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Total Nonnegativity and Stable Polynomials

Kevin Purbhoo

Abstract. We consider homogeneousmultiaõne polynomialswhose coeõcients are the Plücker co-
ordinates of a point V of theGrassmannian. We show that such a polynomial is stable (with respect
to the upper half plane) if and only if V is in the totally nonnegative part of the Grassmannian. To
prove this, we consider an action of matrices on multiaõne polynomials. We show that a matrix
A preserves stability of polynomials if and only if A is totally nonnegative. _e proofs are applica-
tions of classical theory of totally nonnegativematrices, and the generalized Pólya–Schur theory of
Borcea and Brändén.

1 Introduction

A multivariate polynomial f (x) = f (x1 , . . . , xn) ∈ C[x] is said to be stable if either
f ≡ 0 or f (u) /= 0 for all u = (u1 , . . . , un) ∈ Hn , where H = {u ∈ C ∣ Im(u) > 0}
denotes the upper half plane in C. _e theory of stable polynomials generalizes and
vastly extends the theory ofunivariate real polynomialswith only real roots. Although
the idea of considering polynomials (andmore generally analytic functions) with no
zeros inside a domain has an extensive history in complex analysis,more recent devel-
opments— notably the generalized Pólya–Schur theory of Borcea and Brändén [1,2]
— have generated new interest in the subject, and a wide variety of new applications
have been discovered in areas such as matrix theory, statistical mechanics, and com-
binatorics. We refer the reader to the survey [18] for an introduction to the theory of
stable polynomials and an overview of some of its applications.
Central to the theory is the vector spaceCMA[x] ofmultiaõne polynomials. _ese

are the polynomials in C[x] that have degree at most one in each individual variable.
_e Grace–Walsh–Szegö coincidence theorem [7, 17, 19] allows one to reduce many
problems about stable polynomials to the multiaõne case; moreover, a number of
applications of the theory, notably those involving matroid theory [4, 5], statistical
mechanics [3], and this paper, involve only multiaõne polynomials.

_e Grassmannian Gr(k, n) is the space of all k-dimensional linear subspaces of
Cn . _ere are two common ways to specify a point V ∈ Gr(k, n). _e simplest is
as the column space of a rank k complex matrix M ∈ Mat(n × k); however, for any
given V , this matrix M is not unique. A more canonical way to specify V is via its
Plücker coordinates. Let M[I] denote the k× k submatrix ofM with row set I ∈ (

[n]
k ).

_e Plücker coordinates of V are the maximal minors [det(M[I]) ∶ I ∈ (
[n]
k )]. _ese

are homogeneous coordinates for V ; i.e., they are well-deûned up to rescaling by a
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nonzero constant. We can encode the Plücker coordinates of V into a homogeneous
multiaõne polynomial of degree k: we will say that the polynomial

∑

I∈([n]k )

det(M[I])xI
∈ CMA

[x]

represents V , where xI ∶= ∏i∈I x i . Not every homogeneous multiaõne polynomial
of degree k represents a point of Gr(k, n). A necessary and suõcient condition is
that the coeõcients satisfy the quadratic Plücker relations, the deûning equations for
Gr(k, n) as a projective variety.

If V ∈ Gr(k, n) is the column space of amatrix M whosemaximal minors are all
nonnegative, we say that V is totally nonnegative. _e totally nonnegative part of the
Grassmannian, denotedGr≥0(k, n), is the set of all totally nonnegative V ∈ Gr(k, n).

_e totally nonnegative part of a �ag variety (the Grassmannian being the most
important example) was ûrst introduced by Lusztig [12] as a part of a generalization
of the classical theory of totally nonnegativematrices. Rietsch [16] showed that the to-
tally nonnegative part of any �ag variety has a decomposition into cells;Marsh andRi-
etsch [14] described a parameterization of the cells. In the case of the Grassmannian,
Lusztig’s deûnition agrees with the deûnition above. Postnikov [15] described the in-
dexing of the cells Gr≥0(k, n) and their parameterizations in combinatorially explicit
ways, making Gr≥0(k, n) a very accessible object. Total nonnegativity has played a
key role in a number of recent applications. Some of these include: the development
of cluster algebras [6]; soliton solutions to theKP equation [10]; the (remarkably well-
behaved) positroid stratiûcation of the Grassmannian [9], which has applications to
geometric Schubert calculus [8]. Our ûrst main result relates total nonnegativity on
the Grassmannian to stable polynomials.

