COMPUTATION OF THE GENERALISED FACTORIAL FUNGTION

H. E. DORAN
(received 30 November 1963)

1. Introduction

The generalised factorial function $(z ; k)$! has been defined by SmithWhite and Buchwald [1] in terms of an infinite product which converges very slowly, about 10^{5} terms being required for four figure accuracy if $|z|=10$. A method is given for the computation of $(z ; k)!$ for $0<|z| \leqq 10$ to four figure accuracy.

It will be seen that the method is easily adaptable to any value of $|z|$ and any desired order of accuracy. This paper deals only with the particular case $k=\mathbf{1}$.

2. The remainder term

$(z ; 1)!$ is defined by

$$
\begin{equation*}
\frac{1}{(z ; 1)!}=\sqrt{ } 2 \lim _{2 N \rightarrow \infty}\left\{(2 N)^{-z} \prod_{0<R(\zeta)<2 N}\left(1+\frac{z}{\zeta}\right)\right\} \tag{1}
\end{equation*}
$$

where the ζ are the roots of the integral function $\sin \pi \zeta+\pi \zeta$.
We may rewrite (1) to define $(z ; 1)!$ by an equivalent relation

$$
\begin{equation*}
\frac{1}{(z ; 1)!}=\sqrt{ } 22^{-z} e^{\gamma z} \prod_{n=1}^{\infty}\left\{\left(1+\frac{z}{\zeta_{n}}\right)\left(1+\frac{z}{\zeta_{n}}\right) e^{-z / n}\right\} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& \zeta_{n}=\lambda_{n}-\frac{\log 2 \pi \lambda_{n}}{\pi^{2} \lambda_{n}}+\frac{i \log 2 \pi \lambda_{n}}{\pi}+\varepsilon(n), \tag{3}\\
& \lambda_{n}=\frac{1}{2}(4 n-1) .
\end{align*}
$$

The numerical value of $\varepsilon(n)$ is less than 2×10^{-7} when $n=100$. The ζ_{n} can then easily be determined as accurately as necessary by an iterative technique such as the Newton-Raphson method.

Taking the logarithm of (2), it can be seen that

$$
\frac{1}{(z ; 1)!}=\sqrt{ } 22^{-z} e^{\gamma z+R_{N}(z)} \prod_{n=1}^{N}\left\{\left(1+\frac{z}{\zeta_{n}}\right)\left(1+\frac{z}{\bar{\zeta}_{n}}\right) e^{-z / n}\right\}
$$

where

$$
\begin{equation*}
R_{N}(z)=\sum_{n=N+1}^{\infty}\left\{\log \left(1+\frac{z}{\zeta_{n}}\right)+\log \left(1+\frac{z}{\bar{\zeta}_{n}}\right)-\frac{z}{n}\right\} . \tag{4}
\end{equation*}
$$

Expanding (4)

$$
R_{N}(z)=z \sum_{n=N+1}^{\infty}\left\{\frac{1}{\zeta_{n}}+\frac{1}{\zeta_{n}}-\frac{1}{n}\right\}+\sum_{r=2}^{\infty} S_{r}(z)
$$

where

$$
S_{r}(z)=\sum_{n=N+1}^{\infty}\left\{(-1)^{r+1} \frac{z^{r}}{r}\left(\frac{1}{\zeta_{n}^{r}}+\frac{1}{\zeta_{n}^{r}}\right)\right\} .
$$

It can be shown that if $|z| \leqq 10$, and N is chosen so that $|z| / N \leqq 1 / 10$, for $r_{0}=5,\left|\sum_{r=r_{0}}^{\infty} S_{r}(z)\right|$ is less than 3×10^{-6}. Thus

$$
\begin{equation*}
R_{N}(z)=z \sum_{n=N+1}^{\infty}\left\{\frac{1}{\zeta_{n}}+\frac{1}{\bar{\zeta}_{n}}-\frac{1}{n}\right\}+\sum_{r=2}^{4} S_{r}(z) \tag{5}
\end{equation*}
$$

with an error which is less than 3×10^{-6}. Using the Euler-Maclaurin Formula [2], with (3), we have that

$$
\begin{aligned}
\sum_{n=N_{+1}}^{\infty}\left\{\frac{1}{\zeta_{n}}+\frac{1}{\bar{\zeta}_{n}}-\frac{1}{n}\right\} & =-\frac{1}{2}\left\{\frac{2\left(\lambda_{N}-\frac{\log 2 \pi \lambda_{N}}{\pi^{2} \lambda_{N}}\right)}{\left(\lambda_{N}-\frac{\log 2 \pi \lambda_{N}}{\pi^{2} \lambda_{N}}\right)^{2}+\left(\frac{\log 2 \pi \lambda_{N}}{\pi}\right)^{2}}-\frac{1}{N}\right\} \\
& +\int_{2 \lambda_{N}}^{\infty}\left\{\frac{1}{u} \frac{\left(1-\frac{4 \log \pi u}{\pi^{2} u^{2}}\right)}{\left(1-\frac{4 \log \pi u}{\pi^{2} u^{2}}\right)^{2}+4\left(\frac{\log \pi u}{\pi u}\right)^{2}}-\frac{1}{u+1}\right\} d u
\end{aligned}
$$

the error involved here being less than 2×10^{-7}.
Expansion of the integrand by the Binomial Theorem gives, after integration, that

