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Abstract

We consider the problem of allocating k active spares to n components of a series system
in order to optimize its lifetime. Under the hypotheses that lifetimes of n components are
identically distributed with distribution functionF(·), lifetimes of k spares are identically
distributed with distribution function G(·), lifetimes of components and spares are
independently distributed, and that ln(G(x))/ ln(F (x)) is increasing inx, we show that the
strategy of balanced allocation of spares optimizes the failure rate function of the system.
Furthermore, under the hypotheses that lifetimes of n components are stochastically
ordered, lifetimes of k spares are identically distributed, and that lifetimes of components
and spares are independently distributed, we show that the strategy of balanced allocation
of spares is superior to the strategy of allocating a larger number of components to
stronger components. For coherent systems consisting of n identical components with n
identical redundant (spare) components, we compare strategies of component and system
redundancies under the criteria of reversed failure rate and likelihood ratio orderings.
When spares and original components do not necessarily match in their life distributions,
we provide a sufficient condition, on the structure of the coherent system, for the strategy
of component redundancy to be superior to the strategy of system redundancy under
reversed failure rate ordering. As a consequence, we show that, for r-out-of-n systems,
the strategy of component redundancy is superior to the strategy of system redundancy
under the criterion of reversed failure rate ordering. When spares and original components
match in their life distributions, we provide a necessary and sufficient condition, on
the structure of the coherent system, for the strategy of component redundancy to be
superior to the strategy of system redundancy under the likelihood ratio ordering. As a
consequence, we show that, for r-out-of-n systems, with spares and original components
matching in their life distributions, the strategy of component redundancy is superior to
the strategy of system redundancy under the likelihood ratio ordering.
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1. Introduction

In many situations, the performance of a coherent system can be enhanced by attaching spare
(or redundant) components to its components. The problem of optimally allocating redundant
components to the components of a coherent system to optimize its reliability or some other
system performance characteristic is of considerable interest in reliability engineering, and
often it leads to interesting theoretical results in probability. Two types of commonly used
redundancies are active (or parallel) redundancy and standby redundancy. In active redundancy,
spares are put in parallel to components of the system and they start functioning at the same
time as original components. In standby redundancy, spares are put in standby and they start
functioning only after the failure of original components.

Boland et al. (1988), Shaked and Shanthikumar (1992), and Singh and Singh (1997a)
considered the problem of optimally distributing k active spares to n components, C1, . . . , Cn,
of a series system. Suppose that the lifetimes of n components are independent with a common
distribution function F(·) and that those of k available spares are also independent and have a
common distribution functionG(·). Furthermore, assume that the lifetimes of components and
spares are independently distributed. Let S = {0, 1, . . . , k} and K = {L = (l1, . . . , ln) : L ∈
Sn and

∑n
i=1 li = k}, where Sn denotes the product space S × · · · × S. Let Ts(k) denote the

lifetime of the series system when ki spares are put in parallel to Ci, i = 1, . . . , n, where
k = (k1, . . . , kn) ∈ K. Boland et al. (1988) proved that the survival function of Ts(k) is
a Schur-concave function of k on K (see Definition 1.1(b), below). As a consequence, it
follows that allocating the spares equally among n components is optimal under the criterion
of usual stochastic ordering. In fact, they proved this result for r-out-of-n systems. Under the
assumption that F ≡ G, Shaked and Shanthikumar (1992) independently obtained the above
result for series systems. Apart from the survival function, the failure rate function is another
important system performance characteristic which is widely used in reliability engineering.
Singh and Singh (1997a) proved that if the lifetimes of components and spares are independent
and identically distributed, then the failure rate function of Ts(k) is a Schur-convex function of
k on K. Consequently, it follows that the balanced allocation of spares to n components of the
series system optimizes the failure rate function of the system. Since the failure rate ordering is
stronger than the usual stochastic ordering, when F ≡ G, results obtained in Singh and Singh
(1997a) are stronger than those obtained in Boland et al. (1988).

In Section 2 we show that if ln(G(x))/ ln(F (x)) is an increasing function of x then the
failure rate function of Ts(k) is a Schur-convex function of k on K—strengthening the result of
Singh and Singh (1997a). Furthermore, when the lifetimes of n components are independent
with stochastically ordered distribution functions F1, . . . , Fn (F1(x) ≤ · · · ≤ Fn(x) for all x)
and the spares are independent and identically distributed with distribution function G(·), we
prove that the survival function of Ts(k) is a Schur-concave function of k on KR = {k : k ∈
K, k1 ≥ k2 ≥ · · · ≥ kn}. Therefore, under these generalized assumptions, the strategy of
balanced allocation is superior to the strategy of allocating a larger number of components to
stronger components. A result derived in Boland et al. (1988) can be obtained as a particular
case of this result.

In reliability engineering, it is well known that a coherent system where active spare
allocation is made at the component level has a lifetime stochastically larger than that of the
system where active spare allocation is made at the system level. However, as shown in Boland
and El-Neweihi (1995), the above result is not true with respect to the failure rate ordering
if lifetimes of components and corresponding spares are not identically distributed. They
conjectured that, in general, for r-out-of-n systems, the component level active redundancy is
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better than the system level active redundancy with respect to the failure rate ordering provided
that the lifetimes of components and spares are independent and identically distributed. Singh
and Singh (1997b) resolved the conjecture of Boland and El-Neweihi (1995) and proved a
stronger result: for r-out-of-n systems consisting of components and spares having independent
and identically distributed lifetimes, the component level redundancy is better than the system
level redundancy with respect to likelihood ratio ordering.