_eorem 1.1 Suppose f (x) ∈ CMA[x] is a homogeneous multiaõne polynomial of
degree k that represents a point V ∈ Gr(k, n). _en f (x) is stable if and only if V is
totally nonnegative.

_e “phase theorem” of Choe, Oxley, Sokal, andWagner [5, _eorem 6.1] asserts
that if f (x) ∈ C[x] is stable and homogeneous, then all of its coeõcients have the
same complex phase; i.e., there is a scalar α ∈ C× such that all terms of α f (x) have
nonnegative real coeõcients. _e “only if ” direction of_eorem 1.1 is an immediate
consequence. In general, however, the converse of the phase theorem is false: for ex-
ample, x1x2 + x3x4 is not stable. Although there are necessary and suõcient criteria
for a polynomial to be stable (see _eorem 2.1), they can be cumbersome to use in
practice, and they do not readily yield an explicit description of the set of stable poly-
nomials as a semialgebraic set. It is therefore interesting and surprising that adding
a well-known algebraic condition on the coeõcients (the Plücker relations) reduces
the problem of testing stability to a simple nonnegativity condition. _is can be seen
quite explicitly in the case k = 2, n = 4. Here, the necessary and suõcient conditions
for stability are tractable, and the Plücker relation trivializes them (see Remark 2.3).
A point V ∈ Gr(k, n) determines a representable matroid of rank k on the set

[n], by taking the bases to be the indices of the nonzero Plücker coordinates. If V is

https://doi.org/10.4153/CMB-2018-006-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2018-006-7


838 K. Purbhoo

totally nonnegative, this matroid is called a positroid. _e class of positroids is com-
binatorially well-behaved compared to the class of representablematroids. For exam-
ple, positroids can be enumerated [21]. Recently,Marcott [13] showed that positroids
have the Rayleigh property, a property of matroids closely related to theory of stable
polynomials. _is result indicates another relationship betweenGr≥0(k, n) and stable
polynomials; it has a similar �avour to _eorem 1.1, but neither theorem implies the
other.

To prove _eorem 1.1, we establish a second connection between the theory of
stable polynomials and total nonnegativity. Recall that a matrix A ∈ Mat(n × n) is
totally nonnegative if all minors of A are nonnegative.

Let Λ[x] denote the complex exterior algebra generated by x, with multiplication
denoted ∧, and relations x i ∧ x j + x j ∧ x i = 0, for i , j ∈ [n]. Given an increasing
sequence I = {i1 < i2 < ⋅ ⋅ ⋅ < ik} ⊂ [n], write x∧I ∶= x i1 ∧ x i2 ∧ ⋅ ⋅ ⋅ ∧ x ik . _ere is a
unique vector space isomorphism ξ ∶ CMA[x] → Λ[x] such that ξ(xI) = x∧I . Since
Λ[x] is a Mat(n × n)-algebra, this isomorphism gives us a linear action of Mat(n ×
n) on CMA[x]. Speciûcally, for A ∈ Mat(n × n), we have a linear endomorphism
A#∶CMA[x]→ CMA[x],

A# f (x) ∶= ξ−1(Aξ( f (x))) ,

where Ax j ∶= ∑i≥0 A i jx i , and A(x j1 ∧ ⋅ ⋅ ⋅ ∧ x jk) ∶= Ax j1 ∧ ⋅ ⋅ ⋅ ∧ Ax jk . An example of
this construction is given in (2.3) as part of the the proof of Lemma 2.6.
At ûrst glance, the deûnition of A# seems absurd: we have made a linear identi-

ûcation between part of a commutative algebra and a supercommutative algebra. In
fact, this issue was already present when we took Plücker coordinates as coeõcients
of a polynomial. _e intuition here is that the diòerence between these two structures
is in the signs; when we restrict our attention to totally nonnegative matrices, or the
totally nonnegative part of the Grassmannian, the signs are all positive, and the two
structures become compatible.

_eorem 1.2 For A ∈ Mat(n × n), the following are equivalent:
(i) A is totally nonnegative;
(ii) for every stable polynomial f (x) ∈ CMA[x], A# f (x) is stable.

