Bull. Aust. Math. Soc. **86** (2012), 430–439 doi:10.1017/S0004972711003406

FINITELY GENERATED δ -SUPPLEMENTED MODULES ARE AMPLY δ -SUPPLEMENTED

RACHID TRIBAK

(Received 6 November 2011)

Abstract

Let *R* be a commutative ring. It is shown that if an *R*-module *M* is a sum of δ -local submodules and a semisimple projective submodule, then every finitely generated submodule of *M* is δ -supplemented. From this result, we conclude that finitely generated δ -supplemented modules over commutative rings are amply δ -supplemented.

2010 *Mathematics subject classification*: primary 16D10; secondary 16D60, 16D99. *Keywords and phrases*: δ -small submodule, δ -local module, *m*- δ -local module, δ -supplemented module, amply δ -supplemented module.

1. Introduction

Throughout this paper *R* will denote an associative commutative ring with identity and all modules are unital *R*-modules. Recall that a submodule *N* of a module *M* is said to be δ -small in *M*, written $N \ll_{\delta} M$, provided $M \neq N + X$ for any proper submodule *X* of *M* with *M*/*X* singular. Let *L* be a submodule of a module *M*. A submodule *K* of *M* is called a δ -supplement of *L* in *M* provided M = L + K and $M \neq L + X$ for any proper submodule *X* of *K* with *K*/*X* singular—equivalently, M = L + K and $L \cap K \ll_{\delta} K$. The module *M* is called δ -supplemented if every submodule of *M* has a δ -supplement in *M*. On the other hand, the submodule *N* is said to have ample δ -supplements in *M* if every submodule *L* of *M* with M = N + L contains a δ -supplement of *N* in *M*. The module *M* is called amply δ -supplemented if every submodule of *M* has ample δ -supplements in *M*. Let **P** be the class of all singular simple modules. Let *M* be any module. As in [7], let $\delta(M) = Rej_M(\mathbf{P}) = \bigcap\{N \leq M \mid M/N \in \mathbf{P}\}$. It is shown in [7, Lemma 1.5(1)] that $\delta(M) = \sum\{N \leq M \mid N \ll_{\delta} M\}$.

As in [3], a module *M* is said to be δ -local if $\delta(M) \ll_{\delta} M$ and $\delta(M)$ is a maximal submodule of *M*. For an *R*-module *M*, let ann(*M*) = { $r \in R | rM = 0$ } and for any $x \in M$, let ann(x) = { $r \in R | rx = 0$ }. Let *L* be a cyclic δ -local module. Then $L \cong R/a$ with $a = \operatorname{ann}(L)$. Since *L* is δ -local, there exists a maximal ideal *m* of *R* such that $a \subseteq m$ and $\delta(R/a) = m/a$. In this case, we call the module *L* m- δ -local.

^{© 2012} Australian Mathematical Publishing Association Inc. 0004-9727/2012 \$16.00

431

2. Main results

We begin with a lemma taken from [7, Lemmas 1.2, 1.3 and 1.5].

LEMMA 2.1. Let M be a module.

- (1) A submodule $N \le M$ is δ -small if and only if, for all submodules $X \le M$, if M = X + N, then $M = X \oplus Y$ for a semisimple projective submodule Y with $Y \subseteq N$.
- (2) For submodules N and L of M, $N + L \ll_{\delta} M$ if and only if $N \ll_{\delta} M$ and $L \ll_{\delta} M$.
- (3) If $K \ll_{\delta} M$ and $f : M \to N$ is a homomorphism, then $f(K) \ll_{\delta} N$. In particular, if $K \ll_{\delta} M \subseteq N$, then $K \ll_{\delta} N$.
- (4) If $M = \bigoplus_{i \in I} M_i$, then $\delta(M) = \bigoplus_{i \in I} \delta(M_i)$.
- (5) If *M* is finitely generated, then $\delta(M) \ll_{\delta} M$.

It is well known that if *a* is an ideal of *R*, then *a* is essential in *R* if and only if R/a is a singular *R*-module (see, for example, [4, p. 32]).