In Section 3, under the assumption of independence of lifetimes of components and non-
matching spares, a sufficient condition on the structure function of the coherent system for the
component level redundancy to be better than the system level redundancy with respect to the
reversed failure rate ordering is derived. Consequently, it follows that, for r-out-of-n systems
with possibly nonmatching spares (i.e. general F and G), the component level redundancy is
better than the system level redundancy under the criterion of the reversed failure rate ordering.
Note that, for r-out-of-n systems, such a result does not hold with respect to the failure rate
ordering. Under the additional assumption of matching spares, a necessary and sufficient
condition on the structure function of the coherent system for the component level redundancy
to be better than the system level redundancy under the criterion of likelihood ratio ordering is
given. As a corollary to this, we obtain the result proved in Singh and Singh (1997b).

All the random variables considered in this paper are assumed to have the Lebesgue prob-
ability density functions and the support [0,∞) = R+. Moreover, for a set A and a positive
integer m, Am denotes the product set A × · · · × A, and ∧{x1, . . . , xn} and ∨{x1, . . . , xn}
respectively denote the smallest and the largest real numbers of x1, . . . , xn. Throughout the
paper, increasing and decreasing are used for nondecreasing and nonincreasing, respectively.

In order to make the presentation self-contained, we reproduce the following definitions
from the literature (see Marshall and Olkin (1979, pp. 7 and 54), Barlow and Proschan (1975),
and Shaked and Shanthikumar (2007, p. 2)).

Definition 1.1. (Majorization.) Let R
n denote the n-dimensional Euclidean space, and let

A ⊆ R
n.

(a) A point x ∈ A is said to be majorized by another point y ∈ A (written as x ≤m y) if

j∑
i=1

x[i] ≤
j∑
i=1

y[i], j = 1, 2, . . . , n− 1, and
n∑
i=1

x[i] =
n∑
i=1

y[i],

where x[1] ≥ · · · ≥ x[n] and y[1] ≥ · · · ≥ y[n] denote the ranked values of x1, . . . , xn
and y1, . . . , yn, respectively.

(b) A function ψ : A → R is said to be Schur concave on A if

x ≤m y �⇒ ψ(x) ≥ ψ(y) for x, y ∈ A

and Schur convex on A if

x ≤m y �⇒ ψ(x) ≤ ψ(y) for x, y ∈ A.

Definition 1.2. Let Zi, i = 1, 2, be two random variables with survival functions H̄i(·),
distribution functions Hi(·), and probability density functions hi(·), respectively. Then Z1
is said to be smaller than Z2 in the

(a) likelihood ratio order (written as Z1 ≤lr Z2) if h2(x)/h1(x) is an increasing function of
x on (0,∞);
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(b) failure rate order (written as Z1 ≤fr Z2) if H̄2(x)/H̄1(x) is an increasing function of x
on (0,∞);

(c) reversed failure rate order (written as Z1 ≤rfr Z2) if H2(x)/H1(x) is an increasing
function of x on (0,∞);

(d) usual stochastic order (written as Z1 ≤st Z2) if H̄1(x) ≤ H̄2(x) for every x ∈ R.

It is well known that (see, for example, Shaked and Shanthikumar (2007))

(i) Z1 ≤lr Z2 �⇒ Z1 ≤fr Z2 �⇒ Z1 ≤st Z2; and

(ii) Z1 ≤lr Z2 �⇒ Z1 ≤rfr Z2 �⇒ Z1 ≤st Z2.

2. Optimal allocation of active spares in series systems

Consider a series systemφs , consisting of n componentsC1, C2, . . . , Cn having independent
random lifetimesX1, X2, . . . , Xn, respectively. Let τ(X) = ∧{X1, . . . , Xn}denote the lifetime
of φs . LetR1, . . . , Rk be k active spares having independent and identically distributed random
lifetimes Y1, . . . , Yk , respectively. Consider the problem of optimally allocating these k spares
to n components in parallel (active redundancy). Any element of the set

K =
{
L = (l1, . . . , ln) : li = 0, 1, . . . , k, i = 1, . . . , n,

n∑
i=1

li = k

}

is said to be an allocation. Let Ts(k), k ∈ K, denote the lifetime of system Sk obtained from the
series system φs by putting ki components in parallel to Ci, i = 1, . . . , n. Then the survival,
failure rate, and the reversed failure rate functions of Ts(k) are given by

F̄s,k(x) = P
(
∧

{
∨{X1, Y1, . . . , Yk1}, . . . ,∨

{
Xn, Y∑n−1

i=1 ki+1, . . . , Y
∑n
i=1 ki

}}
> x

)

=
n∏
i=1

(1 − Fi(x)G
ki (x)), x ∈ R+, (2.1)

rs,k(x) =
n∑
i=1

(
(r̃Fi (x)+ ki r̃G(x))Fi(x)G

ki (x)

1 − Fi(x)Gki (x)

)
, x ∈ R+, (2.2)

and

r̃s,k(x) =
( ∏n

i=1(1 − Fi(x)G
ki (x))

1 − ∏n
i=1(1 − Fi(x)Gki (x))

)

×
( n∑
i=1

(
(r̃Fi (x)+ ki r̃G(x))Fi(x)G

ki (x)

1 − Fi(x)Gki (x)

))
, x ∈ R+, (2.3)

respectively, where Fi(·) and r̃Fi (·) denote the distribution functions and reversed failure
rate functions, respectively, of Xi, i = 1, 2, . . . , n, and G(·) and r̃G(·) denote the common
distribution function and the reversed failure rate function, respectively, of the Y s.