In Section 2, we recall some of themajor results from the theory of stable polyno-
mials. We then apply this theory to obtain a key lemma, which is roughly the n = 2
case of _eorem 1.2. In Section 3, we discuss some pertinent elements of the theory
of total nonnegativity and total positivity, for matrices and for theGrassmannian. We
use these and our results from Section 2 to prove _eorems 1.1 and 1.2. In Section 4
we look at a handful of related results, including other families of homogeneous mul-
tiaõne stable polynomials, a family of inûnitesimal stability preservers, and a slightly
stronger version of the phase theorem.

2 Multiaffine Stable Polynomials

We beginwith an example inwhichwe determine necessary and suõcient conditions
for a degree 2 homogeneous polynomial in 4 variables to be stable. _is turns out
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to be the fundamental brute-force calculation needed to prove our main theorems.
To obtain such conditions, we use the following criterion for stability of multiaõne
polynomials with real coeõcients.

_eorem 2.1 (Brändén [4]) If f (x) ∈ RMA[x] is a multiaõne polynomial with real
coeõcients, deûne

∆ i j f (x) ∶= ∂
∂x i
f (x) ⋅ ∂

∂x j
f (x) − f (x) ⋅ ∂2

∂x i ∂x j
f (x).

_en f (x) is stable if and only if ∆ i j f ∶Rn → R is a nonnegative function for all i , j ∈
[n], i /= j.

Example 2.2 Let a12 , a13 , a14 , a23 , a24 , a34 ≥ 0. Consider the polynomial
f (x) = a12x1x2 + a13x1x3 + a14x1x4 + a23x2x3 + a24x2x4 + a34x3x4 .

By _eorem 2.1, f (x) is stable if and only if ∆ i j f ≥ 0 for all i , j. We compute

(2.1) ∆13 f (x) = a12a23x2
2 + (a12a34 − a13a24 + a14a23)x2x4 + a14a34x2

4 .
Since a i j ≥ 0, ∆13 f is nonnegative if and only if its discriminant is nonpositive, i.e.,

(2.2) a2
12a

2
34 + a

2
13a

2
24 + a

2
14a

2
23 − 2a12a34a13a24 − 2a13a24a14a23 − 2a12a34a14a23 ≤ 0.

Since this expression is invariant under permutations of [4], we obtain the same in-
equality for every other pair of indices i , j ∈ [4]. Hence, inequality (2.2) is a necessary
and suõcient condition for f (x) to be stable.

Remark 2.3 Gr(2, 4) is deûned by a single Plücker relation: a12a34 − a13a24 +

a14a23 = 0. If this holds, then (2.1) is clearly nonnegative, and so (2.2) holds. _is
proves theGr(2, 4) case of_eorem 1.1. However, in general, it is not straightforward
to deduce_eorem 1.1 from _eorem 2.1 using the Plücker relations.

A C-linear map satisfying _eorem 1.2(ii) is called a stability preserver. As part
of their vast generalization of the Pólya–Schur theorem, Borcea and Brändén proved
that there is an equivalence between stability preservers, and stable polynomials in
twice as many variables. We state only the multiaõne case of their theorem, as we
will not need the result in its full generality.

_eorem 2.4 (Borcea–Brändén [1]) Let ϕ∶CMA[x] → CMA[x] be a C-linear map.
_en ϕ is a stability preserver if and only if one the following statements is true:
(i) _ere exists a linear functional η∶CMA[x] → C and a stable polynomial g(x) ∈

CMA[x] such that for every f (x) ∈ CMA[x], ϕ f (x) = η( f (x))g(x).
(ii) ϕ(∏n

i=1(x i + y i)) ∈ C[x, y] is stable.

We will refer to stability preservers satisfying (i) as rank-one stability preservers,
and those satisfying (ii) as true stability preservers. In (ii), we are implicitly extend-
ing ϕ from a C-linear map CMA[x] → CMA[x] to the unique C[y]-linear map
ϕ∶CMA[x, y] → CMA[x, y] that agrees with the original ϕ on C[x]. An important
property of true stability preservers is that they are preserved by this natural type of
extension.
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Proposition 2.5 A linear map ϕ∶CMA[x] → CMA[x] is a true stability preserver if
and only if for any additional set of variables z = (z1 , . . . , zm), theC[z]-linear extension
ϕ∶CMA[x, z]→ CMA[x, z] is a true stability preserver.