Let *S* be a simple *R*-module. Then *S* is either singular or projective, but not both (see [4, Proposition 1.24]). Therefore *S* is either δ -local or projective.

A submodule *L* of a module *M* is called *small* in *M* if $L + X \neq M$ for every proper submodule *X* of *M*. Let *N* be a submodule of a module *M*. A submodule *K* of *M* is called a *supplement* of *N* in *M* provided M = N + K and $N \cap K$ is small in *K*. The module *M* is called *supplemented* if every submodule of *M* has a supplement in *M*. On the other hand, a submodule *N* of a module *M* has *ample supplements* in *M* if every submodule *L* such that M = N + L contains a supplement of *N* in *M*. The module *M* is called *amply supplemented* if every submodule has ample supplements in *M*.

The following example shows that a δ -supplemented module need not be amply δ -supplemented.

EXAMPLE 2.2. Let *R* be an incomplete discrete valuation ring with field of fractions *Q*. Then the *R*-module $Q \oplus Q$ is supplemented but not amply supplemented by [8, Theorem 2.2]. Let *m* be the maximal ideal of *R*. Clearly *m* is essential in *R*. Thus the simple *R*-module R/m is singular. Hence every simple *R*-module is singular. So *R* has no simple projective *R*-modules. Now let *N* be a δ -small submodule of an *R*-module *M* and let *X* be a submodule of *M* with N + X = M. By Lemma 2.1(1), $M = Y \oplus X$ for a projective semisimple submodule *Y* with $Y \subseteq N$. This clearly forces Y = 0 and X = M. So *N* is small in *M*. Consequently, the *R*-module $Q \oplus Q$ is δ -supplemented but not amply δ -supplemented.

Lемма 2.3.

- (1) If a is a proper ideal of R, then the module R/a is semisimple projective if and only if $a = \bigcap_{i=1}^{k} m_i$ is a finite intersection of nonessential maximal ideals $m_i \ (1 \le i \le k)$.
- (2) For any module $M, M \ll_{\delta} M$ if and only if M is semisimple projective.

PROOF. (1) This follows from the Chinese remainder theorem.

(2) This follows from Lemma 2.1(1).

PROPOSITION 2.4. Let a be an ideal of R. The following conditions are equivalent:

- (i) R/a is an m- δ -local module;
- (ii) *m* is essential in *R* and is the only essential maximal ideal of *R* which contains a.

PROOF. (i) \Rightarrow (ii) Suppose that *m* is not essential in *R*. Then there exists a simple ideal *b* of *R* such that $m \oplus b = R$. Clearly, $(m/a) \oplus (b + a)/a = R/a$. Thus $(b + a)/a \notin \delta(R/a)$ since $\delta(R/a) = m/a$. Hence the simple module $b \cong (b + a)/a$ is singular by Lemmas 2.3(2) and 2.1(3). That is, R/m is a singular *R*-module. Therefore *m* is essential in *R*, a contradiction. Now suppose that *R* has an essential maximal ideal $m' \neq m$ with $a \subseteq m'$. Then $(R/a)/(m'/a) \cong R/m'$ is a singular *R*-module. So $\delta(R/a) = m/a \subseteq m'/a$, a contradiction.

(ii) \Rightarrow (i) Note first that $R/m \cong (R/a)/(m/a)$ is singular. Moreover, for any maximal ideal *m*' of *R* with *m*' \neq *m* and *a* \subseteq *m*', $R/m' \cong (R/a)/(m'/a)$ is projective. Therefore $\delta(R/a) = m/a$. By Lemma 2.1(5), $\delta(R/a) \ll_{\delta} R/a$. So R/a is *m*- δ -local.

Let *m* be a maximal ideal of *R* and let *M* be an *R*-module. Consider the subset $K_{\delta_m}(M) \subseteq M$ of elements $x \in M$ such that:

- (i) x = 0; or
- (ii) m is essential in R and is the only essential maximal ideal of R which contains ann(x); or
- (iii) $\operatorname{ann}(x) = \bigcap_{i=1}^{k} m_i$ such that each m_i $(1 \le i \le k)$ is a nonessential maximal ideal of *R*.