Under the simplifying assumption Fi ≡ F, i = 1, . . . , n, Boland et al. (1988) proved that
Ts(k) ≤st Ts(k0) for all k, k0 ∈ K such that k0 ≤m k. In fact, they proved this result for
more general r-out-of-n systems. However, as shown in Example 2.1, below, it is not true
that Ts(k) ≤lr Ts(k0) for all k, k0 ∈ K such that k0 ≤m k, even for matching components
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and spares, i.e. even if F ≡ G. This indicates that an attempt at generalizing the result of
Boland et al. (1988) towards likelihood ratio ordering will be futile.

Example 2.1. Consider the system Sk with n = 3, k0 = (4, 8, 8), k1 = (4, 5, 11), and
F1 ≡ F2 ≡ F3 ≡ F ≡ G. Note that k0 ≤m k1. The probability density function of Ts(k) is
given by

fs,k(x) = r̃F (x)(1 − Fk1+1(x))(1 − Fk2+1(x))(1 − Fk3+1(x))

×
(
(k1 + 1)F k1+1(x)

1 − Fk1+1(x)
+ (k2 + 1)F k2+1(x)

1 − Fk2+1(x)
+ (k3 + 1)F k3+1(x)

1 − Fk3+1(x)

)
, x ≥ 0.

Therefore,
fs,k0(x)

fs,k1(x)
= ψk0(F (x))

ψk1(F (x))
, x ≥ 0,

where, for 0 < p < 1 and k ∈ K,

ψk(p) = (k1 + 1)pk1+1(1 − pk2+1)(1 − pk3+1)

+ (k2 + 1)(1 − pk1+1)pk2+1(1 − pk3+1)

+ (k3 + 1)(1 − pk1+1)(1 − pk2+1)pk3+1.

Let ψ(p) = ψk0(p)/ψk1(p), p ∈ (0, 1). Since,

ψ(0.1) ≈ 0.8932, ψ(0.5) ≈ 0.7658, and ψ(0.9) ≈ 1.1075,

it is clear that, while k0 ≤m k, it is not true that Ts(k) ≤lr Ts(k0).

For the system Sk with identical components and matching spares, i.e. when F ≡ G,
Singh and Singh (1997a) proved that Ts(k) ≤fr Ts(k0) for all k, k0 ∈ K such that k0 ≤m k.
Example 2.2 given below illustrates that this result may not hold when F and G are not the
same. Thus, it will be worth investigating whether the result holds under some conditions on
the distribution functions F(·) and G(·).
Example 2.2. Consider the systemSk withn = 2, k = k1+k2 = 10,F1(x) = F2(x) = 1−e−x
for all x ≥ 0, andG(x) = 1 − e−2x for all x ≥ 0. Then the failure rate function given by (2.2)
reduces to

rs,(k1,k2) = e−x(1 − e−2x)k1 + 2k1e−2x(1 − e−x)(1 − e−2x)k1−1

1 − (1 − e−x)(1 − e−2x)k1

+ e−x(1 − e−2x)k2 + 2k2e−2x(1 − e−x)(1 − e−2x)k2−1

1 − (1 − e−x)(1 − e−2x)k2
.

A simple calculation shows that

rs,(5,5)(x)− rs,(0,10)(x) ≈
{

−0.9650 for x = 0.2,

+0.3036 for x = 1.2,

which implies that Ts(k) ≤fr Ts(k0) for all k, k0 ∈ K such that k0 ≤m k does not hold in this
case.
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This example gives motivation for finding conditions onF(·) andG(·) under whichTs(k) ≤fr
Ts(k0) for all k, k0 ∈ K satisfying k0 ≤m k. A set of such conditions is given in Theorem 2.1,
below. The following lemma, whose proof is available in Marshall and Olkin (1979, Proposition
C.1) and Pec̆arić et al. (1992, Theorem 1.36), is required for proving the theorem.

Lemma 2.1. Let g : I → R be a function defined on an interval I ⊂ R.

(a) If g(·) is convex on I then φ(x) = ∑n
i=1 g(xi) is Schur convex on In, where x =

(x1, . . . , xn).

(b) Suppose that g(·) is continuous and midpoint convex on I , i.e. g(·) is continuous on I
and g((u + v)/2) ≤ (g(u) + g(v))/2 whenever u, v ∈ I . Then φ(x) = ∑n

i=1 g(xi) is
Schur convex on In.

Theorem 2.1. Let Fi ≡ F, i = 1, . . . , n. If ln(G(x))/ ln(F (x)) is an increasing function of x
on R+ then

k, k0 ∈ K such that k0 ≤m k �⇒ rs,k0(x) ≤ rs,k(x) for all x ≥ 0,

i.e. rs,k(x) is a Schur-convex function of k on R
n+.

Proof. We have

rs,k(x) =
n∑
i=1

g1(ki),

where

g1(y) = F(x)Gy(x)(r̃F (x)+ yr̃G(x))

1 − F(x)Gy(x)
, y ≥ 0.

Fix x ≥ 0. Let p = F(x), q = G(x), a = r̃F (x), b = r̃G(x), and g(y) = g1(y) + by + a,

y ≥ 0. Note that g(y) and g1(y) are continuous functions of y on R+. Under the hypothesis
of the theorem, we will prove that g(y) (and, therefore, g1(y)) is a midpoint convex function
of y on R+. The result would then follow using Lemma 2.1(b). We have

g(y) = a + by

1 − pqy
, y ≥ 0.

