
Appendix C

Fermionic coherent states

In this appendix we derive the field representation for fermion opera-
tors. In the Bose case the field representation was just the coordinate
representation which is also much used in quantum mechanics. For
Fermi operators the analog leads to the so-called Grassmann variables.
This means that the Fermi operator fields ψ̂(x) will be represented by
‘numbers’ ψ(x), which have to be anticommuting. As this might not be
so familiar, we shall first describe how this works.

Consider the quantum Fermi operators satisfying the commutation
relations

{âk, âl} = 0, {â†k, â
†
l } = 0, {âk, â†l } = δkl, (C.1)

where {A,B} = AB + BA. In the following we shall consider a finite
number n of such operators, k = 1, 2, . . ., n. (In the continuum limit of a
fermionic lattice field theory n→∞.) It is sometimes convenient to use
the 2n equivalent Hermitian operators

â1k = (âk + â†k)/
√

2, â2k = (âk − â†k)/i
√

2, (C.2)

with the commutation relations

{âpk, â
q
l } = δpqδkl, p, q = 1, 2. (C.3)

The non-Hermitian operators are used more often.
It is clarifying to look at a representation in Hilbert space. For n = 1

we have the ‘no-quantum state’ |0〉 which is by definition the eigenstate
of â with eigenvalue 0, â|0〉 = 0, and the one-quantum state |1〉 obtained
from |0〉 by the application of â†, |1〉 = â†|0〉. Further application of â†

on |0〉 gives zero, since (â†)2 = 0 because of (C.1) (note that |1〉 is the
‘no-quantum state’ for â†). So a pair of Fermi operators (â, â†) can be
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Appendix C. Fermionic coherent states 243

represented in a simple two-dimensional Hilbert space,

|0〉 →
(

0
1

)
, |1〉 →

(
1
0

)
, â→

(
0 0
1 0

)
, â† →

(
0 1
0 0

)
. (C.4)

For n > 1 we can take a tensor product of these representations. A basis
in Hilbert space is provided by

|k1 · · · kp〉 = â†k1
· · · â†kp

|0〉, p = 1, . . ., n , (C.5)

with the properties
n∑

p=0

1
p!

∑
k1···kp

|k1 · · · kp〉〈k1 · · · kp| = 1, (C.6)

〈k1 · · · kp|l1 · · · lq〉 = δpqδ
k1···kp

l1···lq , (C.7)

where

δ
k1···kp

l1···lq =
∑
permπ

(−1)πδk1
πl1
· · · δkp

πlp
. (C.8)

An arbitrary state |ψ〉 can be written as†

|ψ〉 = ψ(â†)|0〉, (C.9)

ψ(â†) =
n∑

p=0

1
p!
ψk1···kp

â†k1
· · · â†kp

, (C.10)

where ψk1···kp is totally antisymmetric in k1 · · · kp, and we sum over
repeated indices unless indicated otherwise. An arbitrary operator Â

can be written as

Â =
∑
pq

1
p!q!

Ak1···kp, l1···lq â
†
k1
· · · â†kp

âlq · · · âl1 , (C.11)

where all creation operators are ordered to the left of all annihilation
operators. This is called the normal ordered form of Â. A familiar
example is the number operator

N̂ = â†kâk, (C.12)

which has eigenvectors |k1 · · · kp〉 with eigenvalue p. Note that
Ak1···kp, l1···lq is in general not equal to 〈k1 · · · kp|Â|l1 · · · lq〉. Note also
that the coefficients Ak1···kp, l1···lq may themselves be elements of a

† Recall that repeated indices are summed, i.e. ψk1···kp â†
k1

· · · â†
kp

=∑n
k1=1 · · ·

∑n
kp=1 ψk1···kp â†

k1
· · · â†

kp
.
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244 Appendix C. Fermionic coherent states

Grassmann algebra, e.g. Â = c+k âk + â†kck, with anticommuting c and
c+.

Suppose now that there are eigenstates |a〉 of the âk with eigenvalue
ak. Then it follows that the ak have to be anticommuting:

akal = −alak. (C.13)

To see this, assume

âkal = εalâk, (C.14)

with ε some number �= 0. Then

âkâl|a〉 = âkal|a〉 = εalâk|a〉 = εalak|a〉
= −âlâk|a〉 = −εakal|a〉. (C.15)

Hence (C.13) has to hold. The ak cannot be ordinary numbers. Assuming
ak|a〉 = +|a〉ak leads to

âkal|a〉 = âk|a〉al = ak|a〉al = akal|a〉
= εalâk|a〉 = εalak|a〉, (C.16)

and it follows that

ε = −1. (C.17)

So the ‘numbers’ ak have to anticommute with the fermionic operators
as well.