PROPOSITION 2.5. Let x be an element of a module M and let m be a maximal ideal of R. The following are equivalent:

- (i) $x \in K_{\delta_m}(M);$
- (ii) $R/\operatorname{ann}(x)$ is *m*- δ -local or semisimple projective.

PROOF. This is a consequence of Lemma 2.3 and Proposition 2.4.

 \Box

PROPOSITION 2.6. A factor module of an m- δ -local module is either m- δ -local or semisimple projective.

PROOF. Let *a* be an ideal of *R* such that the *R*-module *R/a* is *m*- δ -local. Let *b* be an ideal of *R* with $a \subseteq b$. Note that $\delta(R/b) \ll_{\delta} R/b$ by Lemma 2.1(5). Consider the canonical epimorphism $\pi : R/a \to R/b$. We have $\pi(m/a) = (m + b)/b \ll_{\delta} R/b$ by Lemma 2.1(3). If $b \subseteq m$, then $m/b \ll_{\delta} R/b$. Therefore $m/b \subseteq \delta(R/b)$. This implies that $\delta(R/b) = R/b \ll_{\delta} R/b$ or $\delta(R/b) = m/b \ll_{\delta} R/b$. If $b \notin m$, then $R/b \ll_{\delta} R/b$. Therefore R/b is semisimple projective or *m*- δ -local (see Lemma 2.3(2)).

PROPOSITION 2.7. Let M be an R-module and let m be a maximal ideal of R. Then $K_{\delta_m}(M)$ is a submodule of M.

PROOF. (1) Let us show that $K_{\delta_m}(M)$ is closed under multiplication by elements of R. Let $x \in K_{\delta_m}(M)$ and let $r \in R$. Let $a = \operatorname{ann}(x)$ and let $b = \operatorname{ann}(rx)$. Note that $a \subseteq b$. al or semisimple projective. Note that R/b

By Proposition 2.5, R/a is m- δ -local or semisimple projective. Note that $R/b \cong (R/a)/(b/a)$. From Proposition 2.6 it follows that R/b is m- δ -local or semisimple projective. So $rx \in K_{\delta_m}(M)$ by Proposition 2.5.

(2) Let us show that $K_{\delta_m}(M)$ is an additive subgroup of M. Let $x_1, x_2 \in K_{\delta_m}(M)$, $a_1 = \operatorname{ann}(x_1), a_2 = \operatorname{ann}(x_2)$ and $a = \operatorname{ann}(x_1 - x_2)$. Then $a_1 \cap a_2 \subseteq a$.

If $x_1 = 0$ or $x_2 = 0$, then of course $x_1 - x_2 \in K_{\delta_m}(M)$.

Suppose that R/a_1 is m- δ -local and R/a_2 is m- δ -local or semisimple projective. Since m/a_1 is essential in R/a_1 , $m/(a_1 \cap a_2)$ is essential in $R/(a_1 \cap a_2)$ by [4, Proposition 1.1]. Moreover, if $a_1 \cap a_2 \subseteq m'$ for some maximal ideal $m' \neq m$, then $a_1 \subseteq m'$ or $a_2 \subseteq m'$. Therefore m' is not essential in R (see Lemma 2.3 and Proposition 2.4). Thus $R/(a_1 \cap a_2)$ is m- δ -local by Proposition 2.4. Since

$$R/a \cong \frac{R/(a_1 \cap a_2)}{a/(a_1 \cap a_2)},$$

R/a is *m*- δ -local or semisimple projective by Proposition 2.6. So $x_1 - x_2 \in K_{\delta_m}(M)$ by Proposition 2.5.

Assume that both of R/a_1 and R/a_2 are semisimple projective. Note that $Rx_1 + Rx_2$ is semisimple projective. Since $R(x_1 - x_2) \le Rx_1 + Rx_2$, $R/a \ge R(x_1 - x_2)$ is semisimple projective. Thus $x_1 - x_2 \in K_{\delta_m}(M)$.

Recall that a submodule N of a module M is called *cofinite* if M/N is finitely generated.

PROPOSITION 2.8. Let M be a left module over any ring (not necessarily commutative). Suppose that every finitely generated submodule of M is δ -supplemented. Then every cofinite submodule of M has ample δ -supplements.