Fix 0 ≤ u < v < ∞, and consider

A(u, v) = g(u)+ g(v)− 2g

(
u+ v

2

)

= a + bu

1 − pqu
+ a + bv

1 − pqv
− 2a + bu+ bv

1 − pq(u+v)/2

= p(qu/2 − qv/2)

1 − pq(u+v)/2

(
a + bu

q−u/2 − pqu/2
− a + bv

q−v/2 − pqv/2

)
.

We need to show that A(u, v) ≥ 0. Since, for 0 < q < 1, qx is a decreasing function of x on
R+, to prove that A(u, v) ≥ 0, it is enough to show that

ψ1(t) = a + bt

q−t/2 − pqt/2
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is a decreasing function of t on R+. We have

ψ ′
1(t) = d

dt
(ψ1(t)) = ψ2(t)

(q−t/2 − pqt/2)2
,

where

ψ2(t) = b(q−t/2 − pqt/2)+ ln(q)

2
(a + bt)(q−t/2 + pqt/2).

Also,

ψ ′
2(t) = − (ln(q))

2

4
(a + bt)(q−t/2 − pqt/2) ≤ 0 for all t ∈ R+ (2.4)

and

ψ2(0) = b(1 − p)+ ln(q)

2
a(1 + p)

= r̃G(x)(1 − F(x))+ ln(G(x))

2
r̃F (x)(1 + F(x)). (2.5)

Since ln(G(x))/ ln(F (x)) is an increasing function of x on R+, we have

ln(G(x))r̃F (x) ≤ ln(F (x))r̃G(x) for all x ∈ R+. (2.6)

Using (2.6) in (2.5), we obtain

ψ2(0) ≤ r̃G(x)(1 − F(x))+ ln(F (x))

2
r̃G(x)(1 + F(x))

= r̃G(x)�(F(x)), (2.7)

where, for 0 < p ≤ 1,

�(p) = ln(p)

2
(1 + p)+ 1 − p.

Observe that

�′(p) = 1

2p
− 1

2
+ ln(p)

2

and

�′′(p) = d2

dp2�(p) = −1 − p

2p2 ≤ 0 for all 0 < p ≤ 1.

Consequently, for every p ∈ (0, 1],

�′(p) ≥ �′(1) = 0 and �(p) ≤ �(1) = 0. (2.8)

Using (2.8) in (2.7), it follows that ψ2(0) ≤ 0 for every x ≥ 0. Now using (2.4), we conclude
that ψ2(t) ≤ 0 for every t ∈ R+ and, therefore, ψ1(t) is a decreasing function of t on R+.

Lemma 2.2. If Fi ≡ F, i = 1, . . . , n, and r̃G(x)/r̃F (x) is an increasing function of x on R+,
then ln(G(x))/ ln(F (x)) is an increasing function of x on R+.
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Proof. Fix x ≥ 0, and let A > x. Applying Cauchy’s mean value theorem to functions
ln(G(·)) and ln(F (·)) on the interval [0, A] we conclude that

ln(G(A))− ln(G(x))

ln(F (A))− ln(F (x))
= r̃G(ξ)

r̃F (ξ)
for some ξ ∈ (x,A).

Since r̃G(x)/r̃F (x) is increasing on R+, we obtain

ln(G(A))− ln(G(x))

ln(F (A))− ln(F (x))
≥ r̃G(x)

r̃F (x)
.

Since A > x is arbitrary, on taking A → ∞ we obtain

ln(G(x))

ln(F (x))
≥ r̃G(x)

r̃F (x)
for all x ≥ 0 �⇒ d

dx

[
ln(G(x))

ln(F (x))

]
≥ 0 for all x ≥ 0,

i.e. ln(G(x))/ ln(F (x)) is an increasing function of x on R+.

Remark 2.1. (i) Kalashnikov and Rachev (1986) proposed a stochastic order based on the
notion of relative ageing of two probability distributions. LetX and Y be two random variables
with distribution functionsF(·) andG(·), survival functions F̄ (·) and Ḡ(·), failure rate functions
rF (·) and rG(·), and reversed failure rate functions r̃F (·) and r̃G(·), respectively. According
to Kalashnikov and Rachev (1986), the random variable X is said to be ageing faster than
the random variable Y (written as X <c Y ) if the random variable Z = − ln(Ḡ(X)) has an
increasing failure rate (IFR) distribution. If rG(·) �= 0 then it is easy to see that X <c Y if and
only if rF (·)/rG(·) is an increasing function. Sengupta and Deshpande (1994) further studied
this concept of relative ageing and proposed two new models of relative ageing and studied
their interrelations. Similar to the notion of relative ageing defined in Kalashnikov and Rachev
(1986), another notion of relative ageing can be defined in terms of the reversed failure rate.
We say that the random variable X is ageing faster than the random variable Y in the reversed
failure rate ordering (written as X <rfr–c Y ) if the random variable Z = − ln(G(X)) has an
IFR distribution. If r̃F (·) �= 0 then it is easy to see that X <rfr–c Y if and only if r̃G(·)/r̃F (·) is
an increasing function.