Proof By deûnition, ϕ∶CMA[x]→ CMA[x] is a true stability preserver if and only if

h(x, y) = ϕ( ∏n
i=1(x i + y i))

is stable. _e extension ϕ∶CMA[x, z] → CMA[x, z] is a true stability preserver if and
only if

ϕ( ∏n
i=1(x i + y i) ⋅∏

m
j=1(z j +w j)) = h(x, y)∏m

j=1(z j +w j)

is stable. It is straightforward to verify that h(x, y) ∈ C[x, y] is stable if and only if
h(x, y)∏m

j=1(z j +w j) ∈ C[x, y, z,w] is stable. _e result follows.

In general, rank-one stability preservers do not have this extendability property,
unless they are also true stability preservers.
As a consequence of Hurwitz’s theorem in complex anlysis, the set of stable poly-

nomials in CMA[x] is closed (in the standard topology). It follows that the set of true
stability preservers CMA[x] → CMA[x], being linearly equivalent to the set of stable
polynomials in CMA[x, y], is also closed. _ese facts will be used in the next section.

We conclude this section by using _eorem 2.4 to prove the following lemma,
which is almost-but-not-quite the n = 2 case of_eorem 1.2.

Lemma 2.6 If Q ∈ Mat(2 × 2) is totally nonnegative, then Q#∶CMA[x1 , x2] →

CMA[x1 , x2] is a true stability preserver.

Proof Write Q = ( a cb d ). _en we have

(2.3)
Q#(1) = 1, Q#(x1) = ax1 + bx2 ,

Q#(x2) = cx1 + dx2 , Q#(x1x2) = (ad − bc)x1x2 .

_us, Q# is a true stability preserver if and only if
h(x, y) = y1 y2 + ax1 y2 + bx2 y2 + cx1 y1 + dx2 y1 + (ad − bc)x1x2

is stable.
Now assume that Q is totally nonnegative. _en all coeõcients of h(x, y) are non-

negative. As we saw in Example 2.2, h(x, y) is stable if and only if the inequality (2.2)
holds, which in this case amounts to

(ad − bc)2
+ a2d2

+ b2c2 − 2ad(ad − bc) − 2bc(ad − bc) − 2adbc ≤ 0,
or equivalently, −4bc(ad − bc) ≤ 0. Since b ≥ 0, c ≥ 0, and ad − bc ≥ 0, the result
follows.

3 Total Positivity

Amatrix A ∈ Mat(n × n) is totally positive if all of its minors are strictly positive. We
denote the set of totally positive n × n matrices by Mat>0(n × n), and we denote the
set of totally nonnegative matrices by Mat≥0(n × n). Lying between these is the set
GL≥0(n) = Mat≥0(n× n)∩GL(n) of invertible totally nonnegativematrices. Each of

https://doi.org/10.4153/CMB-2018-006-7 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2018-006-7


Total Nonnegativity and Stable Polynomials 841

the sets Mat≥0(n × n),Mat>0(n × n) and GL≥0(n) is amultiplicative semigroup, i.e.,
closed under matrix multiplication. We have containments

Mat>0(n × n) ⊂ GL≥0(n) ⊂ Mat≥0(n × n),

andMat≥0(n × n) is the closure of all of these sets [20].
_e Loewner–Whitney theorem [11] describes the generators of GL≥0(n). Let

D i(t) ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 0
0 1 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 t 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 1 0
0 0 ⋅ ⋅ ⋅ 0 ⋅ ⋅ ⋅ 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, E i(t) ∶=

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0
0 1 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 1 t 0 0
0 0 0 1 0 0
⋮ ⋮ ⋱ ⋮ ⋮

0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 1 0
0 0 ⋅ ⋅ ⋅ 0 0 ⋅ ⋅ ⋅ 0 1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where in each case, t appears in row i. Let Fi(t) be the transpose of E i(t). GL≥0(n)
is the semigroup generated by all D i(t), E i(t), Fi(t), t > 0. We use this description
to prove_eorem 1.2.

Proof of_eorem 1.2 We begin with the implication (i)⇒ (ii). We will show that if
A ∈ GL≥0(n), then A# is a true stability preserver. SinceMat≥0(n × n) is the closure
ofGL≥0(n), and the set of true stability preservers is closed, this implies the result for
A ∈ Mat≥0(n × n).

