Nutrition Research Reviews (2003), 16, 193-209
© The Authors 2003

DOI: 10.1079/NRR200369

The combined use of triacylglycerols containing medium-chain fatty acids
and exogenous lipolytic enzymes as an alternative to in-feed antibiotics in
piglets: concept, possibilities and limitations. An overview
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In the search for alternatives to banned in-feed antibiotics, a concept was developed based on
studies with medium-chain fatty acid-containing triacylglycerols (MCTAG) and selected lipases
for in situ generation of diacylglycerols, monoacylglycerols and medium-chain fatty acids
(MCFA) in the stomach and proximal gut of piglets. MCFA are known to have strong antibacte-
rial properties but can hardly be used as such because of their repellent odour and taste. Those
problems could be overcome by the generation of MCFA in situ. The concept was tested in vitro
and validated in vivo with gastric-cannulated piglets and under field conditions, including effects
on zootechnical performance, with classical antibacterial growth promoters or organic acids act-
ing as positive controls. Furthermore, the metabolic and dietary constraints on the nutritional
and nutritive use of MCTAG and/or MCFA (for example, the effects on digestive physiology,
gut flora, feed intake, performance, carcass composition) are reviewed. The role of natural pre-
duodenal lipase activity, the presence of endogenous plant lipase activity in raw materials and
the feasibility for exogenous lipase addition to the feed are discussed, in order to optimize the
concept. The present review illustrates the similarity of the action of MCFA and commonly used
antimicrobials on the flora (total flora, Gram-positive flora, Gram-negative flora, potential
pathogens) and epithelial morphology and histology in the foregut. These observations are
believed to be the basis for obtaining optimal growth performances. In addition, these naturally
occurring antimicrobial agents have little or no human or animal toxicity and induce no prob-
lems of residues and cross-resistance induction. They are proposed as a valuable alternative to
in-feed antibiotics, used for growth promotion, and even for the preventive and curative treat-
ment of gastrointestinal diseases.

Animal feeds: Antimicrobials: Gut flora: Medium-chain fatty acids: Lipase

Introduction

As a general ban of all in-feed antibiotics in the European
Union is foreseen for 2005, animal nutritionists are highly
interested in active alternatives. Because there is a general
consensus that the growth-promoting effect is mediated
through the antibiotics’ regulating influence on the gut
flora and altering directly or indirectly epithelial functions
in the small intestine (Thomke & Elwinger, 1998b;
Anderson et al. 1999), a number of alternatives with com-
parable effects have been proposed, although a clear-cut
validation is lacking for most of them. These are:
enzymes, probiotics and prebiotics, certain non-digestible

oligosaccharides, fermented liquid feeds, blood plasma
proteins, Zn, dietary acidifiers, herbs and plant extracts,
antimicrobial peptides and lytic phages (Roth &
Kirchgessner, 1998; Thomke & Elwinger, 1998¢; Cowan,
1999; Verstegen & Schaafsma, 1999; Jensen et al. 2003;
Joerger, 2003; Lis-Balchin, 2003; Mroz, 2003). However,
at present, none of these compounds can completely
replace antibiotics in the diet of piglets. Non-nutritional
strategies (weaning age, management, environmental con-
trol, genetics), although very important, are not consid-
ered in the present review.

The most promising compounds for the feeding of
weaner piglets, growers and finishers, seem to be the
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organic short-chain fatty acids (SCFA); formic, acetic, pro-
pionic and butyric acids, commonly known as volatile fatty
acids; and lactic, sorbic, fumaric, malic, tartaric and citric
acids (Partanen & Mroz, 1999). However the health and
performance effects of these organic acids are not always
consistent (Jensen, 1998). The considerable variation in the
efficacy of different organic acids seems to be related to
differences in dietary composition and the physico-chemi-
cal characteristics of the ingredients (for example, acid-
binding capacity), animals (for example, age) and type and
level of acid(s) or their salts.

Background of the concept

In most mammals the alimentary tract becomes heavily
populated with bacteria within a few hours after birth.
Afterwards, a stabilized population persists throughout life,
greatly depending on the relationship of age with diet. Baby
rabbits are exceptional in this respect, because during the
sucking period their stomach and small intestine are virtu-
ally sterile.

Further studies revealed that the fat present in rabbit milk
was transformed into antimicrobial substances by lipolytic
enzymes present in the stomach wall of the sucking rabbit
(Canas-Rodriguez & Smith, 1966; Smith, 1966). Indeed,
antimicrobial activity was not found in the rabbit milk itself
and neither triacylglycerols (TAG) nor diacylglycerols
inactivate microbes (Isaacs, 2001).