(ii) According to Theorem 2.1, if ln(G(x))/ ln(F (x)) is an increasing function of x on R+ then
a balanced allocation of spares (approximately an equal number of spares with each component)
results in the lowest failure rate function and, hence, is optimal with respect to the failure rate
criterion.

(iii) From Lemma 2.2, it follows that ifFi ≡ F, i = 1, . . . , n, and r̃G(x)/r̃F (x) is an increasing
function of x on R+ then the conclusion of Theorem 2.1 holds.

Note that the condition of Remark 2.1(iii) is trivially satisfied when F(x) = G(x) for all x.
That this condition may hold even if F(x) �= G(x) is illustrated by the following example.

Example 2.3. Let F(x) = 1− exp[−λ1x], x ≥ 0, andG(x) = 1− exp[−λ2x], x ≥ 0, where
λ1 ≥ λ2 > 0. Consider, for x ≥ 0,

r̃G(x)

r̃F (x)
= λ2

λ1
m(x),

where

m(x) = exp[λ1x] − 1

exp[λ2x] − 1
.
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Clearly,

m′(x) = d

dx
(m(x))

= λ1 exp[λ1x](exp[λ2x] − 1)− λ2 exp[λ2x](exp[λ1x] − 1)

(exp[λ2x] − 1)2
, x ≥ 0.

Let ψ1(x) = exp[λ2x] − 1, x ≥ 0, and ψ2(x) = exp[λ1x] − 1, x ≥ 0. Then

ψ ′
1(x) = d

dx
(ψ1(x)) = λ2 exp[λ2x], x ≥ 0,

ψ ′
2(x) = d

dx
(ψ2(x)) = λ1 exp[λ1x], x ≥ 0.

Applying Cauchy’s mean value theorem to functions ψ1(·) and ψ2(·) on the interval [0, x], we
conclude that there exists a ξ ∈ (0, x) such that

ψ1(x)− ψ1(0)

ψ2(x)− ψ2(0)
= ψ ′

1(ξ)

ψ ′
2(ξ)

,

i.e.
exp[λ2x] − 1

exp[λ1x] − 1
= λ2 exp[λ2ξ ]
λ1 exp[λ1ξ ] ≥ λ2 exp[λ2x]

λ1 exp[λ1x] , x ≥ 0,

or, equivalently,

λ1 exp[λ1x](exp[λ2x] − 1)− λ2 exp[λ2x](exp[λ1x] − 1) ≥ 0, x ≥ 0,

which implies thatm′(x) ≥ 0 for all x ∈ R+. Hence, r̃G(x)/r̃F (x) is an increasing function of
x on R+.

Since the reversed failure rate ordering is also stronger than the usual stochastic ordering,
it is of interest to know whether Ts(k) ≤rfr Ts(k0) for all k, k0 ∈ K such that k0 ≤m k. The
following example shows that this is not true if n ≥ 3, even when F ≡ G. However, as proved
in Theorem 2.2, the result is true for n = 2 when F ≡ G.

Example 2.4. Consider the system Sk with n = 3, k0 = (4, 8, 8), k1 = (4, 5, 11), andF ≡ G.
Clearly, k0 ≤m k1. From (2.3), the reversed failure rate function of Ts(k), k ∈ K, is given by

r̃s,k(x) = r̃F (x)ϕk(F (x)),

where, for 0 < p < 1 and k ∈ K,

ϕk(p) = 1

1 − (1 − pk1+1)(1 − pk2+1)(1 − pk3+1)

× [(k1 + 1)pk1+1(1 − pk2+1)(1 − pk3+1)

+ (k2 + 1)(1 − pk1+1)pk2+1(1 − pk3+1)

+ (k3 + 1)(1 − pk1+1)(1 − pk2+1)pk3+1].
A simple calculation yields

ϕ(4,8,8)(p)− ϕ(4,5,11)(p) ≈
{

−0.166 for p = 0.3,

+0.602 for p = 0.7,

implying thereby that, although k0 = (4, 8, 8) ≤m (4, 5, 11) = k1, Ts(k1) ≤rfr Ts(k0) does
not hold.
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The following lemma (see Marshall and Olkin (1979, Theorem A.4)) will be used to prove
the next theorem.

Lemma 2.3. Let I ⊆ R be an open interval, and let φ : In → R have continuous first-order
partial derivatives:

φ(i)(x) = ∂

∂xi
φ(x), i = 1, . . . , n, x = (x1, . . . , xn).

Then, if φ(·) is permutation symmetric, i.e. φ(x) = φ(y), whenever x ∈ In and y is a
permutation of x,

(i) φ(·) is Schur convex if and only if (x1 − x2)(φ(1)(x)− φ(2)(x)) ≥ 0 for all x ∈ In; and

(ii) φ(·) is Schur concave if and only if (x1 − x2)(φ(1)(x)− φ(2)(x)) ≤ 0 for all x ∈ In.

Theorem 2.2. Let F1 ≡ F2 ≡ F ≡ G. Then r̃s,k(x) is a Schur-concave function of k on R
2+

for all x ≥ 0, i.e. r̃s,k(x) ≤ r̃s,k0(x) for all x ≥ 0, whenever k, k0 ∈ R
2+ and k0 ≤m k.

Proof. From (2.3) we have, for k ∈ R
2+,

r̃s,k(x) = r̃F (x)ψF(x)(k1, k2),

where, for 0 < p < 1 and k ∈ R
2+,

ψp(k1, k2) = k1p
k1 + k2p

k2 − (k1 + k2 + 1)pk1+k2+1

pk1 + pk2 − pk1+k2+1 + 1.