We also introduce independent conjugate anticommuting a+k , assume
these to anticommute with the ak and the Fermi operators, and impose
the usual rules of Hermitian conjugation,

âk
†→ â†k, ak

†→ a+k , |a〉
†→ 〈a|, 〈a|â†k = 〈a|a+k , (C.18)

akal
†→ a+l a

+
k , {a

+
k , a

+
l } = 0. (C.19)

The anticommuting a+k are on the same footing as the ak.
The ak and a+k together with the unit element 1 generate a Grassmann

algebra. An arbitrary element f of this algebra has the form

f(a+, a) = f0,0 + fk,0a
+
k + f0,lal +

1
2!
fk1k2,0a

+
k1
a+k2

+ fk,la
+
k al + · · ·+ f1···n,1···na+1 · · · a+n an · · · a1,

(C.20)

where the f ’s are complex numbers.
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Appendix C. Fermionic coherent states 245

We have extended Hilbert space into a vector space over the elements
of a Grassmann algebra. The ak and a+k are called Grassmann variables
and f(a+, a) is called a function of the Grassmann variables. This
nomenclature could be somewhat misleading – the generators ak and a+k
are fixed objects and it is only the indices ‘k’ and ‘+’ that vary. However,
we will also be using other generators bk, b+k , ck, . . ., and so effectively
we draw elements from a Grassmann algebra with an infinite number of
generators. It is straightforward to construct a matrix representation of
these generators, but this does not seem to be useful because the rules
above are sufficient for our derivations.

We now express the |a〉 in terms of the basis vectors (C.5). The state
|a〉 is given by

|a〉 = e−akâ
†
k |0〉. (C.21)

Indeed, since (ak)2=0,

e−akâ
†
k =

∏
k

e−akâ
†
k =

∏
k

(1− akâ
†
k), (C.22)

and using âk(1 − akâ
†
k)|0〉 = akâkâ

†
k|0〉 = ak|0〉 (no summation over k)

gives

âk|a〉 =


∏
l 	=k

(1− alâ
†
l )


 âk(1− akâ

†
k)|0〉 =


∏
l 	=k

(1− alâ
†
l )


 ak|0〉

= ak|a〉. (C.23)

Note that ak commutes with pairs of fermion objects, e.g. [ak, alâ†m] = 0.
Two states |a〉 and |b〉 have the inner product

〈a|b〉 = 〈0|(1− â1a
+
1 ) · · · (1− âna

+
n )(1− bnâ

†
n) · · · (1− b1â

†
1)|0〉

=
∏
k

(1 + a+k bk)

= ea
+b, (C.24)

where

a+b ≡ a+k bk. (C.25)

We would like a completeness relation of the form

1̂ =
∫

da+ da
|a〉〈a|
〈a|a〉 . (C.26)
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246 Appendix C. Fermionic coherent states

For n = 1 this relation reads

1̂ = |0〉〈0|+ â†|0〉〈0|â

=
∫

da+ da (1− a+a)(1− aâ†)|0〉〈0|(1− âa+)

=
∫

da+ da [ (1− a+a)|0〉〈0| − aâ†|0〉〈0|

+ a+|0〉〈0|â+ aa+â†|0〉〈0|â ], (C.27)

which is satisfied if we define the Berezin ‘integral’:∫
da = 0,

∫
da+ = 0,

∫
da a = 1,

∫
da+ a+ = 1, (C.28)

where da and da+ are taken anticommuting. For general n we define

da = da1 · · · dan, da+ = da+n · · · da+1 , (C.29)

∫
dak = 0,

∫
dak ak = 1,

∫
da+k = 0,

∫
da+k a+k = 1 (C.30)

(no summation over k; anticommuting da’s and da+’s). The integral
sign symbolizes Grassmannian integration, which has some similarities
to ordinary integration (and differentiation, see (C.42)). Cumbersome
checking of minus signs can be avoided by combining every dak with
da+k into commuting pairs, as in the notation

da+ da ≡
n∏

k=1

da+k dak, (C.31)

which we shall use in the following. Similar pairing will be done repeat-
edly in the following.

We check the completeness relation (C.26) for general n by verifying
that it gives the right answer for an arbitrary inner product 〈ψ|φ〉.
Multiplying (C.9) by (C.26), we get

|ψ〉 =
∫

da+ da e−a+a ψ(a+)|a〉, (C.32)

ψ(a+) = 〈a|ψ〉 =
∑
p

1
p!
ψk1···kpa

+
k1
· · · a+kp

. (C.33)
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Appendix C. Fermionic coherent states 247

The inner product takes the form

〈ψ|φ〉 =
∫

da+ da e−a+a ψ(a+)†φ(a+)

=
∑
pq

1
p!q!