SinceGL≥0(n) is a semigroup, and (AB)# = A#B# for A, B ∈ Mat(n×n), it suõces
to prove this in the case where A is a generator for GL≥0(n × n), i.e., one of D i(t),
E i(t), Fi(t), t > 0. In each case, we can write

A =
⎛
⎜
⎝

Ik 0 0
0 Q 0
0 0 In−k−2

⎞
⎟
⎠
,

where 0 ≤ k ≤ n−2, and Q = ( a cb d ) is some totally nonnegative 2×2 matrix. Observe
that

(3.1) A#xI
=

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

xJ if k + 1 ∉ I, k + 2 ∉ I,
(axk+1 + bxk+2)xJ if k + 1 ∈ I, k + 2 ∉ I,
(cxk+1 + dxk+2)xJ if k + 1 ∉ I, k + 2 ∈ I,
(ad − bc)xk+1xk+2xJ if k + 1 ∈ I, k + 2 ∈ I,

where J = I ∖ {k + 1, k + 2}. Comparing (3.1) with (2.3), we see that A# is the unique
C[x1 , . . . , xk , xk+3 , . . . , xn]-linear extension of

Q#∶CMA
[xk+1 , xk+2]Ð→ CMA

[xk+1 , xk+2].

By Lemma 2.6, Q# is a true stability preserver, and therefore, by Proposition 2.5, so
is A#.
For the implication (ii)⇒ (i), suppose that A# is a stability preserver. If A is the

zero matrix, then A is certainly totally nonnegative. Otherwise, A# has rank at least 2
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(the image of A# contains 1 and at least one linear form), so by _eorem 2.4, it must
be a true stability preserver; i.e.,

h(x, y) = A#(
n
∏
i=1

(x i + y i))

is stable. Since A# preserves degree, h(x, y) is homogeneous of degree n, and since
A# acts trivially on constants, the coeõcient of y[n] in h(x, y) is 1. _erefore, by the
phase theorem, all coeõcients of h(x, y) must be nonnegative. More generally the
coeõcient of xIyJ in h(x, y) is theminor of A corresponding to row set I and column
set [n]∖ J. Since all minors of A are coeõcients of h(x, y), we deduce that all minors
of A are nonnegative.

_e totally positive part of the Grassmannian Gr(k, n), denoted Gr>0(k, n) is the
setofV ∈ Gr(k, n) such that all Plücker coordinatesofV are strictlypositive. Since to-
tally positivematrices are invertible, they act on theGrassmannian Gr(k, n), and the
totally positive part of theGrassmannian is an “orbit”. Speciûcally, letV0 ∈ Gr≥0(k, n)
be the column space of M0 = ( Ik

0 ). _en we have

Gr>0(k, n) = {AV0 ∣ A ∈ Mat>0(n × n)},

where AV0 is deûned to be the column space of the matrix AM0. _e totally non-
negative part of the Grassmannian Gr≥0(k, n) does not have such a straightforward
relationship to Mat≥0(n × n), but is the closure of Gr>0(k, n). _ese facts are essen-
tially Lusztig’s deûnitions of Gr>0(k, n) and Gr≥0(k, n) [12].

Proof of_eorem 1.1 As already noted in the introduction, if f (x) is a stable poly-
nomial representing V ∈ Gr(k, n), then by the phase theorem, V ∈ Gr≥0(k, n). It
remains to prove that if f (x) represents a point V ∈ Gr≥0(k, n), then f (x) is stable.

SinceGr≥0(k, n) is the closure ofGr>0(k, n), and since the set ofmultiaõne stable
polynomials is closed, it suõces to prove the theorem when V ∈ Gr>0(k, n). If this is
the case, there exists a totally positive matrix A ∈ Mat>0(n × n) such that V = AV0.
Note that the monomial x[k] represents V0 ∈ Gr≥0(k, n). Since the action of A# on
multiaõne polynomials is deûned via an isomorphism with the exterior algebra, we
have that f (x) = A#x[k]. By_eorem 1.2, A# is a stability preserver, and x[k] is stable,
so f (x) is stable.