PROOF. Let *N* be a cofinite submodule of *M* and let *L* be a submodule of *M* such that M = N + L. Then there exists a finitely generated submodule $F \le L$ such that M = N + F. Consider the submodule $N \cap F \le F$. By assumption, there exists a submodule $K \le F \le L$ such that $(N \cap F) + K = F$ and $N \cap K \ll_{\delta} K$. Since N + K = M, *K* is a δ -supplement of *N* in *M*. This completes the proof.

THEOREM 2.9. Let *m* be a maximal ideal of *R* and *M* be a module such that $K_{\delta_m}(M) = M$. Then every finitely generated submodule of *M* is δ -supplemented.

PROOF. Let $x \in M$. Then $Rx \cong R/\operatorname{ann}(x)$ is *m*- δ -local or semisimple projective by Proposition 2.5. Therefore every finitely generated submodule of *M* is a finite sum of δ -local submodules and simple projective submodules. The result follows from [3, Proposition 3.5].

COROLLARY 2.10. Let *m* be a maximal ideal of *R*. Let *M* be a module such that $K_{\delta_m}(M) = M$. Then every cofinite submodule of *M* has ample δ -supplements.

PROOF. This follows by Proposition 2.8 and Theorem 2.9.

R. Tribak

For any commutative ring R, let $Soc_P(R)$ denote the sum of all simple projective ideals of R.

LEMMA 2.11. Let a module $M = \bigoplus_{i \in I} M_i$ be a direct sum of submodules M_i $(i \in I)$. Assume that for all $i \neq j$ in I, $\operatorname{ann}(M_i) + \operatorname{ann}(M_j)$ is a direct summand of R and $R/(\operatorname{ann}(M_i) + \operatorname{ann}(M_j))$ is semisimple. Then, for every submodule N of M,

$$N \subseteq \bigoplus_{i \in I} ((N \cap M_i) + \operatorname{Soc}_P(R)M_i).$$

PROOF. Let *N* be a submodule of *M*. Let $x \in N$. Then there exist a positive integer *n*, distinct elements $i_j \in I$ $(1 \le j \le n)$ and elements $x_j \in M_{i_j}$ $(1 \le j \le n)$ such that $x = x_1 + \cdots + x_n$. If n = 1, then $x = x_1 \in N \cap M_{i_1} + \text{Soc}_P(R)M_{i_1}$. Suppose that $n \ge 2$. By hypothesis, there exists a semisimple ideal A_{1n} of *R* such that

$$R = (\operatorname{ann}(M_{i_1}) + \operatorname{ann}(M_{i_n})) \oplus A_{1n}.$$

So there exist elements r, s and t in R such that $rx_1 = 0$, $sx_n = 0$, $t \in A_{1n}$ and $1_R = r + s + t$. So

$$sx = sx_1 + sx_2 + \dots + sx_n$$

= $sx_1 + sx_2 + \dots + sx_{n-1}$
= $(1_R - r - t)x_1 + sx_2 + \dots + sx_{n-1}$
= $(1_R - t)x_1 + sx_2 + \dots + sx_{n-1}$.

Note that $sx \in N$, $(1_R - t)x_1 \in M_{i_1}$ and $sx_j \in M_{i_j}$ $(2 \le j \le n - 1)$. By induction on n, $(1_R - t)x_1 \in N \cap M_{i_1} + \operatorname{Soc}_P(R)M_{i_1}$. Thus $x_1 \in N \cap M_{i_1} + \operatorname{Soc}_P(R)M_{i_1} + A_{1n}M_{i_1}$. Clearly $A_{1n} \subseteq \operatorname{Soc}_P(R)$. Hence $x_1 \in N \cap M_{i_1} + \operatorname{Soc}_P(R)M_{i_1}$. In the same manner we can prove that $x_j \in N \cap M_{i_j} + \operatorname{Soc}_P(R)M_{i_j}$ $(2 \le j \le n)$.

LEMMA 2.12. Let M be any module. Then $Soc_P(R)M$ is a semisimple projective module. In particular, $Soc_P(R)M \subseteq Soc(M)$.

