COMPUTATION OF THE GENERALISED FACTORIAL FUNCTION

H. E. DORAN

(received 30 November 1963)

1. Introduction

The generalised factorial function (z; k)! has been defined by Smith-White and Buchwald [1] in terms of an infinite product which converges very slowly, about 10⁵ terms being required for four figure accuracy if |z| = 10. A method is given for the computation of (z; k)! for $0 < |z| \leq 10$ to four figure accuracy.

It will be seen that the method is easily adaptable to any value of |z| and any desired order of accuracy. This paper deals only with the particular case k = 1.

2. The remainder term

(z; 1)! is defined by

(1)
$$\frac{1}{(z;1)!} = \sqrt{2} \lim_{2N \to \infty} \left\{ (2N)^{-z} \prod_{0 < R(\zeta) < 2N} \left(1 + \frac{z}{\zeta} \right) \right\}$$

where the ζ are the roots of the integral function $\sin \pi \zeta + \pi \zeta$.

We may rewrite (1) to define (z; 1)! by an equivalent relation

(2)
$$\frac{1}{(z;1)!} = \sqrt{2} \, 2^{-z} e^{\gamma z} \prod_{n=1}^{\infty} \left\{ \left(1 + \frac{z}{\zeta_n} \right) \left(1 + \frac{z}{\overline{\zeta_n}} \right) e^{-z/n} \right\}$$

where

(3)
$$\zeta_n = \lambda_n - \frac{\log 2\pi\lambda_n}{\pi^2\lambda_n} + \frac{i\log 2\pi\lambda_n}{\pi} + \varepsilon(n),$$
$$\lambda_n = \frac{1}{2}(4n-1).$$

The numerical value of $\varepsilon(n)$ is less than 2×10^{-7} when n = 100. The ζ_n can then easily be determined as accurately as necessary by an iterative technique such as the Newton-Raphson method.

Taking the logarithm of (2), it can be seen that

$$\frac{1}{(z;\,1)!} = \sqrt{2} \, 2^{-z} \, e^{\gamma z + R_N(z)} \prod_{n=1}^N \left\{ \left(1 + \frac{z}{\zeta_n} \right) \left(1 + \frac{z}{\overline{\zeta_n}} \right) e^{-z/n} \right\}$$

where

(4)
$$R_N(z) = \sum_{n=N+1}^{\infty} \left\{ \log \left(1 + \frac{z}{\zeta_n} \right) + \log \left(1 + \frac{z}{\overline{\zeta_n}} \right) - \frac{z}{n} \right\}.$$

Expanding (4)

$$R_N(z) = z \sum_{n=N+1}^{\infty} \left\{ \frac{1}{\zeta_n} + \frac{1}{\overline{\zeta_n}} - \frac{1}{n} \right\} + \sum_{r=2}^{\infty} S_r(z)$$

where

$$S_r(z) = \sum_{n=N+1}^{\infty} \left\{ (-1)^{r+1} \frac{z^r}{r} \left(\frac{1}{\zeta_n^r} + \frac{1}{\overline{\zeta_n^r}} \right) \right\}.$$

It can be shown that if $|z| \leq 10$, and N is chosen so that $|z|/N \leq 1/10$, for $r_0 = 5$, $|\sum_{r=r_0}^{\infty} S_r(z)|$ is less than 3×10^{-6} . Thus

(5)
$$R_N(z) = z \sum_{n=N+1}^{\infty} \left\{ \frac{1}{\zeta_n} + \frac{1}{\zeta_n} - \frac{1}{n} \right\} + \sum_{r=2}^{4} S_r(z)$$

with an error which is less than 3×10^{-6} . Using the Euler-Maclaurin Formula [2], with (3), we have that

$$\sum_{n=N+1}^{\infty} \left\{ \frac{1}{\zeta_n} + \frac{1}{\overline{\zeta}_n} - \frac{1}{n} \right\} = -\frac{1}{2} \left\{ \frac{2\left(\lambda_N - \frac{\log 2\pi\lambda_N}{\pi^2\lambda_N}\right)}{\left(\lambda_N - \frac{\log 2\pi\lambda_N}{\pi^2\lambda_N}\right)^2 + \left(\frac{\log 2\pi\lambda_N}{\pi}\right)^2} - \frac{1}{N} \right\}$$
$$+ \int_{2\lambda_N}^{\infty} \left\{ \frac{1}{u} \frac{\left(1 - \frac{4\log \pi u}{\pi^2 u^2}\right)}{\left(1 - \frac{4\log \pi u}{\pi^2 u^2}\right)^2 + 4\left(\frac{\log \pi u}{\pi u}\right)^2} - \frac{1}{u+1} \right\} du,$$

the error involved here being less than 2×10^{-7} .