4 Odds and Ends

_ere is a second connection between _eorems 1.1 and 1.2. If A ∈ Mat(n × n), let
A∨ ∈ Mat(n × n) denote thematrix A∨i , j = (−1)n− jAn+1−i , j . Let V ∈ Gr(n, 2n) be the
column space of the 2n × n matrix ( In

A∨ ). It is not hard to check the following facts:
● V ∈ Gr≥0(n, 2n) if and only if A ∈ Mat≥0(n × n).
● A#(∏

n
i=1(x i + y i)) represents V , with the variables ordered y1 < y2 < ⋅ ⋅ ⋅ < yn <

xn < ⋅ ⋅ ⋅ < x2 < x1.
_us, we see that _eorem 1.1 implies _eorem 1.2, though not by reversing the argu-
ment in Section 3: A# is a stability preserver if and only if A#(∏

n
i=1(x i + y i)) is stable

if and only if V ∈ Gr≥0(n, 2n) if and only if A ∈ Mat≥0(n × n).
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_ere is another class of stablepolynomials that comes from theminors of amatrix.
If M ∈ Mat(n × k), then the polynomial

(4.1) ∑

I∈([n]k )

∣ det(M[I])∣
2xI

∈ CMA
[x]

is always stable [5, _eorem 8.1]. _is raises the question: to what extent do these
classes overlap?

_e answer is: not much. For dimensional reasons, a general polynomial of the
form (4.1) does not represent a point of Gr≥0(k, n). On the other hand, with the
exception of a few small cases, a point ofGr>0(k, n) cannot be represented by a poly-
nomial of the form (4.1). For ease of notation, we present the argument for Gr(2, 6),
though the same idea works for k ≥ 2, n − k ≥ 4.

Proposition 4.1 Nopoint ofGr>0(2, 6) is represented by a polynomial of the form (4.1).

Proof Suppose to the contrary that ∑ aIxI represents a point of Gr>0(2, 6), and
aI = ∣bI ∣

2 where bI = det(M[I]) for some matrix M. _en both [aI ∶ I ∈ (
[6]
2 )] and

[bI ∶ I ∈ (
[6]
2 )] satisfy the Plücker relations. For Gr(2, 6) these are:

a ika j l = a i jakl + a i l a jk ,
b ikb j l = b i jbkl + b i lb jk

for 1 ≤ i < j < k < l ≤ 6. Multiplying the second equation by its complex conjugate
and using aI = ∣bI ∣

2, we ûnd that b i jbklb i lb jk and b i jbklb i lb jk are pure imaginary.
In particular,

b12b35b15b23 b12b36b16b23 b34b56b36b45 b13b45b15b34 b13b56b16b35

are all pure imaginary. _e product of these ûve pure imaginary numbers must be
pure imaginary. But instead, their product is a12a13a15a16a23a34a35a36a45a56 > 0.
_is is a contradiction.

A related result replaces the determinant of M[I] with the permanent. If M ∈

Mat(n × k) is amatrix with nonnegative real entries, then

(4.2) ∑

I∈([n]k )

per(M[I])xI
∈ CMA

[x]

is a stable polynomial [5, _eorem 10.2]. It would be surprising if it were typically
possible to represent a point of Gr>0(k, n) by a polynomial of the form (4.2). For
example, it is not hard to show this is impossible if k = 2, n ≥ 5, but at present we do
not have a general proof.

Remark 4.2 _e preceding facts raise the following question. For a matrix M ∈

Mat(n × k), could it be true that the polynomial

∑

I∈([n]k )

∣ det(M[I])∣xI
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is always stable in CMA[x]? If so, this would be a signiûcant generalization of _e-
orem 1.1. However, at present, we are not aware of any proof, counterexamples, or
compelling evidence.

A multiaõne polynomial f (x) ∈ RMA[x] is said to be a Rayleigh polynomial if
∆ i j f ∶Rn

≥0 → R is nonnegative for all i , j ≥ 0. _is is a relaxation of the criterion
for stability in _eorem 2.1: for the not-so-keenly observant, the Rayleigh condition
only requires ∆ i j f ≥ 0 on nonnegative inputs, whereas stability requires ∆ i j f ≥ 0 on
all real inputs. _us, real multiaõne stable polynomials are Rayleigh, but in general
the converse is not true. Given V ∈ Gr(k, n), let B ⊂ (

[n]
k ) be the set of indices

of the nonzero Plücker coordinates of V . B is (the set of bases of) a representable
matroid, and if V ∈ Gr≥0(k, n), B is called a positroid. Marcott has recently proved
the following result.