PROOF. Let *S* be a simple projective ideal of *R*. Then there exists a maximal ideal *m* of *R* such that $S \cong R/m$. Let $x \in M$ and let $\alpha \in S$. It is clear that $m(\alpha x) = 0$. So $m \subseteq \operatorname{ann}(\alpha x)$. Thus $R(\alpha x) = 0$ or $R(\alpha x) \cong R/m$ is simple projective. It follows that *SM* is semisimple projective. Therefore $\operatorname{Soc}_P(R)M$ is semisimple projective. \Box

PROPOSITION 2.13. Let a module $M = M_1 \oplus \cdots \oplus M_n$ be a finite direct sum of submodules M_i $(1 \le i \le n)$, for some positive integer $n \ge 2$. Assume that for all $1 \le i < j \le n$, $\operatorname{ann}(M_i) + \operatorname{ann}(M_j)$ is a direct summand of R and $R/(\operatorname{ann}(M_i) + \operatorname{ann}(M_j))$ is semisimple. If finitely generated submodules of M_i are δ -supplemented for all $1 \le i \le n$, then finitely generated submodules of M are δ -supplemented.

PROOF. Let *N* be a finitely generated submodule of *M*. By Lemma 2.11,

$$N \subseteq \bigoplus_{i=1}^{n} ((N \cap M_i) + \operatorname{Soc}_P(R)M_i).$$

That is,

$$N \subseteq \left(\bigoplus_{i=1}^{n} (N \cap M_i)\right) + \operatorname{Soc}_P(R)M.$$

Therefore

$$N + \operatorname{Soc}_{P}(R)M = \left(\bigoplus_{i=1}^{n} (N \cap M_{i})\right) + \operatorname{Soc}_{P}(R)M.$$

Since *N* is finitely generated, there exist finitely generated submodules $K_i \le N \cap M_i$ ($1 \le i \le n$) such that

$$N + \operatorname{Soc}_{P}(R)M = \left(\bigoplus_{i=1}^{n} K_{i}\right) + \operatorname{Soc}_{P}(R)M.$$

By hypothesis, the K_i $(1 \le i \le n)$ are δ -supplemented. Since $\operatorname{Soc}_P(R)M$ is δ -supplemented, $N + \operatorname{Soc}_P(R)M$ is δ -supplemented by [6, Proposition 3.5]. As $\operatorname{Soc}_P(R)M$ is semisimple, N is a direct summand of $N + \operatorname{Soc}_P(R)M$. So N is δ -supplemented by [6, Proposition 3.6].

LEMMA 2.14. Let a, b, c and d be ideals of the ring R such that $a \subseteq c$ and $b \subseteq d$. If $c/a \ll_{\delta} R/a$ and $d/b \ll_{\delta} R/b$, then $(c \cap d)/(a \cap b) \ll_{\delta} R/(a \cap b)$.

PROOF. Let *u* be an ideal of *R* containing $a \cap b$ such that $(c \cap d)/(a \cap b) + u/(a \cap b) = R/(a \cap b)$ and R/u is singular. Then

$$((c \cap d) + a)/a + (u + a)/a = R/a$$
 and $((c \cap d) + b)/b + (u + b)/b = R/b$.

Hence (c/a) + (u + a)/a = R/a and (d/b) + (u + b)/b = R/b. Moreover,

$$\frac{R/a}{(u+a)/a} \cong \frac{R/u}{(u+a)/u} \quad \text{and} \quad \frac{R/b}{(u+b)/b} \cong \frac{R/u}{(u+b)/u}$$

Thus (R/a)/((u + a)/a) and (R/b)/((u + b)/b) are singular modules by [4, Proposition 1.22(b)]. By hypothesis, R = u + a = u + b. So R = RR = (u + a)(u + b) = u + ab. But $ab \subseteq a \cap b \subseteq u$. Then u = R. This completes the proof.