ψ∗
k1···kp

φl1···lq

×
∫

da+ da e−a+a akp
· · · ak1a

+
l1
· · · a+lq . (C.34)

By (C.28) the integral is non-zero only if p = q and (k1, . . ., kp) =
(l1, . . ., lp) up to a permutation,∫

da+ da e−a+aakp · · · ak1a
+
k1
· · · a+kp

=
∏

l 	=k1,···,kp

∫
da+l dal e

−a+
l al

×
∏

m=k1,···,kp

∫
da+m dam ama

+
m

= 1, (C.35)

and ∫
da+ da e−a+aakp

· · · al1a+k1
· · · a+lq = δpq δ

k1···kp

l1···lq . (C.36)

Hence, (C.34) gives

〈ψ|φ〉 =
∑
p

1
p!
ψ∗
k1···kp

φk1···kp , (C.37)

which is the right answer. Therefore (C.26) is correct for general n.
The connection between Grassmannian integration and differentiation

can be seen as follows. Left and right differentiation can be defined by
looking at terms linear in a translation over fermion bk,

f(a+ b) = f(a) + bkf
L
k (a) + 1

2bkblf
L
kl(a) + · · · (C.38)

= f(a) + fRk (a)bk + 1
2f

R
kl(a)bkbl + · · ·, (C.39)

which suggest

∂

∂ak
f(a) := fLk (a), (C.40)

f(a)

←
∂

∂ak
:= fRk (a) (C.41)
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248 Appendix C. Fermionic coherent states

(the extension to functions of both a and a+ is obvious). It follows that
‘integration’ is left differentiation:∫

dak f(a) =
∂

∂ak
f(a). (C.42)

We shall now derive some further important properties of Grassman-
nian integration. Let f(a+, a) be an arbitrary element of the Grassmann
algebra of the form by (C.20). Then∫

da+ da f(a+, a) = f1···n,1···n. (C.43)

It follows that the integration is translation invariant,∫
da+ da f(a+ + b+, a+ b) =

∫
da+ da f(a+, a). (C.44)

Furthermore, for an arbitrary matrix M ,∫
da+ da e−a+Ma =

∫
da+ da

(−1)n

n!
(a+Ma)n

=
∫

da+ da
1
n!
Mk1l1 · · ·Mknlnal1a

+
k1
· · · alna+kn

=
1
n!
Mk1l1 · · ·Mknlnδ

k1···kn

l1···ln . (C.45)

Using the identity

εk1···kn
εl1···ln = δk1···kn

l1···ln , (C.46)

where εk1···kn
is the n-dimensional ε tensor (with ε1···n = +1) we obtain

the formula ∫
da+ da e−a+Ma = detM, (C.47)

since

detM = M1l1 · · ·Mnlnεl1···ln . (C.48)

The more general formula∫
da+ da e−a+Ma+a+b+b+a = detM eb

+M−1b. (C.49)

follows from the translation invariance (C.44) by making the translation
a+ → a+ + b+M−1, a → a + M−1a. Note that (C.49) remains well
defined if detM → 0.
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Appendix C. Fermionic coherent states 249

We can interpret (C.44) as a translation invariance of the fermionic
‘measure’,

da+ = d(a+ + b+), da = d(a+ b). (C.50)

A linear multiplicative transformation of variables

ak → Tklal, a+k → a+l Slk, (C.51)

has the effect

d(a+S) = (detS)−1 da+, d(Ta) = (detT )−1 da, (C.52)

i.e. ∫
da+ da f(a+S, Ta) = det(ST )

∫
da+ da f(a+, a). (C.53)

This follows easily from (C.43) and (C.48). According to (C.52), the
fermionic measure transforms inversely to the bosonic measure dx:
d(Tx) = detT dx.

We note in passing the formula∫
da e−

1
2a

TMa = ±
√

detM, (C.54)

where T denotes transposition and M is an antisymmetric matrix (in
this case only the antisymmetric part of M contributes anyway). This
formula follows from (C.47), by making the transformation of variables(

ak
a+k

)
=

1√
2

(
1 −1
1 1

)(
bk
ck

)
, (C.55)

which leads to

detM = (−1)n/2
∫

db e−
1
2a

TMa

∫
dc e

1
2 b

TMb, (C.56)

where we assumed n to be even (otherwise detM = 0). As is obvious
from the left-hand side of (C.54), the square root of the determinant
of an antisymmetric matrix is multilinear in its matrix elements. It is
called a Pfaffian.