SCFA and medium-chain fatty acids (MCFA) are fatty
acids made up of 1-5 and 6-12 C atoms, respectively. The
antimicrobial activity of SCFA and MCFA or their deriva-
tives (for example, monoacylglycerols) has been known for
a long time and is summarized in the work of Kabara et al.
(1972). They were further classified as food-grade germici-
dal agents, pharmaceutical preservatives, silage additives or
feed preservatives. Meeus (1994) and Decuypere & Meeus
(1995) tested the antimicrobial activity of MCFA in vitro
against the components of the small-intestinal microflora of
weanling piglets. They suggested that, in combination with
a proper lipase, MCFA could be an interesting alternative to
antibiotic growth promoters. By substituting part of the tal-
low in the milk replacer with tricaproin or tricaprylin, the
growth of preruminant calves was increased by 40 %
(Aurousseau et al. 1984). The authors explained this phe-
nomenon by the high antimicrobial efficacy of MCFA
released by the enzymes in the gut lumen and by their
fuelling action for the enterocytes. In the stomach contents
of babies, inhibitory fatty acids or their derivatives could be
generated by endogenous lipases, as noted by Hamosh et
al. (1981, 1989), Isaacs et al. (1990, 1992, 1995) and
Hamosh (1997).

Occurrence of medium-chain fatty acid-containing
triacylglycerols in man and animals

The occurrence of medium-chain fatty acid-containing
TAG (MCTAG) in the milk of women and different ani-
mals is variable and the causes of this are not well under-
stood. There is some evidence that their presence and
concentration are related to the level of immaturity of the
young at birth (Smith, 1980). A more in-depth literature
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Table 1. Average fatty acid composition of some medium-chain fatty acid-containing fat sources (g/100 g fatty acids) (Mean values of literature data and authors’ own results)

Goats’ milk Sheeps’ milk Rabbit milk Sows’ milk

Rat milk Cows’ milk

Palm-kernel oil  Human milk Horse milk

MCTAG oil  Coconut oil

Fatty acid

0-5

1.0-2.0
65-0-75-0
25.0-35-0
2.0

MCTAG, medium-chain fatty acid-containing triacylglycerols.
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Table 2. Presence and anatomical site of mammalian and poultry preduodenal lipase activities* (mainly after Moreau et al. 1988)

Anatomical site Rat Mouse Rabbit Dog Horse Pig Calf and Sheep Poultry Man
Tonguet XXX XX X X X X (x)
Pharynxt XXX

Gizzard and proventriculus (x)

Gastric cardia XX

Gastric fundus§ X X XXXX XXX XX X X (x) (xxx)

x, Activity < 10 U/g tissue; xx, activity of 10-100 U/g tissue; xxx, activity of 100-200 U/g tissue; xxxx, activity > 200 U/g tissue; (x), activity present but no exact

data available.

* Lipase activity is expressed in U/g fresh tissue measured under optimal conditions, 1 U being the amount of enzyme releasing 1 pmol fatty acid/min (pH 6.5,
30°C) from an olive-oil emulsion in a pH stat apparatus (Committee on Food Chemicals Codex, 1981).

1 Chief cells.
1 Root of tongue and pharynx-glosso-epiglottic area.
§ Von Ebner’s glands.

search supports the relatively important contribution of
MCEFA in the milk-lipid of certain mammals including the
rabbit, goat, mare, rat, mouse and elephant, while in other
species (cow, sheep, man) the concentrations are rather low
or even negligible; for example, in the milk of the sow,
camel or guinea-pig (Table 1).

Occurrence of preduodenal lipases in man and animals

In man and most mammals there is a more or less devel-
oped preduodenal lipase. The origin is different; lingual
and/or pharyngeal or gastric, and for both the term preduo-
denal lipases (to differentiate from pancreatic lipases) is
used. Common properties of the preduodenal lipases are
that they are active over a broad and rather acid pH range
(except in the pig) (Holler, 1970; Newport & Howarth,
1985; Moreau et al. 1988). These preduodenal lipases have
a strong preference for MCFA in milk fat. High activities
are found in human subjects, preruminant calves, young
rabbits and dogs, while activities are moderate in piglets
and low in carnivorous birds. In poultry and other birds
they are absent (Table 2).

Natural sources of medium-chain fatty acid-containing
triacylglycerols other than milk

Although the milk of certain mammals is certainly the most
abundant source of MCFA, they also occur in the fat of
some seeds and plants (for example, Cuphea). They have
been commercialized by many firms, and have slightly
variable composition and are under different brands as tai-
lored lipid sources; for example, Captex (Capital City
Products, Columbus, OH, USA) and Neobee (Stepan Co.,
Maywood, NJ, USA). These MCTAG sources are almost
pure and are prepared industrially from coconut and palm-
kernel oils by the enzymic or chemical esterification of
glycerol with octanoic and decanoic acids.

Possibilities, uses and side effects of medium-chain fatty
acid-containing triacylglycerols and medium-chain fatty
acids in nutrition

Intact MCTAG have been used in human nutrition as an
energy source, especially in clinical settings and parenteral
feeding (premature infants, fat malabsorption syndromes,
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severe surgery, cancer), for approximately 50 years because
of their unique properties. Their most important properties
include the rapid and complete hydrolysis by lingual, gas-
tric and pancreatic lipases and their beneficial effect on the
intestinal mucosa. Other important properties are: their
direct transport via the portal blood to the liver (without
chylomicron formation or re-esterification); their preferen-
tial oxidation in the mitochondria to CO, and ketone bodies
(less dependence on carnitine) providing a rapidly available
energy source (Velasquez et al. 1996).

