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Abstract. To understand cluster formation and evolution it is important to understand the
evolution of cluster substructure. The work described here focuses upon a set of fully self-
consistent numerical simulations within a ΛCDM cosmology. Within the simulations we follow
in detail the temporal and spatial properties of individually tracked satellite galaxies. The host
galaxy clusters were chosen to sample a variety of formation histories, ages, and triaxialities.
Despite their obvious differences, we find striking similarities within the associated substructure
populations. Namely, the satellite galaxy orbital distributions are indistinguishable between the
galaxy clusters.

1. Introduction
There has been growing convergence to a “concordance model” for cosmological struc-

ture formation, with a “standard” ΛCDM universe comprised of 28% dark matter, 68%
dark energy, and luminous baryonic matter (i.e. galaxies, stars, gas, and dust) at a mere
4% (cf. Spergel et al. 2003). In such a universe structures form bottom-up with small
objects forming first that subsequently merge to form progressively larger objects (e.g.
White & Reese 1978; Davis et al. 1985). Hence, galaxies and galaxy clusters are constantly
fed by smaller dark halos that begin to orbit within the encompassing dark matter host. If
this model is correct, it is important to understand the orbital evolution of these objects
and investigate how they accrete onto the host halo. The work presented here is based
upon a series of high-resolution numerical simulations within said concordance model.
The analysis focuses on the detailed orbital parameters of satellite galaxies and internal
properties.

The first fully self-consistent simulations targeting the subject were performed by Tor-
men et al. (1997, 1998). Both studies were excellent efforts. However they lacked the
temporal, spatial, and mass resolution required to explore a wide range of environmental
effects. Unable to follow the satellite distribution within the host’s virial radius, satellites
were instead tracked only up to and including the point of “accretion”. This allowed an
analysis of the infall pattern, rather than the orbital evolution of the satellites. Ghinga
et al. (1998) also investigated the dynamics of satellite galaxies in live dark matter host
halos. Although greatly increasing the mass and spatial resolution, they still lacked the
temporal resolution to explicitly track the satellite orbits, rather they approximated the
orbits using a spherical static potential again. In these proceedings we will present a series
of simulations with the required resolution to follow the satellites even within the very
central regions of the host potential (�5–10% of the virial radius) and the time resolution
to resolve the satellite dynamics with unprecedented accuracy (∆t ≈170 Myrs).

2. Simulations and halo identification
The following section outlines our set of eight high-resolution galaxy clusters each

consisting of order more than a million dark matter particles and the methods used to
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Halo Rvir Mvir zform age Nsat(<Rvir)

# 1 1.34 2.87 1.16 8.30 158
# 2 1.06 1.42 0.96 7.55 63
# 3 1.08 1.48 0.87 7.16 87
# 4 0.98 1.10 0.85 7.07 57
# 5 1.35 2.91 0.65 6.01 175
# 6 1.05 1.37 0.65 6.01 85
# 7 1.01 1.21 0.43 4.52 59
# 8 1.38 3.08 0.30 3.42 251

Table 1. Properties of the eight dark matter host halos. Distances are measured in h−1 Mpc,
velocities in km s−1, masses in 1014h−1 M�, and the age in Gyr. We applied a mass-cut of
M > 2 × 1010h−1 M� (100 particles) which explains the rather ’low’ number for Nsat(<Rvir).

analyse them. These clusters formed in dissipationless N -body simulations characterised
by a ΛCDM cosmology (Ω0 = 0.3,Ωλ = 0.7,Ωbh

2 = 0.04, h = 0.7, σ8 = 0.9). The runs
have a mass resolution of mp = 1.6 × 108h−1 M� and achieved a force resolution of
≈2h−1 kpc allowing us to resolve the host halos down to about the central 0.25% of
their virial radii Rvir. High temporal information was required to determine the orbital
development of the satellites. We therefore stored 17 outputs from z = 2.5 to z = 0.5
equally spaced with ∆t ≈ 0.35 Gyr. From z = 0.5 to z = 0 we have 30 outputs spaced
∆t ≈ 0.17 Gyr. A summary of the eight host halos, is presented in Table 1.

These simulations were analysed using two new methods for identifying gravitationally
bound objects, MHF (MLAPM Halo Finder) and MHT (MLAPM Halo Tracker). A more elabo-
rate description of this technique can be found elsewhere (Gill, Knebe & Gibson 2004).
The finder (MHF) utilizes the adaptive meshes of the open source N -body code MLAPM†
(Knebe, Green & Binney 2001). The adaptive meshes of MLAPM are recursive: refined
regions can also be refined. This creates a hierarchy of refinement meshes of different
resolutions covering regions of interest. The refinements are created cell by cell they are
not constrained to have a rectangular (or any other) shape. Thus, the grid structure
naturally surrounds the (satellite) galaxies as they manifest themselves as over-densities
in the underlying background field. The tracker (MHT) takes an initial output of MHF and
then tracks the particles that were a member of that satellite at later times.