_eorem 4.3 (Marcott [13]) If B is a positroid, then B(x) = ∑I∈B xI is a Rayleigh
polynomial.

_is is much like the harder direction of _eorem 1.1, except that the coeõcients
in the polynomial have been stripped away. _e converse of_eorem 4.3 is not true:
ifB is matroid that is not a positroid, then B(x) may or may not be Rayleigh; there is
no known classiûcation of Rayleigh matroids. It is also not presently known whether,
for positroids, B(x) is a stable polynomial.

We mention two applications of the ideas developed in this paper. A linear en-
domorphism δ∶CMA[x] → CMA[x] is called an inûnitesimal stability preserver if
exp(tδ)∶CMA[x] → CMA[x] is a stability preserver for all t ≥ 0. _e set of all in-
ûnitesimal stability preservers is a closed convex cone in the space of all operators on
CMA[x]. _is can be seen as follows: if α and β are inûnitesimal stability preservers,
then for t ≥ 0, exp(t(α+β)) = limm→∞(exp( t

m α) exp(
t
m β))

m is a stability preserver,
and hence α + β is an inûnitesimal stability preserver.

Our ûrst application is an example of a non-trivial family of inûnitesimal stability
preservers. Let Z ∈ Mat(n×n) be amatrix with real diagonal entries and nonnegative
oò-diagonal entries. Deûne δZ ∶CMA[x]→ CMA[x] by

δZxJ
=∑

j∈J
(Z j j + ∑

i∈[n]∖J
Z i j

x i

x j
)xJ

for all J ⊂ [n], and extending linearly.

Proposition 4.4 If Z is tridiagonal (i.e., Z i j = 0 for ∣i − j∣ > 1), then for all t ≥ 0,
exp(tZ) is totally nonnegative, and exp(tδZ) = exp(tZ)#.

Proof _e fact that exp(tZ) is totally nonnegative follows from the Loewner–Whit-
ney theorem, one formulation of which is that matrices of this form inûnitesimally
generate GL≥0(n). To see that exp(tδZ) = exp(tZ)#, we need to verify that δZ =
∂
∂t exp(tZ)#∣ t=0. But since Z ↦ δZ , and Z ↦ ∂

∂t exp(tZ)#∣t=0 are both linear maps, it
suõces to check this when Z has a single nonzero entry; this is straightforward.
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Proposition 4.5 For any Z ∈ Mat(n×n) with real diagonal entries, and nonnegative
oò-diagonal entries, δZ is an inûnitesimal stability preserver.

Proof First suppose Z is tridiagonal. In this case, by Proposition 4.4 and _eo-
rem 1.2, we have that exp(tδZ) = exp(tZ)# is a stability preserver for all t ≥ 0; hence,
δZ is an inûnitesimal stability preserver.

Next suppose that Z = Q1Z1Q−1
1 for some permutation matrix Q1 and some tridi-

agonal matrix Z1. Since the deûnition of δZ is symmetric in variables x1 , . . . , xn , it is
clear that δZ is an inûnitesimal stability preserver in this case too.
Finally observe that a general Z can be written as

Z =
s

∑
i=1

Q iZ iQ−1
i ,

where each Z i is a real tridiagonal matrix with nonnegative oò-diagonal entries, and
Q i is a permutation matrix. Since the map Z ↦ δZ is linear, we see that δZ is a sum
of inûnitesimal stability preservers, and the result follows.

Remark 4.6 _e proof of Proposition 4.5 is fundamentally the same as the proof of
[3,Proposition 5.1],which also establishes a family of inûnitesimal stabilitypreservers.
_e two families are superûcially similar, but neither is a special case of the other.
Concretely, the operators in [3] are given by

x J
↦∑

j∈J
∑

i∈[n]∖J
Z i j(

x i

x j
− 1)x J

for a real symmetric matrix Z; the exponentials of the operators in this family are
doubly stochastic, and have the physical interpretation as generators for a symmetric
exclusion process on n sites. Proposition 4.5 seems to be about the best one can do to
mimic this construction for asymmetrical matrices.