However, in animals, an excess of non-esterified MCFA
can have serious unwanted side effects, especially when
given in high doses over a short time (for example, as a
force-fed energy booster in the form of a lipid bolus). In
neonatal piglets this can be ketogenic and narcotic (Samson
et al. 1956; Lin et al. 1995). Also in man, the ingestion of
> 30 g MCTAG in a short period of time induces nausea
and gastrointestinal discomfort (Brouns & Van der Vusse,
1998). Moreover, MCFA may be a stimulus to the secretion
of cholecystokinin, and perhaps other intestinal hormones,
resulting in a pronounced satiety action that could interfere
with gastric emptying and feed intake (Mabayo et al. 1992,
1994). However, recent research has revealed that MCTAG
have only minor effects on cholecystokinin release
(Symersky et al. 2002). The strong goat-like odour
(Molimard et al. 1997) and repellent taste of non-esterified
MCEFA (Cera et al. 1989b; Timmermann, 1993) can also be
a cause of a lower feed intake. Salts of MCFA, on the other
hand, may disturb the acid—base balance in the animal.

The authors of the present study thought that the in situ
generation (for example, directly in the stomach) of diacyl-
glycerols, monoacylglycerols and MCFA from intact
MCTAG could avoid these side effects and so should
always be highly preferred above the direct supplementa-
tion of the diet with non-esterified MCFA or their salts.
Also because of the more prolonged retention time in the
stomach and a slower absorption rate, a stronger antimicro-
bial efficacy of monoacylglycerols above non-esterified
MCFA can be expected (Kabara et al. 1972; Kabara, 1984;
Isaacs et al. 1990, 1995).

This was the origin of the authors’ studies on the influ-
ences of the combined feeding of MCTAG together with an
appropriate lipase, of which the origin can be various, but
preferably easily commercially available. These commer-
cial lipases are quite different in origin: plants (wheat, cas-
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tor bean, rapeseed, mustard); animals (pre-gastric esterase
and rennet paste from calf, kid and lamb); micro-organisms
(Candida, Rhizopus, Penicillium, Pseudomonas) (Pandey et
al. 1999).

The present paper summarizes the concept, possibilities
and limitations of applying TAG containing MCFA in com-
bination with lipases as an alternative to in-feed antibiotics
in piglets. The results presented here concerning the devel-
opment of the concept are mostly based on the authors’
research, recently published in detail elsewhere (Dierick &
Decuypere, 2002; Dierick et al. 2002a.,b, 2003), but more
emphasis is put in the present review on the possibilities
and limitations. To the authors’ knowledge, no data in the
literature are available regarding the simultaneous use of
specific intact MCTAG and lipolytic enzymes in animal
nutrition for the purposes of growth promotion.

Although the energetic evaluation of the MCFA was not
part of the authors’ experiments, the metabolic and dietary
aspects of the use of MCTAG and MCFA (effects on diges-
tive physiology, gut flora, feed intake, performance, carcass
composition) are also highlighted in the present overview.
In addition, the role of preduodenal lipase activity, the pres-
ence of endogenous plant and microbial lipase activity in
feedstuffs and the potential for exogenous lipase addition to
the feed are discussed, leading to an optimal application of
the concept.

Development and validation of the concept
Efficacy in vitro

An in vitro screening was carried out with a selection of
commercial lipases for studying their activity on different
MCFA containing natural or synthetic substrates (Dierick
et al. 2002a). The conditions prevailing in vivo in the
stomach of piglets (for example, an acid pH range of 3 to
6, a coarse emulsified state of the fat source, the presence
of inhibiting components in the diet, the presence of
pepsin and gastric flora, a mean retention time of 3 h) were
simulated as much as possible. This was to avoid bias
induced by the use of unnatural standard procedures. In the
first set of experiments, lipolysis was studied with four
selected MCFA-containing fat sources. These were:
coconut oil; MCTAGI1 (Aldo; Lonza Inc., Fair Lawn, NJ,
USA); MCTAG2 (Stabilox; Loders Croklaan B.V.,
Wormerveer, The Netherlands); butter oil. Six lipases of
different origin were used (L1-L6; microbial, porcine and
calf pancreas). Depending on the conditions, up to 20 % of
the MCFA could be enzymically released in the medium.
From these studies it is clear that some of the lipases
tested are acid- and pepsin-resistant and that appropriate
amounts of MCFA could be liberated to control the bacter-
ial population, indicating that they could be an alternative
to in-feed antibiotics.

