is negative, and when α = 1 it is positive, so we can see the
cause of the predisposition of negative terms in L0(x), and of positive ones in L1(x).
Likewise, in (4.2) the constant term is 0.5244 . . . > 0, so we expect L1/2(x) to be
skewed toward positive values. We can therefore state two problems that generalise
the questions of Pólya and Turán directly.

P 4.1. For each α ∈ [0, 1], show that Lα(x) changes sign infinitely often.

P 4.2. For each α ∈ [0, 1/2), determine the smallest nontrivial value of x where
Lα(x) > 0, and for α ∈ [1/2, 1], determine the smallest positive value of x where
Lα(x) < 0.

Naturally, we expect that sign changes do indeed exist, since we have shown that
sign constancy in any of these functions would imply not only the Riemann hypothesis
and the simplicity of the zeros of the zeta function, but also the existence of infinitely
many dependency relations among the zeros of the zeta function in the upper half
plane.

As described in the introduction, prior investigations [1, 3, 9] have resolved these
two problems for the cases α = 0 and α = 1 (and thus, by continuity, also for small
intervals containing these values). The case α = 1/2 may also be handled easily: we
compute that the functionL1/2(x) attains its first negative value at x = 32. This function
is indeed positively skewed: it is negative at just eight other integers less than 1000
(namely, 80, 200, 286, 288, 290, and 292–294), and at fewer than 545 000 different
positive integers below 108. Also, we calculate that B∗1/2(log 1132) = −0.0223 . . .
when T = 2000, so L1/2(x) < 0 at infinitely many integers x by Theorem 3.2.

Theorem 3.2 may presumably be employed in a similar way to establish
the existence of sign changes in Lα(x) for other α ∈ [0, 1]. However, since
1/|(1 − 2α)ζ(1/2)| increases as α→ 1/2, we expect that this strategy will be more
difficult as α approaches 1/2. Likewise, we expect that resolving Problem 4.2 for
additional values of α by explicit calculation as in [1] will be much more difficult for
α near 1/2.
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F 1. L1/4(eu) for 20 ≤ u ≤ 12 log 10.

The case α = 1/2 presents some additional questions. By Theorem 2.1, the function
Lα(x) converges to the negative real number ζ(2α)/ζ(α) for 1/2 < α < 1 under the
Riemann hypothesis, and so Lα(x) < 0 for sufficiently large x under this assumption
when α ∈ (1/2, 1). It is then natural to ask if the Riemann hypothesis implies
that L1/2(x) is also eventually negative. Also, by Theorem 2.4, sign constancy in
L1/2(x) =L1/2(x) + (log x)/2ζ(1/2) implies the Riemann hypothesis and a bound on
the multiplicity of the zeros of the zeta function, but it does not appear to violate
the linear independence criterion. We therefore propose the following two natural
problems. The first is very similar to the questions of Pólya and Turán.

P 4.3. Determine if L1/2(x) ≤ 0 for all x ≥ 17.

P 4.4. Does the Riemann hypothesis imply that L1/2(x) ≤ 0 for sufficiently
large x?

The next section describes a computational technique to investigate Problems 4.2
and 4.3.

5. Computational investigations

We employ the method of [1] to investigate the behaviour of the functions Lα(x)
for α = 1/4, α = 1/2, and α = 3/4 over a large interval. This method adopts a sieving
procedure to compute the values of the Liouville function across successive intervals.
We briefly describe the method here. First, we construct a table of values for λ(n) for
n < N, where N is a parameter of the algorithm. Rather than storing all N values of the
Liouville function, however, it is more efficient to store only the value of λ(n) where
gcd(n, 30) = 1, so that only ϕ(30) = 8 bits are needed for each block of 30 integers.
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20 21 22 23 24 25 26 27 28

F 2. L1/2(eu) for 20 ≤ u ≤ 12 log 10, and u/2ζ(1/2).

Second, we arrange the remaining integers we wish to test into successive blocks [a, b]
of size M, where M is another parameter of the method. Each of these blocks is then
sieved for prime factors in three main stages. In the first stage, we look for multiples
of large primes p, which satisfy b/(N − 1) ≤ p ≤

√
b. A multiple kp of such a prime

has k < N, and so our table may be used to determine λ(kp) = −λ(k), once multiples
of 2, 3, and 5 are taken into account. In the next stage, we sieve with the primes from
db/(N − 1)e − 1 down to 7, and whenever a multiple kp of such a prime p is detected
and λ(kp) is not yet known, we continue to factor k until we find a factor ` of k with
` < N. We may then use our table to determine λ(`), and hence λ(kp). After this,
any integers in the interval not yet accounted for have the form 2a3b5cq, where a, b
and c are nonnegative integers, and q is either 1 or a prime greater than

√
b. These

values are detected and the values of the Liouville function computed accordingly. We
then use these values of λ(n) to determine the weighted sums of the Liouville function
for certain α across this interval. Intervals were sieved independently across several
computers on a cluster at the Centre for Interdisciplinary Research in the Mathematical
and Computational Sciences (IRMACS) at Simon Fraser University, and the results
then combined to determine values of Lα(x) across the entire range.

We set N = 55 · 109 + 20, so that our table required approximately 1.7 GB of
storage, and set M = 2 · 107. We then used this method to compute Lα(x) with α = 1/4,
α = 1/2, and α = 3/4 for x ≤ 1012, using GMP [2] to compute each summand to 256
bits of precision. The positive and negative terms in each sum were accumulated
separately to avoid cancellation issues. We recorded the value of each of these sums at
regular intervals, and we exhibit the resulting plots of Lα(eu) in Figures 1–3. Figures 2
and 3 also exhibit the adjustment needed to create Lα(eu) for α = 1/2 and α = 3/4
by using (2.3), so u/2ζ(1/2) in the former case and ζ(3/2)/ζ(3/4) in the latter. Our
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20 21 22 23 24 25 26 27 28

F 3. L3/4(eu) for 20 ≤ u ≤ 12 log 10, and ζ(3/2)/ζ(3/4).

calculations verified that L1/4(x) < 0 for 11 ≤ x ≤ 1012, that L1/2(x) < 0 for 17 ≤ x ≤
1012, and that L3/4(x) > ζ(3/2)/ζ(3/4) for 1 ≤ x ≤ 1012. In fact, the minimum value
of L3/4(x) over this range is −0.758 161 736 8 . . . , occurring at x = 835 018 639 060,
while ζ(3/2)/ζ(3/4) = −0.759 127 783 6 . . . . Thus, any nontrivial sign crossings in
Problems 4.2 or 4.3 for these values of α must occur for x > 1012.
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