As a second application, we prove a slightlymore general version of the phase the-
orem.

_eorem 4.7 Let f (x) ∈ C[x] be a stable polynomial. If f (x) has no terms of degree
k, k ∈ Z, then there exists a nonzero scalar α ∈ C× such that all terms of degree k + 1 in
α f (x) and all terms of degree k − 1 in −α f (x) have nonnegative real coeõcients.

Remark 4.8 _ere cannot be large gaps in the degrees of a stable polynomial: if
f (x) is stable and has no terms of degree k, then either f (x) has terms of both degree
k + 1 and k − 1, or k > maxdeg f (x), or k < mindeg f (x). _is can be deduced from
the corresponding fact for single variable polynomials, or from an argument similar to
the one presented below. It follows that _eorem 4.7 also implies the stronger version
of the phase theorem in [5,_eorem 6.2].

_e support of a polynomial f (x) is the set of monomials in C[x] that appear in
f (x) with a nonzero coeõcient. Deûne ∥ f (x)∥ to be the maximum of the absolute
values of the coeõcients of f (x). For example, if f (x) = 4x1x2

2 − x3
1 , then the support

of f (x) is {x1x2
2 , x3

1 }, and ∥ f (x)∥ = 4.
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Lemma 4.9 Let f (x) ∈ CMA[x] be amultiaõne stable polynomial. For every ε > 0,
there exists a polynomial fε(x) ∈ CMA[x] such that the following hold:
(i) fε(x) is stable;
(ii) ∥ f (x) − fε(x)∥ < ε;
(iii) for all k ∈ Z, if f (x) has no terms of degree k then fε(x) has no terms of degree k;
(iv) if f (x) has a term of degree k, then the support of fε(x) contains all multiaõne

monomials of degree k.

Proof Note that fε(x) = f (x) satisûes (i)–(iii), so the only diõculty is satisfying
(iv) as well. Take fε(x) ∈ CMA[x] such that (i)–(iii) above are satisûed, and subject
to these conditions fε(x) has maximal support. We claim that fε(x) must also satisfy
property (iv). If not, then we can ûnd a matrix A = E i(t) or Fi(t) such that for all
but ûnitely many t ∈ R, A# fε(x) has strictly larger support than fε(x). By taking
t > 0 suõciently small, we can achieve ∥ fε(x) − A# fε(x)∥ < ε − ∥ f (x) − fε(x)∥.
_us, ∥ f (x) − A# fε(x)∥ < ε, i.e., A# fε(x) satisûes (ii). By _eorem 1.2, and A# fε(x)
satisûes (i), and since A# preserves degree, A# fε(x) satisûes (iii). _us, we have a
contradiction in the choice of fε(x).

Proof of_eorem 4.7 By theGrace–Walsh–Szegö coincidence theorem [7, 17, 19] it
suõces to prove this in the case where f (x) ∈ CMA[x] is amultiaõne polynomial.
Consider fε(x), ε > 0. For any I ⊂ [n], and any i , j ∈ [n] ∖ I, we can write

fε(x) = xI
(a + bx i + cx j + dx ix j) + ⋅ ⋅ ⋅ ,

where the ⋅ ⋅ ⋅ indicates all terms that are not of this form. It is straightforward (using
_eorem 2.4 or elementary arguments) to check that the linear map ϕ∶CMA[x] →
CMA[x] deûned by

ϕ(xJ
) =

⎧⎪⎪
⎨
⎪⎪⎩

xJ∖I if I ⊂ J ⊂ I ∪ {i , j},
0 otherwise,

is a stability preserver. _us, ϕ( fε(x)) = a+bx i + cx j+dx ix j is stable andmultiaõne
in two variables. If ∣I∣ = k, then a = 0 from which it is easy to show that b and c have
same phase. By property (iv) of fε(x), b /= 0 if and only if c /= 0,which implies that the
“same phase” relation is transitive. _us, by considering all I with ∣I∣ = k, we see that
all terms of degree k+ 1 in fε(x) have the same phase. Similarly, ∣I∣ = k−2; then d = 0,
and we have the same result for terms of degree k − 1. If ∣I∣ = k − 1, then b = c = 0,
and we deduce that d and −a have the same phase. _is shows that the result is true
for the polynomial fε(x). _e theorem now follows, since f (x) = limε→0 fε(x).
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