In a second set of experiments (Dierick et al. 2002a), the
generation and antimicrobial effects of MCFA from three
selected MCFA-containing fat sources (coconut oil,
MCTAGI1, and MCTAG?2) and one selected effective
microbial lipase (L5), applied under different combinations
and concentrations, were studied. A minimal concentration
of 0-35 g/100 g incubation fluid or 0-025 M-MCFA in the
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medium (for example, stomach, proximal gut) seems neces-
sary in order to obtain a significant (> 10-fold) suppression
of the flora (total anaerobic count, Escherichia coli), corre-
sponding to 0-025 M-non-esterified MCFA in the medium.
This amount can be obtained by selecting an appropriate
combination of sources and doses of fat and lipases (Table
3). The inhibitory effect on the flora of the fat sources used
decreases further (MCTAG]1 oil > MCTAG?2 oil > coconut
oil) with an increase in the molecular weight of the most
important MCFA present in the TAG used. There was also a
correlation between microbial growth inhibition and the
lipophilic character of the fatty acids. This was also
reported by Freese et al. (1973) and Sheu et al. (1975);
5-10 mm-C6 : 0 and -C8 : 0 were needed for 50 % growth
inhibition of E. coli, while for C10 : 0 and C12 : O the mini-
mum inhibitory concentration value was > 10 mMm. Because
the pKa (acid strength) of MCFA is about 4-9 and the pH in
the piglet stomach (fed ad libitum) ranges between 3 and 6
(N Dierick and J Decuypere, unpublished results), it can be
accepted that most of the MCFA will be undissociated. In
the more fat-soluble (undissociated) form, they can freely
penetrate through the semi-permeable peptidoglycan (Gram-
positive) or phospholipid (Gram-negative) membrane of the
micro-organisms into the cytoplasm by passive diffusion,
as originally formulated by Jacobs (1940). In the cell, dis-
sociation into proton and anion, due to the alkaline pH in
the cytoplasm, will lower pH, suppress cytoplasmic
enzymes and nutrient transport systems and uncouple ATP-
driven pumps, leading to cellular death (Freese et al. 1973;
Hsiao & Siebert, 1999). The inhibitory doses found in the
present experiment agree well with the concentrations
(25-30 mm) of acids proposed for inhibiting the growth of
Gram-positive and Gram-negative microbes in food (Freese
et al. 1973; Ostling & Lindgren, 1993), pharmaceutical
preparations (Kabara, 1984) and silages (Woolford, 1975).
Nevertheless, those bacterial species are very different from
the normal dominant species in the pig gut. Using a mathe-
matical model based on principal component analysis,
Hsaio & Siebert (1999) obtained minimum inhibitory con-
centration values for caproic, caprylic and capric acids of
2-2,3-4 and 19-3 g/l for E. coli in food. Their experiments
confirm very well our findings and the importance of the
pKa, molecular weight and the polarity of the MCFA.

Efficacy in vivo

A first in vivo experiment (Dierick et al. 2002b) was set up
to verify whether the results obtained in vitro could also be
obtained in situ in gastric-cannulated piglets. Indeed, the
addition (5 %) of MCTAG (coconut oil, MCTAGI1 oil, but-
ter oil) to piglet diets in combination with selected lipolytic
enzymes (1000 parts per million, in the feed) clearly regu-
lated and stabilized the gastrointestinal flora in the stomach.
It was striking that the extent of release of MCFA in the
stomach corresponded closely to the degree of suppression
of the bacterial load in the stomach (Table 4). The most
pronounced reduction in total bacterial load in the stomach
occurred with 1-01 g non-esterified fatty acids (NEFA)/100 g
fresh contents (equivalent to 60 % hydrolysis of the fat) or
0-68 g MCFA/100 g obtained with MCTAGI1 oil + LS5,
followed by coconut oil + L5, by which 0-82 g NEFA or
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Table 3. In vitro release of medium-chain fatty acids (MCFA) from different fat sources under different incubation conditions and their
effect on bacterial growth in gastric-simulating conditions (Dierick et al. 2002a)

Incubations* Start 0/0 2-5/10000 5/10000 10/10000 2-5/1000 5/1000 10/1000 2-5/100 5/100 10/100
(blank) (control)
Fat source
Coconut oil
Sum MCFAT 0-00 0-002 0-042 0-07° 0-18P 0-032 0-06° 0-10P 0-022 0-032 0-06°
Total anaerobic countt 6-3 712 7.22 6-2° 6-2° 6-42 652 6-42 6-92 7-02 7-02
Escherichia coli § 2:0 2.02 0.02 0.02 0.02 2.02 1.82 1.62 1.92 0.02 2.12
MCTAGH1 ailll
Sum MCFAT 0-00 0-002 0-15P 0-33P 0-61° 0-09° 0-18P 0.37° 0-07° 0-11° 0-21P
Total anaerobic countt 6-2 6-82 5.92 0-0° 0-0b 6-12 4.8° 3.8° 6-52 6-52 6-22
Escherichia coli § 2:0 2.52 2.12 0.02 0.02 3-12 2.52 1.82 2.92 2.82 2.32
MCTAG2 ailll
Sum MCFAT 0-00 0-002 0-15P 0-28P 0-56° 0-11° 0-19° 0.34° 0-09° 0-142 0-22P
Total anaerobic countt 6-3 7-02 5.5 3.40 1.8° 6-3° 6-3° 5.6° 6-52 6-62 6.72
Escherichia coli § 31 3-32 0-0° 0-0° 0-0° 3-1a 1.82 1.6P 3.32 3.22 3.32

MCTAG, medium-chain fatty acid-containing triacylglycerols.

ab Mean values within a row with unlike superscript letters were significantly different from control (condition 0/0) (P < 0-05).
* Incubation time (3 h) and conditions (percentage fat content in medium and lipase dose (parts per million of fat)). The lipase used was ‘L5’, of microbial origin

(6563 U/g; Kemin Europa, Herentals, Belgium).
1 Release of MCFA in the medium (g/100 g incubation fluid).