PROPOSITION 2.15. Let m_1 and m_2 be maximal ideals of R with $m_1 \neq m_2$. Let a module $M = M_1 \oplus M_2$ such that M_1 is a finite direct sum of cyclic m_1 - δ -local submodules and M_2 is a finite direct sum of cyclic m_2 - δ -local submodules. Then $a = \operatorname{ann}(M_1) + \operatorname{ann}(M_2)$ is a direct summand of R and R/a is semisimple.

R. Tribak

PROOF. Assume that $M_1 = \bigoplus_{i=1}^{k_1} (R/a_{1i})$ and $M_2 = \bigoplus_{i=1}^{k_2} (R/a_{2i})$, where the a_{1i} $(1 \le i \le k_1)$ and a_{2i} $(1 \le i \le k_2)$ are ideals of R such that R/a_{1i} $(1 \le i \le k_1)$ are m_1 - δ -local modules and R/a_{2i} $(1 \le i \le k_2)$ are m_2 - δ -local modules. Then $\operatorname{ann}(M_1) = \bigcap_{i=1}^{k_1} a_{1i}$ and $\operatorname{ann}(M_2) = \bigcap_{i=1}^{k_2} a_{2i}$. Note that $m_1/a_{1i} \ll_{\delta} R/a_{1i}$ $(1 \le i \le k_1)$ and $m_2/a_{2i} \ll_{\delta} R/a_{2i}$ $(1 \le i \le k_2)$. Therefore

$$m_1 / \left(\bigcap_{i=1}^{k_1} a_{1i} \right) \ll_{\delta} R / \left(\bigcap_{i=1}^{k_1} a_{1i} \right) \quad \text{and} \quad m_2 / \left(\bigcap_{i=1}^{k_2} a_{2i} \right) \ll_{\delta} R / \left(\bigcap_{i=1}^{k_2} a_{2i} \right)$$

by Lemma 2.14. That is, $m_1/\operatorname{ann}(M_1) \ll_{\delta} R/\operatorname{ann}(M_1)$ and $m_2/\operatorname{ann}(M_2) \ll_{\delta} R/\operatorname{ann}(M_2)$. By Lemma 2.1(3), $(m_1 + a)/a \ll_{\delta} R/a$ and $(m_2 + a)/a \ll_{\delta} R/a$. Thus

$$(m_1 + m_2 + a)/a \ll_{\delta} R/a$$

by Lemma 2.1(2). So $R/a \ll_{\delta} R/a$. By Lemma 2.3, R/a is semisimple projective. Therefore *a* is a direct summand of *R* by [2, Proposition 17.2].

PROPOSITION 2.16. Let m_1 be a maximal ideal of R and let a module $M = M_1 \oplus M_2$ be such that M_1 is a finite direct sum of cyclic m_1 - δ -local submodules and M_2 is a finite direct sum of simple projective submodules. Then $b = \operatorname{ann}(M_1) + \operatorname{ann}(M_2)$ is a direct summand of R and R/b is semisimple.

PROOF. Assume that $M_1 = \bigoplus_{i=1}^{k_1} (R/b_{1i})$ and $M_2 = \bigoplus_{i=1}^{k_2} (R/m_{2i})$, where the b_{1i} $(1 \le i \le k_1)$ are ideals of R and m_{2i} $(1 \le i \le k_2)$ are maximal ideals of R such that R/b_{1i} $(1 \le i \le k_1)$ are cyclic m_1 - δ -local and R/m_{2i} $(1 \le i \le k_2)$ are simple projective. Then ann $(M_1) = \bigcap_{i=1}^{k_1} b_{1i}$, ann $(M_2) = \bigcap_{i=1}^{k_2} m_{2i}$ and $b = (\bigcap_{i=1}^{k_1} b_{1i}) + (\bigcap_{i=1}^{k_2} m_{2i})$. Note that $m_1/b_{1i} \ll_{\delta} R/b_{1i}$ for all $1 \le i \le k_1$. It follows from Lemma 2.14 that $m_1/(\bigcap_{i=1}^{k_1} b_{1i}) \ll_{\delta} R/(\bigcap_{i=1}^{k_2} m_{2i} \subseteq m_1$. Hence $m_{2j} \subseteq m_1$ for some $1 \le j \le k_2$. We thus get $m_{2j} = m_1$. Then $\bigcap_{i=1}^{k_2} m_{2i} \subseteq m_1$ is projective. This contradicts the fact that m_1 is essential in R (see Proposition 2.4 and [4, Proposition 1.24]). It follows that $b \nsubseteq m_1$ and hence $m_1 + b = R$. Then $R/b \ll_{\delta} R/b$. By Lemma 2.3, R/b is semisimple projective. Therefore b is a direct summand of R by [2, Proposition 17.2].