We have

�p(k1, k2) ≡
(
∂ψp(k1, k2)

∂k1
− ∂ψp(k1, k2)

∂k2

)
= ψ2(p)− (lnp)pk1+k2ψ1(p)

(pk1 + pk2 − pk1+k2+1)2
, (2.9)

where

ψ1(p) = (k1 + 1)pk2+1 − (k2 + 1)pk1+1 + 2(k2 − k1), 0 < p < 1,

and
ψ2(p) = p2k1 − p2k2 − p2k1+k2+1 + pk1+2k2+1, 0 < p < 1.

In view of Lemma 2.3 we need to show that �p(k1, k2) ≥ 0 whenever 0 < p < 1 and
0 ≤ k1 ≤ k2. For this, suppose that 0 ≤ k1 ≤ k2. Then

ψ ′
1(p) = d

dp
ψ1(p) = (k1 + 1)(k2 + 1)(pk2 − pk1) ≤ 0 for all 0 < p < 1.

Therefore,
ψ1(p) ≥ lim

p→1
ψ1(p) = k2 − k1 ≥ 0 for all 0 < p < 1. (2.10)

On applying Cauchy’s mean value theorem to functions f (x) = xk2+1, x ≥ 0, and g(x) =
xk1+1, x ≥ 0, on the interval [p, 1], we have, for 0 < p < 1,

1 − pk2+1

1 − pk1+1 = k2 + 1

k1 + 1
ξk2−k1 for some ξ ∈ (p, 1)

≥ p2(k2−k1).

�⇒ ψ2(p) ≥ 0 for all p ∈ (0, 1). (2.11)

Using (2.10) and (2.11) in (2.9), the result follows.
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Now we assume that Xn ≤st Xn−1 ≤st · · · ≤st X1, i.e. the lifetimes X1, . . . , Xn are
stochastically ordered. Let KR = {L : L ∈ K and l1 ≥ l2 ≥ · · · ≥ lk}. Theorem 2.3, below,
generalizes a result of Boland et al. (1988). We require the following characterization of Schur-
concave functions, similar to the characterization of Schur-convex functions in Marshall and
Olkin (1979, p. 55).

Lemma 2.4. Let D
∗ = {y ∈ R

n+ : y1 ≥ y2 ≥ · · · ≥ yn}, and let φ be a function such that
φ : D

∗ → R
1, D

∗ ⊆ R
n. Then x ≤m y on D

∗ implies that φ(x) ≥ φ(y) if and only if

φ(x) ≡ φ(x̃1, x̃2 − x̃1, . . . , x̃n − x̃n−1)

is a decreasing function of x̃k, k = 1, 2, . . . , n− 1, over the region where x ∈ D
∗. Here

x̃k =
k∑
i=1

xi, k = 1, 2, . . . , n.

Theorem 2.3. Let Xn ≤st Xn−1 ≤st · · · ≤st X1, let D = {L ∈ KR : l1 ≥ · · · ≥ ln}, and let k0
and k1 be elements of D such that k0 ≤m k1. Then F̄s,k0(x) ≥ F̄s,k1(x) for all x ∈ R.

Proof. Fix x ∈ R. For k ∈ D, define

k̃j =
j∑
i=1

ki, j = 1, 2, . . . , k, and k̃0 = 0.

From (2.1) we have

F̄s,k(x) =
n∏
j=1

(1 − Fj (x)G
kj (x)) =

n∏
j=1

(1 − Fj (x)G
k̃j−k̃j−1(x)), x ∈ R.

Then, for i = 1, 2, . . . , k − 1,

∂

∂k̃i
F̄s,k(x) = (− ln(G(x)))

( n∏
j=1

(1 − Fj (x)G
kj (x))

)

×
(

Fi(x)G
ki (x)− Fi+1(x)G

ki+1(x)

(1 − Fi(x)Gki (x))(1 − Fi+1(x)Gki+1(x))

)

≤ (− ln(G(x)))

( n∏
j=1

(1 − Fj (x)G
kj (x))

)

×
(

Fi+1(x)(G
ki (x)−Gki+1(x))

(1 − Fi(x)Gki (x))(1 − Fi+1(x)Gki+1(x))

)
≤ 0,

where the first inequality follows from the fact that Xi+1 ≤st Xi, i = 1, 2, . . . , n − 1. Now,
on using Lemma 2.4, the result follows.

Remark 2.2. (i) An interpretation of the above theorem is that if the stated conditions hold
then a balanced allocation of spares yields higher reliability than the allocation which allows a
larger number of spares for stronger components.
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(ii) When, in addition to the hypothesis of Theorem 2.3, the Xis are identically distributed for
all i = 1, . . . , n, then, for every permutation kβ of k,

F̄s,k(x) = F̄s,kβ (x) for all x ∈ R.

Therefore, from Theorem 2.3, it follows that, for each x ∈ R, F̄s,k(x) is a Schur-concave
function of k on R

n+.

The result stated in Remark 2.2(ii) was proved in Boland et al. (1988).