¥ Reinforced Clostridial agar medium for total anaerobic count (colony-forming units log, /ml incubation fluid).
§ Eosin Methylene Blue agar for E. coli count (colony-forming units log,,/ml incubation fluid).
I MCTAG1 contained (g/100 g fat): C4:0, 0-00; C6:0, 2-70; C8:0, 67-20; C10:0, 26-90; C12:0, 0-40. MCTAG2 contained (g/100 g fat): C4:0, 0-00; C6:0, 0-16;

C8:0, 53-69; C10:0, 39-50; C12:0, 0-29.

0-30 g MCFA/100 g was released. Butter oil + L5 had the
least activity with 0-73 g NEFA or 0-06 g MCFA/100 g gas-
tric contents.

Confirmation of the in vivo results

It is clear that in the in vivo experiment of Dierick et al.
(2002b), the results obtained in the in vitro experiment
were confirmed. However an additional validation of the
results in more commercial settings was required.
Therefore a combined growth trial and slaughter experi-
ment with newly weaned piglets was set up (Dierick et al.
2002b). Four diets (A (negative control), 2:5 % soyabean
oil; B, 2:5 % MCTAG?2 oil; C, 2-5 % MCTAG2 oil + 1000
parts per million lipase L5; D, 2-5 % soyabean oil + 1-5 %
organic acids) were used. The last experimental group
served as a positive control and was fed a combination of
organic acids with a known and well-established growth-
promoting effect. Otherwise they contained no other
growth promoters.

From the slaughter experiment and bacterial counts, it
could be concluded that there is a correlation between the
amount of enzyme-released non-esterified MCFA and the
extent of inhibition of the gastric and duodenal luminal
flora (total count, Lactobacilli, E. coli) (Table 5).
Calculations based on individual measurements (sum of
non-esterified MCFA and the total anaerobic count in each
sample) from both experiments further indicated the exis-
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tence of a correlation between the amount of released
MCEFA in the stomach and the inhibitory effect on the flora.
The correlations were r 0-86 for MCTAG1 (P < 0-01);
r 0-83 for MCTAG2 (P < 0:01); r 0-50 for coconut oil (P <
0-05). This means that the higher the C8:0 + C10:0 and the
lower the C12:0 content in the MCFA profile in the fat
source, the higher was the correlation.

Efficacy in the field

The in vivo experiment described earlier (Dierick et al.
2002b) was carried out in a commercial setting. The rest of
the early weaned piglets were involved in a growth trial in
which it was clearly demonstrated that the manipulation of
the gut ecosystem by the enzymic in situ release of MCFA
in the stomach and duodenum resulted in improved perfor-
mance (Dierick et al. 2002b, 2003; Tables 5 and 6). An
increase in daily gain of more than 10 %, combined with a
3% better feed conversion with the diets containing
MCTAG2 oil or MCTAG?2 oil + lipase was obtained,
exceeding the performance observed with the control diets
based on soyabean oil, supplemented or not with organic
acids (Table 6).

In a search for an alternative to commercial MCTAG
oils, which are rather expensive and industrially produced,
the effects of adding a combination of milled Cuphea
seeds, as a natural source of MCFA (75 % C10:0 in the fat
content), together with an exogenous lipase (500 parts per
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Table 5. Effect of the diet on the content of non-esterified and total fatty acids (FA) and overall degree of hydrolysis (DH) in gastric contents
of slaughtered weaning piglets; effects on the gastric and duodenal flora (five piglets per treatment) (Expt Il) (Dierick et al. 2002b)

Diet A B C D
oil Soya MCTAG2 MCTAG2 Soya
Lipaset 0 0 L5 0
Organic acidst 0 0 0 Mixture
Non-esterified MCFA (g/100 g fresh contents)
6:0 0-00 0-00 0-00 0-00
8:0 0-00?2 0-13° 0-26° 0-00?2
10:0 0-012 0-07° 0-17¢ 0-002
12:0 0-01 0-01 0-02 0-01
Sum of non-esterified MCFA (g/100 g fresh contents) 0-022 0-220 0-45¢ 0-012
Sum of total non-esterified FA (g/100 g fresh contents) 0-282 0-442 0-95° 0-312
Total FA (g/100 g fresh contents) 1.052 1.2520 1.35b 1.072
DH ((non-esterified FA/total FA) X 100) 26-72 35.22 70-40 28.92
Flora components (log,,CFU/g fresh contents)
Stomach
Total count 7-02 7-03° 5.0 6-93°
Lactobacilli 7.23¢ 7-62 6-6° 7-32
Streptococci 4.22 0-6° 5.32 5.12
Escherichia coli 4.62 0-8b¢ 2.0b 0-0°
Duodenum
Total count 6-42 6-12 5.60 5.92
Lactobacilli 6-9 6-8 5.9 6-4
Streptococci 1.62 0-02 4.7° 4.7°
E. coli 4.92 4.82 1.8° 1.8°

MCTAG, medium-chain fatty acid-containing triacyglycerols; MCFA, medium-chain fatty acids; CFU, colony-forming units.

abc Mean values within a row with unlike superscript letters were significantly different (P < 0-05).