PROPOSITION 2.17. Let a module $M = M_1 \oplus \cdots \oplus M_n$ be a finite direct sum of submodules M_i $(1 \le i \le n)$, for some positive integer n such that each M_i is either cyclic δ -local or simple projective. Then every finitely generated submodule of M is δ -supplemented.

PROOF. By rearranging the submodules M_i $(1 \le i \le n)$, we can suppose that $M = L_1 \oplus \cdots \oplus L_k$ such that for every $1 \le i \le k - 1$, L_i is a finite direct sum of cyclic m_i - δ -local submodules and L_k is a finite direct sum of simple projective submodules, where m_1, \ldots, m_{k-1} are distinct maximal ideals of R. Clearly, for every $1 \le i \le k - 1$, $K_{\delta_{m_i}}(L_i) = L_i$ (see Propositions 2.5 and 2.7). By Theorem 2.9, finitely generated

[8]

submodules of L_i $(1 \le i \le k)$ are δ -supplemented. By Propositions 2.13, 2.15 and 2.16, finitely generated submodules of M are δ -supplemented.

LEMMA 2.18. Let M be a left module over any ring (not necessarily commutative). Assume that every finitely generated submodule of M is δ -supplemented. If N is a homomorphic image of M, then every finitely generated submodule of N is δ -supplemented.

PROOF. By assumption, there exists an epimorphism $f: M \to N$. Let *K* be a finitely generated submodule of *N*. Then there exist a positive integer *n* and elements $b_i \in N$ $(1 \le i \le n)$ such that $K = Rb_1 + \cdots + Rb_n$. Then there exist elements $a_i \in M$ $(1 \le i \le n)$ such that $f(a_i) = b_i$ $(1 \le i \le n)$. Therefore $K = f(Ra_1 + \cdots + Ra_n)$. Since $Ra_1 + \cdots + Ra_n$ is δ -supplemented, *K* is δ -supplemented by [6, Proposition 3.6].

LEMMA 2.19. If *M* is a δ -local module, then $M = N \oplus L$ such that *N* is a cyclic δ -local submodule and *L* is semisimple projective.

PROOF. Let *M* be a δ -local module. Let $x \in M - \delta(M)$. As $\delta(M)$ is a maximal submodule of *M*, we have $\delta(M) + Rx = M$. Since $\delta(M) \ll_{\delta} M$, there exists a semisimple projective submodule $L \leq \delta(M)$ such that $L \oplus Rx = M$ (see Lemma 2.1(1)). By Lemma 2.1(4), $\delta(M) = \delta(L) \oplus \delta(Rx)$. From Lemma 2.3(2) it follows that $\delta(L) = L$. Thus $\delta(M) = L \oplus \delta(Rx)$. Therefore $\delta(Rx)$ is a maximal submodule of *Rx*. Moreover, according to Lemma 2.1(5), $\delta(Rx) \ll_{\delta} Rx$. Consequently, N = Rx is a cyclic δ -local module.

THEOREM 2.20. Let M be a module such that M is a sum of δ -local submodules and a semisimple projective submodule. Then every finitely generated submodule of M is δ -supplemented.

PROOF. By Lemma 2.19, there is no loss of generality in assuming that $M = \sum_{i \in I} M_i$ such that M_i is either cyclic δ -local or a simple projective submodule of M. Let K be a finitely generated submodule of M. There exists a finite subset $J \subseteq I$ such that $K \leq \sum_{i \in J} M_i$. By Proposition 2.17, every finitely generated submodule of the module $\bigoplus_{i \in J} M_i$ is δ -supplemented. Since $\sum_{i \in J} M_i$ is a homomorphic image of $\bigoplus_{i \in J} M_i$, K is δ -supplemented by Lemma 2.18. This completes the proof.