3. Component redundancy versus system redundancy

Consider a coherent system φ consisting of n components C1, . . . , Cn having independent
and identically distributed lifetimes X1, . . . , Xn, respectively. Let F̄ (·), F(·), and f (·) denote
the common survival (reliability) function, the distribution function, and the probability density
function, respectively, of the lifetimes of components. Let τ(X) ≡ τ(X1, . . . , Xn) denote the
lifetime of the coherent system φ. Then, the survival function of the coherent system φ is given
by

P(τ (X) > x) = K(F̄ (x)), x ∈ R,

where K : [0, 1] → [0, 1] is an increasing function with K(0) = 0 and K(1) = 1. Consider n
active spares R1, . . . , Rn having independent and identically distributed lifetimes Y1, . . . , Yn,
respectively, each with survival function Ḡ(·), distribution function G(·), and probability
density function g(·). Assume that (X1, . . . , Xn) and (Y1, . . . , Yn) are statistically independent.

In component redundancy we allocate an active redundant spareRi to the componentCi, i =
1, . . . , n. Then the resultant coherent system, denoted by SC , has lifetime τ(X ∨Y ) ≡ τ(X1 ∨
Y1, . . . , Xn ∨Xn) and survival function

F̄C(x) = K(1 − (1 − F̄ (x))(1 − Ḡ(x))), x ∈ R.

In system redundancy we duplicate the coherent system φ with components C1, . . . , Cn
replaced by R1, . . . , Rn and make it available as an active redundant spare to the coherent
system φ. The resultant coherent system, denoted by SS , has lifetime τ(X)∨τ(Y ) and survival
function

F̄S(x) = 1 − (1 −K(F̄ (x)))(1 −K(Ḡ(x))), x ∈ R.

For general coherent systems, it is well known (see Barlow and Proschan (1975, pp. 8 and
23)) that the component redundancy is better than the system redundancy with respect to the
usual stochastic ordering, i.e.

τ(X) ∨ τ(Y ) ≤st τ(X ∨ Y ).

It will be interesting to explore if the above principle holds under other stochastic
orders. Boland and El-Neweihi (1995) considered a two-component parallel system with
f (x) = e−x, x ≥ 0, and g(x) = 2e−2x, x ≥ 0, and, by plotting a graph between failure rate
functions of component level redundancy and system level redundancy on R+, they observed
that it is not true that

τ(X) ∨ τ(Y ) ≤fr τ(X ∨ Y ). (3.1)

Let, for an n-component parallel system, the lifetimes of components and spares be exponen-
tially distributed with unequal failure rates λ1 and λ2. Then, it is interesting to know whether
(3.1) holds for λ1 > λ2. The following example shows that (3.1) is not true for any λ1 �= λ2.
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Example 3.1. Let τ(X) = ∧(X1, . . . , Xn), τ(Y ) = ∧(Y1, . . . , Yn), F̄ (x) = exp[−λ1x],
x ≥ 0, and Ḡ(x) = exp[−λ2x], x ≥ 0, for λ1 > 0, λ2 > 0, and λ1 �= λ2. Then, for x ≥ 0,

F̄C(x) = P(τ (X ∨ Y ) > x) = (exp[−λ1x] + exp[−λ2x] − exp[−(λ1 + λ2)x])n

and

F̄S(x) = P(τ (X) ∨ τ(Y ) > x) = exp[−nλ1x] + exp[−nλ2x] − exp[−n(λ1 + λ2)x].
Consider

m(x) = F̄C(x)

F̄S(x)
= (exp[λ1x] + exp[λ2x] − 1)n

exp[nλ1x] + exp[nλ2x] − 1
, x ≥ 0.

Clearly, for λ1 �= λ2,
lim
x→0

m(x) = 1 and lim
x→∞m(x) = 1.

Therefore, if F �= G then, in general, we cannot have

τ(X) ∨ τ(Y ) ≤fr τ(X ∨ Y ).

In this section we investigate whether the redundancy at the component level is better than
the redundancy at the system level with respect to system performance characteristics, such
as reversed failure rate ordering, and the likelihood ratio order. For coherent systems with
nonmatching components and spares, the following theorem provides the condition under which
the redundancy at the component level is better than the redundancy at the system level under
the reversed failure rate ordering.

Note that X1, . . . , Xn denote the independent and identically distributed lifetimes of n
components and Y1, . . . , Yn denote the independent and identically distributed lifetimes of
n spares. Furthermore, F̄ (·), F(·), f (·) and Ḡ(·), G(·), g(·) denote the common survival
function, the distribution function, and the probability density function of independent and
identically distributed random variables X1, . . . , Xn and Y1, . . . , Yn, respectively.

Theorem 3.1. If, for fixed y ∈ (0, 1),

K ′(1 − (1 − x)y)

K ′(x)

is a decreasing function of x on (0, 1) then

τ(X) ∨ τ(Y ) ≤rfr τ(X ∨ Y ),

where K ′(·) denotes the derivative of K(·).
Proof. For t ∈ R+,

FC(t) = P(τ (X ∨ Y ) ≤ t) = 1 −K(1 − (1 − F̄ (t))(1 − Ḡ(t)))

and
FS(t) = P(τ (X) ∨ τ(Y ) ≤ t) = (1 −K(F̄ (t)))(1 −K(Ḡ(t))).

Define

m(t) = FC(t)

FS(t)
= 1 −K(1 − (1 − F̄ (t))(1 − Ḡ(t)))

(1 −K(F̄ (t)))(1 −K(Ḡ(t)))
, t > 0.
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We need to show that m(t) is an increasing function of t on (0,∞), i.e.

m′(t) = d

dt
(m(t)) ≥ 0 for all t > 0.