* 2.5 % oil in diets. For details of MCTAG2, see Table 3.

1 Lipase ‘L5’ was of microbial origin (6563 U/g; Kemin Europa, Herentals, Belgium). Concentration was 500 parts per million in diets.
1 1-5 % mixture containing 25 % citric acid, 75 % fumaric acid, 50 % calcium formate.

Table 6. Effect of diet on feed intake, growth rate and feed conversion ratio (FCR) of early weaned piglets* (A, n 68; B, n61; C, n 60;
D, n 55 piglets) (Expt 1) (Dierick et al. 2002b)

Post-weaning period (d) 0-7 7-14 14-21 0-21 0-21 (relative to A)
Feed intake (g/d)
A (soyabean oil)t 156 365 472 331 100
B (MCTAG2 oil) 191 376 536 368 111
C (MCTAG2 oil + lipaset) 180 391 533 361 110
D (soyabean oil + acid mix§) 189 355 469 338 102
Growth rate (g/d)
A (soyabean oil) 1272 1272 3002 18520 100
B (MCTAG2 oil) 1640 160° 3012 2082 112
C (MCTAG2 oil + lipaset) 165P 161° 2972 2072 111
D (soyabean oil + acid mix§) 141 1232 2802 181k 98
FCR (kg feed/kg live-weight gain)
A (soyabean oil) 1.23 2.88 1.57 1.79 100
B (MCTAG2 oil) 1.16 2.35 1.78 1.77 99
C (MCTAG2 oil + lipaset) 1-09 2:43 1.79 1.74 97
D (soyabean oil + acid mix§) 1.34 289 1.68 1.87 104

MCTAG, medium-chain fatty acid-containing triacylglycerols.

ab Mean values with unlike superscript letters were significantly different (P < 0-05).

* Mean live weight at weaning (3 weeks) (day 0) was 5-81 (sp 0-18) kg.

1 2.5 % oil in diets A-D. For details of MCTAG2, see Table 3.

1 Lipase ‘L5’ was of microbial origin (6563 U/g; Kemin Europa, Herentals, Belgium). Concentration was 500 parts per million in diet.
§ 1-5 % organic acid mixture containing 25 % citric acid, 75 % fumaric acid and 50 % calcium formate.
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million) in a weaner diet were studied (Dierick et al. 2003).
There was no third treatment (either without lipase but sup-
plemented with Cuphea or a control diet only lipase supple-
mented). This was because preliminary research revealed
that MCFA from native fat in Cuphea seeds could not be
liberated by pig endogenous gastric lipase alone (without
extra added lipases), and that long-chain fatty acids, possi-
bly liberated in the stomach by pig gastric lipase from nor-
mal fat sources (for example, soyabean oil) do not have any
antimicrobial effect. The Cuphea seed mixture (Cuphea
lanceolata and C. ignea) (50 g/kg) was substituted for
soyabean oil (15 g/kg), Alphacel (ICN Biomedicals Inc.,
Irvine, CA, USA; 25 g/kg) and soya protein isolate (10
g/kg) in the control diet. Overall, the piglets on the Cuphea
diet showed an 8 % higher feed intake, a 25 % faster
growth rate and a 14 % better feed:gain ratio (Table 7). The
differences were not significant however (P = 0-19), proba-
bly due to the low number of animals and because Cuphea
was in short supply, also limiting the length of the experi-
ment. To the authors’ knowledge, there is no information on
the toxicity of this material (Graham, 1989). Very recently
sterols, triterpenes, tannins and flavonoids have been
described as the main secondary metabolites in some
Cuphea cultivars (Perez-Castorena & Maldonado, 2003). In
our experiments (Dierick et al. 2003) however, an
improved feed intake and no negative clinical symptoms
were noted. One case has been reported of emaciation and
death in quail after feeding whole C. carthegenensis seeds.
The moisture in the crop caused the release of the mucilagi-
nous seed hairs subsequently forming an impaction that
blocked any further passage of food and ultimately led to
the death of the birds (Hurst, 1978). Indeed, the inverted
spiral hairs, probably glycoproteins containing primarily
arabinose, ribose and xylose, become everted and highly
mucilaginous upon soaking in water for 10 to 20 min
(Stubbs & Slabas, 1982). This could be the reason for the
higher water content in the proximal gut contents of the
piglets fed Cuphea seeds in our experiments (Dierick et al.
2003). Similar effects have been observed with the
mucilage cells of linseed in broilers (Alzueta et al. 2002).
Long-term feeding of crude Cuphea oil (8:5 % in the diet)
over several generations did not cause any specific toxic
effect in mice (Hendrich et al. 1993).