$$
\sum_{n=N+1}^{\infty}\left\{\frac{1}{\zeta_{n}}+\frac{1}{\zeta_{n}}-\frac{1}{n}\right\}=-\frac{1}{2 \lambda_{N}}\left\{1+\frac{1}{4 \lambda_{N}}+\frac{\left(\log 2 \pi \lambda_{N}\right)^{2}}{\pi^{2} \lambda_{N}}\right\}+\frac{1}{2 N}
$$

with an error which is less than 1×10^{-6}. Applying the same technique to the other terms of (5) we obtain finally that

$$
\begin{aligned}
R_{N}(z)= & z\left\{\frac{1}{2 N}-\frac{1}{2 \lambda_{N}}\left[1+\frac{1}{4 \lambda_{N}}+\frac{\left(\log 2 \pi \lambda_{N}\right)^{2}}{\pi^{2} \lambda_{N}}\right]\right\} \\
& -\frac{z^{2}}{2}\left\{\frac{1}{\lambda_{N}}-\frac{3}{\pi^{2} \lambda_{N}^{3}}\left(\log 2 \pi \lambda_{N}\right)^{2}\right\} \\
& +\frac{z^{3}}{3}\left\{\frac{1}{\lambda_{N}^{2}}-\frac{1}{\lambda_{N}^{3}}\right\}-\frac{z^{4}}{12 \lambda_{N}^{3}}
\end{aligned}
$$

with an error of less than 4×10^{-5}. It can be noted that if $10 \leqq|z| \leqq 100$ and $N=1,000$ the above formula still holds with an error of less than 3×10^{-5}.

3. Computations of particular cases

In connection with a problem of the infinite strip with mixed boundary conditions, some values of $(z ; 1)$! were computed.

These values were checked by use of the formula

$$
(z ; 1)!(-z ; 1)!=\frac{\pi z}{\sin \pi z+\pi z},
$$

it being found that by taking $N=100$ for $0<|z| \leqq 10$, and $N=1,000$ for $10<|z| \leqq 60$ there was agreement to at least four figures.

For the case $|z|=10,(z ; 1)$! was calculated using $N=100$ and $N=1,000$ and here again agreement to four figures was obtained.

Table 1
$(n ; 1)!$
$(n=1,2, \cdots, 10)$

n	$(n ; 1)!$	n	$(n ; 1)!$
1	1.728	6	1.394×10^{2}
2	3.686	7	9.806×10^{3}
3	1.128×10^{2}	8	7.872×10^{4}
4	4.579×10^{2}	9	7.102×10^{5}
5	3.209×10^{2}	10	7.119×10^{6}

Table 2

	$(2 n-1 ; 1)!$	$(n=6,7, \cdots, 30)$.	
n	$(2 n-1 ; 1)!$	n	$(2 n-1 ; 1)!$
6	7.844×10^{7}	19	2.737×10^{48}
7	1.226×10^{10}	20	4.058×10^{66}
8	2.580×10^{12}	21	6.656×10^{49}
9	7.032×10^{14}	22	1.202×10^{58}
10	2.406×10^{17}	23	2.380×10^{56}
11	1.012×10^{80}	24	5.147×10^{58}
12	5.126×10^{28}	25	1.210×10^{63}
13	3.077×10^{85}	26	3.085×10^{66}
14	2.160×10^{28}	27	8.499×10^{69}
15	1.756×10^{81}	28	2.521×10^{78}
16	1.633×10^{84}	29	8.036×10^{78}
17	1.725×10^{87}	30	2.743×10^{80}
18	2.054×10^{40}		

Table 3
$\left(\zeta_{n} ; 1\right)!\quad(n=1,2, \cdots, 30)$

n	$\operatorname{Re}\left(\zeta_{n} ; 1\right)!$	$\operatorname{Im}\left(\zeta_{n} ; 1\right)!$
1	1.651	. 9093
2	3.379	1.692×10^{1}
3	-1.962×10^{8}	3.993×10^{2}
4	-1.862×10^{4}	1.234×10^{4}
5	-1.826×10^{6}	2.573×10^{5}
6	-2.199×10^{8}	-5.557×10^{7}
7	-3.221×10^{10}	-2.165×10^{10}
8	-5.472×10^{12}	-6.926×10^{12}
9	-9.673×10^{14}	-2.384×10^{15}
10	-1.169×10^{17}	-9.294×10^{17}
11	4.836×10^{19}	-4.130×10^{20}
12	7.424×10^{28}	-2.084×10^{23}
13	7.318×10^{25}	-1.183×10^{38}
14	6.974×10^{28}	-7.430×10^{38}
15	6.966×10^{21}	-5.057×10^{31}
16	7.483×10^{34}	-3.600×10^{34}
17	8.731×10^{37}	-2.488×10^{37}
18	1.108×10^{41}	-1.269×10^{40}
19	1.530×10^{44}	6.36×10^{42}
20	2.293×10^{47}	4.468×10^{46}
21	3.717×10^{60}	1.301×10^{50}
22	6.489×10^{58}	3.343×10^{68}
23	1.214×10^{57}	8.486×10^{68}
24	2.422×10^{40}	2.208×10^{60}
25	5.117×10^{63}	6.000×10^{48}
26	1.134×10^{67}	1.712×10^{87}
27	2.603×10^{70}	5.156×10^{78}
28	6.052×10^{73}	1.639×10^{76}
29	1.367×10^{77}	5.512×10^{77}
30	2.672×10^{00}	1.957×10^{41}

References

[1] W. B. Smith-White and V. T. Buchwald, A generalization of 2 !, This Journal 4 (1964), 327-341.
[2] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Fourth Edition, Cambridge (1927), p. 127.

Department of Applied Mathematics, University of Sydney.