We have, for t > 0,

((1 −K(F̄ (t)))(1 −K(Ḡ(t))))2m′(t)
= (1 −K(F̄ (t)))(1 −K(Ḡ(t)))(f (t)G(t)+ g(t)F (t))K ′(1 − (1 − F̄ (t))(1 − Ḡ(t)))

− (1 −K(1 − (1 − F̄ (t))(1 − Ḡ(t))))

× [g(t)(1 −K(F̄ (t)))K ′(Ḡ(t))+ f (t)(1 −K(Ḡ(t)))K ′(F̄ (t))]
= f (t)(1 −K(Ḡ(t)))[G(t)(1 −K(F̄ (t)))K ′(1 − (1 − F̄ (t))(1 − Ḡ(t)))

− (1 −K(1 − (1 − F̄ (t))(1 − Ḡ(t))))K ′(F̄ (t))]
+ g(t)(1 −K(F̄ (t)))[F(t)(1 −K(Ḡ(t)))K ′(1 − (1 − F̄ (t))(1 − Ḡ(t)))

− (1 −K(1 − (1 − F̄ (t))(1 − Ḡ(t))))K ′(Ḡ(t))]
= f (t)(1 −K(1 − y))ψ(x, y)+ g(t)(1 −K(x))ψ(1 − y, 1 − x),

where x = F̄ (t), y = G(t), and, for 0 < s < 1 and 0 < t < 1,

ψ(s, t) = t (1 −K(s))K ′(1 − t (1 − s))− (1 −K(1 − t (1 − s)))K ′(s).

To show that m′(t) ≥ 0 for every t > 0, it is enough to show that ψ(s, t) ≥ 0 whenever
0 < s ≤ 1 and 0 < t ≤ 1. Fix s, t ∈ (0, 1). On applying Cauchy’s mean value theorem to
functions ψt(x) = K(1 − t (1 − x)) and ψ∗

t (x) = K(x) on the interval [s, 1] we conclude that

ψt(1)− ψt(s)

ψ∗
t (1)− ψ∗

t (s)
= ψ ′

t (ξ )

ψ∗′
t (ξ )

for some ξ ∈ (s, 1]. (3.2)

Under the hypothesis of the theorem, we have, from (3.2),

1 −K(1 − t (1 − s))

1 −K(s)
= t

K ′(1 − t (1 − ξ))

K ′(ξ)
≤ t

K ′(1 − t (1 − s))

K ′(s)
,

i.e. ψ(s, t) ≥ 0. Hence, the result follows.

Corollary 3.1. Let r ∈ {1, 2, . . . , n}. Then, for r-out-of-n systems,

τ(X) ∨ τ(Y ) ≤rfr τ(X ∨ Y ).

Proof. We have, for 0 < x < 1,

K(x) = n!
(n− r)! (r − 1)!

∫ 1

1−x
un−r (1 − u)r−1 du

and

K ′(x) = n!
(n− r)! (r − 1)! (1 − x)n−rxr−1.

For 0 < y < 1,
K ′(1 − (1 − x)y)

K ′(x)
= yn−r

(
1 − y

x
+ y

)r−1

is a decreasing function of x on (0, 1). Hence, the result follows from Theorem 3.1.
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For coherent systems with identical components and spares, the following theorem provides
the condition under which the redundancy at the component level is better than the redundancy
at the system level under the likelihood ratio order.

Theorem 3.2. Let F ≡ G. Then τ(X) ∨ τ(Y ) ≤lr τ(X ∨ Y ) if and only if

ψ1(p) = 1 −K(p)

1 − p

K ′(p)
K ′(p(2 − p))

is an increasing function of p on (0, 1).

Proof. We have

F̄C(x) = P(τ (X ∨ Y ) > x) = K(F̄ (x)(2 − F̄ (x))), x ∈ R,

and
F̄S(x) = P(τ (X) ∨ τ(Y ) > x) = 1 − (1 −K(F̄ (x)))2, x ∈ R.

Then τ(X) ∨ τ(Y ) ≤lr τ(X ∨ Y ) if and only if

L(x) = (d/dx)(K(F̄ (x)(2 − F̄ (x))))

(d/dx)(1 − (1 −K(F̄ (x)))2)

= 1 − F̄ (x)

1 −K(F̄ (x))

K ′(F̄ (x)(2 − F̄ (x)))

K ′(F̄ (x))

is an increasing function of x on R+. Equivalently, τ(X) ∨ τ(Y ) ≤lr τ(X ∨ Y ) if and only if

ψ1(p) = 1 −K(p)

1 − p

K ′(p)
K ′(p(2 − p))

is an increasing function of p in (0, 1).

The following corollary, proved in Singh and Singh (1997b), follows from Theorem 3.2.

Corollary 3.2. Let r ∈ {1, 2, . . . , n}, and let F ≡ G. Then, for r-out-of-n systems,

τ(X) ∨ τ(Y ) ≤lr τ(X ∨ Y ).

Proof. For r-out-of-n systems,

K(p) = n!
(n− r)! (r − 1)!

∫ 1

1−p
un−r (1 − u)r−1 du, 0 < p < 1.

Therefore,

ψ1(p) = 1 −K(p)

1 − p

K ′(p)
K ′(p(2 − p))

= n!
(n− r)! (r − 1)!

1

(1 − p)n−r+1(2 − p)r−1

∫ 1−p

0
un−r (1 − u)r−1 du

= n!
(n− r)! (r − 1)!

∫ 1

0
tn−r

(
1 + t

2 − p
− t

)r−1

dt, 0 < p < 1.

Clearly, ψ1(p) is an increasing function of p on (0, 1).
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