The enzymically released antimicrobial MCFA (1-7 g/kg
fresh gastric contents) decreased the number of coliforms
in the proximal small intestine, Streptococci in the whole
small intestine and Lactobacilli in the stomach and the
proximal and distal small intestine. No effects were noted
on the total anaerobic microbial load. Most probably, bet-
ter results could have been obtained by using other Cuphea
varieties (Graham, 1989), for example, C. pinetorum, C.
hookeriana, C. painteri, C. cyanea, containing more than
50 % C8:0 and 25 % C10:0 in the fat fraction and/or by
using a higher exogenous lipase activity for a better and
faster release of the fat more proximally in the foregut.
Indeed, the endogenous lipase activity in the ground seeds
tested here was very low in comparison with that found in
other pig-feed raw materials (cereals, legumes) (Dierick &
Decuypere, 2002; Dierick et al. 2003). In comparison with
the control diet containing no extra lipase, feeding Cuphea
+ lipase further resulted in a significantly greater villus
height (proximal small intestine) and a lesser crypt depth
(proximal and distal small intestine), a greater villus:crypt
ratio (proximal and distal small intestine) and a lower
number of intra-epithelial lymphocytes (IEL) in the villous
epithelium, which is indicative for a more healthy and
well-differentiated intestinal mucosa (Table 8). IEL are T-
lymphocytes, mainly of the CD8* phenotype, of which the
functions have not been entirely elucidated. It is accepted
that they play a central role as a first line of defence
against foreign luminal antigens (pathogens, proteins), in
the induction of apoptosis of epithelial cells and in the
conservation of the mucosal integrity (Vega-Lopez et al.
2001). This is in line with the observations of Czernichow
et al. (1996) showing that enterally infused MCTAG
enhanced mucosal mass and favoured epithelial cell
renewal in the proximal intestine in rats. The findings of a
more slender villus structure in piglets when antibacterial
growth promoters were added to the feed are possibly
related to the same mechanism (Van Leeuwen et al. 2001).
Potential interference arising from the mucilage-containing
hairs and/or secondary plant metabolites (Salatino et al.
2000; Puupponen-Pimii et al. 2002) of the Cuphea seeds
with the gut flora and/or the intestinal surfaces cannot be
excluded but further research is required to elucidate this
point.

Table 7. Effect of feeding whole Cuphea seeds and lipase on the zootechnical performances of early weaned piglets (fifteen piglets per
treatment) (Expt Ill) (Dierick et al. 2003)

Days post-weaning

Diet 0-7 7-14 14-16 0-16
Feed intake (g/d) (per pen) Control 212 360 489 311
Cuphea + lipase* 194 396 607 336
Growth (g/d) (individual) Control 135 242 311 205
Cuphea + lipase 135 298 389 256
Pvalue 1.00 0-19 0-25 0-19
FCR (kg feed/kg LWG) (per pen) Control 1.57 1-49 1.57 1.51
Cuphea + lipase 143 118 1.54 1-30

FCR, feed conversion ratio; LWG, live-weight gain.

* The concentration of Cuphea seeds was 50 g/kg diet. Lipase ‘L5’ was of microbial origin (6563 U/g; Kemin Europa, Herentals, Belgium); concentration was 500

parts per million in diet.
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Table 8. Effect of feeding whole Cuphea seeds and lipase on the mean villus height (VH), crypt depth (CD) (um) and number of intra-epithelial
villous lymphocytes (IEL) in the proximal small intestine of weaned piglets (five piglets per treatment) (Expt Ill) (Dierick et al. 2003)

Proximalt Distalt
Diet VH CD VH/CD IELE VH CD VH/CD IELE
Control 3819 244.2 1.6 339 4477 246-6 1.9 30-3
Cuphea + lipase§ 365-7 201-0 1.9 26-7 507-1 235-2 2.2 26-0
Significance or P value 0-14 i e > e > b 0-21

The mean value for the Cuphea + lipase diet was significantly different to that for the Control diet: *P < 0-05, ** P < 0-01, *** P < 0-001.

T Sampled sites were 3 m distal from the pylorus and 3 m proximal of the caecum.

1 Number of IEL per 100 enterocytes.

§ The concentration of Cuphea seeds was 50 g/kg diet. Lipase ‘L5’ was of microbial origin (6563 U/g; Kemin Europa, Herentals, Belgium); concentration was 500

parts per million in diet.