3. The orbital parameters of cluster substructure
In this section we investigate the orbital parameters of the cluster substructure. Fig-

ure 1 on the LHS plots the satellite eccentricity against pericentre normalised by the virial
radius of the host. The crosses represent the satellites that survived until z = 0 while the
diamonds represent the disrupted satellites. The orbital eccentricity of the substructure
is defined to be:

e = 1 − p

a
, (3.1)

where the pericentre p and apocentre a distances are the last measured in the satellite’s
orbit.

The interesting feature of this figure is that there seems to be a distinct population
of satellites with an extremely tight anti-correlation between eccentricities e ≈ 0.6 − 0.9
and pericentres p ≈ 0.3− 0.8. Upon detailed investigation these satellites were identified
to have just completed one orbit and hence entering the halo for the first time.

† MLAPM can be downloaded from the web page http://astronomy.swin.edu.au/MLAPM
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Figure 1. LHS: We plot the satellite eccentricity against pericentre normalised by the virial
radius of the host. The crosses represent the satellites that survived until z = 0 while the stars
represent the disrupted satellites. RHS: We plot the relation between scale radius rs defined
in eq. (4.1) and the position of the maximum of the rotation curve. Both of these values are
normalised by the hosts virial radius.

Morevoer, using this definition for eccentricity the peak in the orbital eccentricity dis-
tribution for the eight halos has an average of 〈e0〉 = 0.61 with an average standard
deviation of 〈σ〉 = 0.19. The disrupted satellites, however, have quite a different distribu-
tion with the peak eccentricity at around 〈ed

0〉 = 0.34 and a dispersion of 〈σd〉 = 0.16. The
pericentre distribution’s maximum peak lies at 35% of the virial radius for live satellites
with a mean dispersion of 〈σ〉 = 0.12 as opposed to 31% of Rvir for the disrupted ones
with a dispersion of 〈σd〉 = 0.11.

There seems to be a lack in correlation with mass, age, environment and richness of
the host halos and their substructure orbital parameters. However, there is a difference
between ”live” and ”disrupted” satellites. Disrupted satellites are on more circular orbits.
Even though they orbit with similar pericentres, the circular nature of their orbit means
that the satellites spend longer times in the deeper regions of the potential well, hence,
experiencing stronger tidal forces for longer periods, thus being disrupted.

We like to stress that for the satellites that survived until z = 0 more than 70% of the
satellites had at least one full orbit with some having as many as four orbits.

4. Density profiles of substructure halos
For field galaxies in cosmological simulations there is the well know relationship be-

tween rmax, the point where the rotation curve of the satellite galaxy peaks and the scale
radius rs (as defined in eq. 4.1, Bullock 2001). In this section we aim to verify this relation
for substructure halos, which on analytical grounds should be of the order rmax ≈ rs.
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To verify this analytical relation we rather use the cumulative density profile ρ(< r)
than the differential ρ(r); for (sub-)halos containing only few particles this leads to a
smoother profile and hence a more stable fit to an analytical function:

ρcum(r) =
M(< r)
4πr3/3

=
ρsr

3
s

r(rs + r)2
(4.1)

where rs is our scale radius used to calculate the concentration c = rvir/rs.
Navarro et al. (1997) used the differential density profile

ρNFW(r) =
dM(r)

dV
=

ρNFW
s R3

s

r(Rs + r)2
(4.2)

where rs is again used to define the concentration cNFW = rvir/Rs of the halo.
We are interested in a relation between our scale radius rs and the maximum of the cir-

cular rotation curve rmax as presented for our subhalo populations in Figure 1. Therefore
using

v2
circ =

GM(< r)
r

(4.3)

together with eq. (4.1) gives

v2
circ =

4πGrρsr
3
s

3(rs + r)2
. (4.4)

We obtain the maximum of vcirc by differentiating it with respects to r

dvcirc

dr
=

1
2vcirc

4πGr3
s

3(rs + r)2

(
1 − 2r

rs + r

)
(4.5)

and setting it to zero. Simple algebra then reveals the relation

rs = rmax . (4.6)

To verify this simple relation we plot rs versus rmax on the RHS of Figure 1. We find
that this relation holds for all our satellite galaxies with very little scatter. The solid
line is the one-to-one relation with the dashed lines showing rs = 2rmax (upper) and
rs = 0.5rmax (lower).

5. Summary
We used a set of eight high-resolution cosmological simulations to investigate and quan-

tify the orbital parameters of satellite dark matter galaxies within host cluster systems.
We found that even though the eight dark matter host halos were quite different with
different accretion histories, their respective satellite population showed remarkably sim-
ilar properties. For the satellites that survived until z = 0 the average orbital eccentricity
of the satellites was found to be e ≈ 0.61 with as little scatter as σ ≈ 0.19. Moreover, the
average pericentre distance of the satellites was p ∼ 35% of Rvir for all halos with again
very little scatter about the mean i.e. σ ≈ 0.12. For the disrupted satellite population at
z = 0 we found a very similar pericentre distribution; however, their eccentricity distri-
bution was considerably lower, ed ≈ 0.34. This implies that the disrupted satellites spend
longer times in the deeper regions of the potential well, hence, experiencing stronger tidal
forces for longer periods, thus being disrupted quicker.

Finally we verified the relationship for substructure galaxies between the maximum of
their rotation curves and the scale radius rs as defined by the NFW profile.
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