COROLLARY 2.21. Let M be a module such that M is a sum of δ -local submodules and a semisimple projective submodule. Then every cofinite submodule of M has ample δ -supplements.

PROOF. This follows by Proposition 2.8 and Theorem 2.20.

LEMMA 2.22. Let N be a maximal submodule of a module M. If K is a δ -supplement of N in M, then K is either δ -local or semisimple projective.

R. Tribak

PROOF. By assumption, N + K = M and $N \cap K \ll_{\delta} K$. Thus $N \cap K \subseteq \delta(K)$. Since $M/N \cong K/(N \cap K)$, $N \cap K$ is a maximal submodule of K. Hence $\delta(K) = N \cap K$ or $\delta(K) = K$. If $\delta(K) = N \cap K$, then K is δ -local. Now suppose $\delta(K) = K$. Then for every $x \in K - (N \cap K)$, $Rx + (N \cap K) = K$. Moreover, since $Rx \subseteq \delta(K)$ and $\delta(K) = \sum \{L \le K \mid L \ll_{\delta} K\}$, $Rx \ll_{\delta} K$ by Lemma 2.1(2). Again by Lemma 2.1(2), $Rx + (N \cap K) = K \ll_{\delta} K$. Therefore K is semisimple projective by Lemma 2.3.

A module M is called *coatomic* if every proper submodule of M is contained in a maximal submodule of M.

COROLLARY 2.23. Let M be a coatomic module. Suppose that every cofinite submodule of M has a δ -supplement in M. Then:

- (1) every finitely generated submodule of M is δ -supplemented;
- (2) every cofinite submodule of M has ample δ -supplements.

PROOF. (1) By [1, Theorem 2.9] and Lemma 2.22, M is a sum of δ -local submodules and a semisimple projective submodule. The result follows from Theorem 2.20.

(2) Use (1) and Proposition 2.8.

COROLLARY 2.24. Any finitely generated δ -supplemented module is amply δ -supplemented.

PROOF. This follows by Corollary 2.23.

We conclude this paper by noting that there are some types of rings, not necessarily commutative, over which finitely generated δ -supplemented modules are amply δ -supplemented.

Example 2.25.

- (1) It is easily seen that if a ring *R* is semisimple or right artinian, then all finitely generated modules are amply δ -supplemented.
- (2) In [7], Zhou called a ring *R* δ -*semiperfect* if every left ideal *I* of *R* can be written as $I = Re \oplus S$, where $e^2 = e \in R$ and $S \subseteq \delta(RR)$. From [5, Theorem 3.3] and Proposition 2.8 it follows that finitely generated modules over δ -semiperfect rings are amply δ -supplemented.

References

- [1] K. Al-Takhman, 'Cofinitely δ -supplmented and cofinitely δ -semiperfect modules', *Internat. J. Algebra* **1**(12) (2007), 601–613.
- [2] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules (Springer, New York, 1974).
- [3] E. Büyükaşik and C. Lomp, 'When δ-semiperfect rings are semiperfect', *Turkish J. Math.* 34 (2010), 317–324.
- [4] K. R. Goodearl, *Ring Theory: Nonsingular Rings and Modules* (Marcel Dekker, New York, 1976).
- [5] M. T. Koşan, 'δ-lifting and δ-supplemented modules', Algebra Colloq. 14(1) (2007), 53–60.
- [6] Y. Wang, ' δ -small submodules and δ -supplemented modules', *Int. J. Math. Math. Sci.* (2007), Article ID 58132, 8p.

438

[9]

- [7] Y. Zhou, 'Generalizations of perfect, semiperfect, and semiregular rings', *Algebra Colloq.* **7**(3) (2000), 305–318.
- [8] H. Zöschinger, 'Komplemente als direkte Summanden', Arch. Math. 25 (1974), 241–253.

RACHID TRIBAK, Centre Pédagogique Régional (CPR) – Tanger, Avenue My Abdelaziz, Souani, BP : 3117, Tangier, Morocco e-mail: tribak12@yahoo.com