Expansion of the integrand by the Binomial Theorem gives, after integration, that

$$\sum_{n=N+1}^{\infty} \left\{ \frac{1}{\zeta_n} + \frac{1}{\overline{\zeta}_n} - \frac{1}{n} \right\} = -\frac{1}{2\lambda_N} \left\{ 1 + \frac{1}{4\lambda_N} + \frac{(\log 2\pi\lambda_N)^2}{\pi^2\lambda_N} \right\} + \frac{1}{2N}$$

with an error which is less than 1×10^{-6} . Applying the same technique to the other terms of (5) we obtain finally that

343

[2]

H. E. Doran

$$\begin{split} R_N(z) &= z \left\{ \frac{1}{2N} - \frac{1}{2\lambda_N} \left[1 + \frac{1}{4\lambda_N} + \frac{(\log 2\pi\lambda_N)^2}{\pi^2\lambda_N} \right] \right\} \\ &- \frac{z^2}{2} \left\{ \frac{1}{\lambda_N} - \frac{3}{\pi^2\lambda_N^3} \left(\log 2\pi\lambda_N \right)^2 \right\} \\ &+ \frac{z^3}{3} \left\{ \frac{1}{\lambda_N^2} - \frac{1}{\lambda_N^3} \right\} - \frac{z^4}{12\lambda_N^3} \end{split}$$

with an error of less than 4×10^{-5} . It can be noted that if $10 \le |z| \le 100$ and N = 1,000 the above formula still holds with an error of less than 3×10^{-5} .

3. Computations of particular cases

In connection with a problem of the infinite strip with mixed boundary conditions, some values of (z; 1)! were computed.

These values were checked by use of the formula

$$(z; 1)! (-z; 1)! = \frac{\pi z}{\sin \pi z + \pi z}$$

it being found that by taking N = 100 for $0 < |z| \le 10$, and N = 1,000 for $10 < |z| \le 60$ there was agreement to at least four figures.

For the case |z| = 10, (z; 1)! was calculated using N = 100 and N = 1,000 and here again agreement to four figures was obtained.

(n; 1)! $(n = 1, 2, \cdots, 10)$ * (n; 1)! 78 (n; 1)! 1 1.728 6 1.394×10* 2 7 9.806×10^{3} 3.666 3 8 7.872×10^{4} 1.128×10^{1} 7.102×10^{5} 4 4.579×10^{1} 9 3.209×10^{8} 10 7.119×104 5

TABLE 1

344

	(2n-1; 1)!	$(n=0,7,\cdots,3)$	30).
n	(2n-1; 1)!	n	(2n-1; 1)!
6	7.844 × 107	19	2.737×10^{43}
7	$1.226 imes 10^{10}$	20	$4.058 imes 10^{46}$
8	2.580×10^{12}	21	$6.656 imes 10^{49}$
9	$7.032 imes 10^{14}$	22	$1.202 imes 10^{58}$
10	2.406×10^{17}	23	$2.380 imes 10^{56}$
11	$1.012 imes 10^{90}$	24	$5.147 imes 10^{59}$
12	$5.126 imes 10^{22}$	25	$1.210 imes 10^{63}$
13	$3.077 imes 10^{35}$	26	$3.085 imes 10^{66}$
14	$2.160 imes 10^{28}$	27	$8.499 imes 10^{60}$
15	1.756×10^{31}	28	$2.521 imes 10^{73}$
16	$1.633 imes 10^{34}$	29	$8.036 imes 10^{76}$
17	$1.725 imes 10^{37}$	30	$2.743 imes 10^{80}$
18	2.054×10^{40}		

TABLE 2

(2n-1; 1)! $(n = 6, 7, \cdots, 30).$

TABLE 3

$(\zeta_n; 1)!$	$(n=1,2,\cdot\cdot\cdot,30)$
(58) -/-	(,, = 1, 1, , 00)

n	Re $(\zeta_n; 1)!$	Im $(\zeta_n; 1)!$
1	1.651	.9093
2	3.379	1.692×10^{1}
3	-1.962×10^{s}	3.993×10^{2}
4	$-1.862 imes 10^4$	$1.234 imes 10^4$
5	$-1.826 imes 10^{6}$	$2.573 imes10^{5}$
6	-2.199×10^{8}	-5.557×10^{7}
7	$-3.221 imes 10^{10}$	$-2.165 imes 10^{10}$
8	-5.472×10^{12}	-6.926×101
9	$-9.673 imes 10^{14}$	$-2.384 imes 10^{11}$
10	-1.169×1017	$-9.294 imes 10^{12}$
11	$4.836 imes 10^{19}$	$-4.130 imes 10^{20}$
12	$7.424 imes 10^{22}$	$-2.084 imes 10^{22}$
13	$7.318 imes 10^{25}$	-1.183×10 [№]
14	6.974×10^{28}	
15	$6.966 imes 10^{31}$	$-5.057 imes 10^{31}$
16	$7.483 imes 10^{34}$	-3.600×10*4
17	$8.731 imes 10^{37}$	$-2.486 imes 10^{37}$
18	1.108×10^{41}	$-1.269 imes 10^{40}$
19	$1.530 imes 10^{44}$	6.36 × 104
20	$2.293 imes 10^{47}$	4.468×1044
21	$3.717 imes 10^{50}$	$1.301 imes10^{50}$
22	6.489×10 ⁵⁸	$3.343 imes 10^{54}$
23	1.214×10^{57}	$8.486 imes 10^{54}$
24	$2.422 imes 10^{40}$	$2.208 imes10^{44}$
25	5.117×1043	6.000×10 ⁴⁴
26	1.134×10^{67}	$1.712 imes 10^{67}$
27	$2.603 imes 10^{70}$	5.156×10**
28	$6.052 imes 10^{78}$	$1.639 imes 10^{74}$
29	1.367 × 1077	5.512×10"

References

- W. B. Smith-White and V. T. Buchwald, A generalization of z!, This Journal 4 (1964), 327-341.
- [2] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Fourth Edition, Cambridge (1927), p. 127.

Department of Applied Mathematics, University of Sydney.