States |ψ〉 are represented by Grassmann wavefunctions ψ(a+) de-
pending only on the a+k (cf. (C.33)). The representatives of operators Â
depend in general also on the ak:

〈a|Â|a〉 =: A(a+, a). (C.57)
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250 Appendix C. Fermionic coherent states

In the normal ordered form (C.11), A(a+, a) is obtained from Â by
replacing everywhere the operators by their Grassmann representative,
keeping the same order, and multiplying by ea

+a:

A(a+, a) = ea
+a
∑
pq

1
p!q!

Ak1···kp, l1···lqa
+
k1
· · · a+kp

alq · · · al1 . (C.58)

(The ea
+a just comes from the normalization factor 〈a|a〉.)

It is now straightforward to derive the following rules:

Aψ(a+) := 〈a|Â|ψ〉

=
∫

db+ db e−b+bA(a+, b)ψ(b+), (C.59)

AB(a+, a) := 〈a|ÂB̂|a〉

=
∫

db+ db e−b+bA(a+, b)B(b+, a), (C.60)

Â = A(â†, â), B̂ = B(â†), Ĉ = C(â)

⇒ BAC(a+, a) = B(a+)A(a+, a)C(a). (C.61)

A useful identity is

Â = exp
[
â†kMklâl

]
⇒ A(a+, a) = exp

[
a+k (eM )klal

]
, (C.62)

This identity can be derived with well-known differentiation/integration
tricks. Let F (t) be given by

F (t) = 〈a|etâ†Mâ|a〉. (C.63)

To compute F (1) = A(a+, a) we differentiate with respect to t and
subsequently integrate, with the initial condition F (0) = exp(a+a).
Differentiation gives

F ′(t) = 〈a|â†Mâ etâ
†Mâ|a〉 = a+k Mkl〈a|âletâ

†Mâ|a〉. (C.64)

The âl needs to be pulled trough the exponential so that we can use
âl|0〉 = al|0〉. For this we use a similar differentiation trick:

Ĝl(t) ≡ e−tâ†Mââle
tâ†Mâ,

Ĝ′
l(t) = e−tâ†Mâ[âl, â†Mâ] etâ

†Mâ = MlmĜm(t), Ĝ(0) = âl,

Ĝl(t) = (etM )lmâm,

âle
tâ†Mâ = etâ

†Mâ(etM )lmâm. (C.65)

The differential equation for F (t) now reads

F ′(t) = a+k Mkl〈a|etâ
†Mâ|a〉(etM )lmam = (a+etMa)′ F (t), (C.66)
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with the solution

F (t) = exp(a+etMa), A(a+, a) = F (1) = exp(a+eMa). (C.67)

Next we derive an important formula for the trace of a fermionic
operator. It is usually sufficient to consider only even operators, i.e.
operators containing only terms with an even number of fermionic
operators or fermionic variables. Such Â and also their representative
A(a+, a) commute with arbitrary anticommuting numbers, for example
A(a+, b)ck = +ckA(a+, b). The formula reads

Tr Â =
∫

da+ da e−a+aA(a+,−a), (C.68)

for even Â. This trace formula can be derived as follows:

Tr Â =
n∑

p=0

1
p!

∑
k1···kp

〈k1 · · · kp|Â|k1 · · · kp〉

=
∫

(da+ da) (db+ db) e−a+a−b+b

∑
p

1
p!

∑
k1···kp

〈k1 · · · kp|a〉〈a|Â|b〉〈b|k1 · · · kp〉

=
∫

(da+ da) (db+ db) e−a+a−b+b
∑
p

1
p!
akp

· · · ak1A(a+, b)b+k1
· · · b+kp

=
∫

(da+ da) (db+ db) e−a+a−b+b
∑
p

1
p!
akp

· · · ak1b
+
k1
· · · b+kp

A(a+, b)

=
∫

(da+ da) (db+ db) e−a+a−b+b eakb
+
k A(a+, b)

= (−1)n
∫

(da+ db) ea
+bA(a+, b)

=
∫

(da+ db) e−a+bA(a+,−b), (C.69)

which is the desired result. We integrated over a and b+ using (da+ da)
×(db+ db) = (−1)n(da+ db) (db+ da) and (C.49). In the last line we made
the substitution b→ −b using (C.52).

We note furthermore that omitting the minus sign from A(a+,−a) in
(C.68) leads to ∫

da+ da e−a+aA(a+, a) = Tr(−1)N̂ Â, (C.70)
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252 Appendix C. Fermionic coherent states

where N̂ is the fermion-number operator (C.12). This formula can be
derived from the trace formula (C.68), the operator-product rule (C.60),
with B = exp(iπN̂), and the application

B̂ = eiπâ
†â → B(a+, a) = e−a+a (C.71)

of the rule (C.62).
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