Feeding swine with antibacterial growth promoters has
been documented to increase weight gain by 3-9 % and
improve feed efficiency by 2-7 % (Thomke & Elwinger,
1998a). The exact mechanisms by which this occurs are
complex and not completely understood (Visek, 1978). The
authors of the present study believe that the benefits of
growth-promoting antibiotics result from a substantial
decrease in bacterial load, whether commensal or patho-
genic (Vervaeke et al. 1979) and the consequent direct or
indirect alterations in epithelial functions (for example,
increased villus height; decreased crypt depth) in the small
intestine. This leads to an enhanced uptake and use of nutri-
ents and an enhancement of the activity of the immune sys-
tem (for example, decreased number of IEL) (Dierick et al.
1981, 1986b; Shurson et al. 1990; Decuypere et al. 1991;
Li et al. 2001; Van Leeuwen et al. 2001). Furthermore,
indigenous microbiota in the small intestine depress growth
by competing with the pig for nutrients (glucose, amino
acids) and by producing microbial metabolites (NH,,
amines, phenolic compounds, bile-acid deconjugation and
degradation), increasing gut mucosa turnover and mainte-
nance costs (Vervaeke er al. 1979; Dierick et al. 1986a,b;
Anderson et al. 1999; Gaskins et al. 2002). Indeed, micro-
scopic and histological evaluation of the germ-free intestine
revealed a more regular and slender villus structure, a thin-
ner lamina propria, a slower rate of renewal of epithelial
cells and a very low, constant number of IEL (Ferguson,
1974, Coates, 1980).

It can be concluded that MCFA can be a valuable alterna-
tive to nutritional antibiotics because the same underlying
factors affecting growth promotion are affected.

Metabolic and dietary constraints for the use of intact
(i.e. non-hydrolysed) medium-chain fatty acid-
containing triacylglycerols alone or in combination with
exogenous lipases in pig feeding

Effects on production parameters: feed intake, growth rate,
feed conversion and carcass composition

As mentioned above, MCFA are a readily available and
easily metabolized source of energy. In order to increase
the birth weight and vitality of the piglets, several authors
have studied the nutritional effects of intact MCTAG or
MCFA-containing fats in the diets of sows during late ges-
tation. Most studies, however, deal with the performance of
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neonatal, weaned or growing pigs on diets containing intact
MCTAG in comparison with commonly used fats.

Intact medium-chain fatty acid-containing triacylglycerols
for pregnant sows. No differences were found in the pro-
ductive efficiency of sows and growth of the sucking pigs
between feeding MCTAG or long-chain fatty acid-containing
TAG (LCTAG) in late gestation (Averette Gatlin ef al. 2002).

However, Stahly (1983) and, more recently, Newcomb
et al. (1991), Azain (1993) and Jean & Chiang (1999)
found an increased survival of neonatal piglets by supple-
menting the sow diet with MCTAG in comparison with
soyabean oil. They explained the effects by citing
increased blood glucose levels, enhanced glycogen stores
and maturity of the piglets at birth. The 4-fold increase of
the MCTAG in the sows’ milk, which normally contains
only traces of MCFA (Table 1), could also have been bene-
ficial for the piglets in the pre-weaning period. However,
the transfer of MCFA into milk fat by feeding sows with
diets containing as much as 10 % MCTAG remains rather
low (2 % of total milk fat) (Newcomb et al. 1991; Azain,
1993).

Intact medium-chain fatty acid-containing triacylglycerols
for neonatal and pre-weaning piglets. In his excellent
reviews, Odle (1997, 1999) concluded that MCTAG should
have the desired characteristics to supplement the low
energy reserves in neonatal piglets and to increase their sur-
vival. However, the narcotic effect of high doses of
MCTAG might cause piglets to be less vigorous and thus
increase their mortality, especially with newborn piglets
weighing less than 1 kg at birth.

Intact medium-chain fatty acid-containing triacylglycerols
for post-weaning piglets. Also for post-weaning piglets,
in which a growth lag of more than 14 d, combined with a
rise in mortality, is not uncommon, MCFA-containing fat
sources may be beneficial, but again the results are rather
inconsistent. With weaned piglets of 10 kg during a 21 d
experimental period, Allee et al. (1972) did not find differ-
ences in feed intake, gain or gain:feed ratio with rations
containing 10 % MCTAG compared with tallow, lard,
coconut oil or maize oil. This is in accordance with the
results of Newport et al. (1979) with diets containing 15 %
MCTAG and pigs of 2 or 28 d old. Neither did Mahan
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(1991) find differences in performance comparing soyabean
oil with coconut oil in the diet of early-weaned pigs.
Furthermore, Fakler ef al. (1992) did not observe differ-
ences in performance when weaned piglets were fed a diet
containing 8 % MCTAG or 10 % soyabean oil. Recently,
Léon et al. (1998) stated that the provision of MCTAG did
not improve the energy status of the bottle-fed newborn
piglet in comparison with LCTAG. On the other hand, Cera
et al. (1989a) and Jin et al. (1998) found that coconut oil
was superior for weaned piglets compared with soyabean
oil, maize oil or tallow. These results agreed well with
those of De Rodas & Maxwell (1990) who obtained a sig-
nificantly increased average daily gain, feed intake and feed
efficiency during the first week post weaning (weaning at
21 to 28 d) by feeding 4 % lard combined with 6 %
MCTAG oils, compared with 10 % lard or butterfat.
Finally, Dove (1993), feeding 5 % soyabean oil, MCTAG
or animal fat, obtained the highest growth rate with the
MCTAG source. There are discrepancies between the
effects of MCTAG on pig performance noted in most of the
cited literature and the results obtained in the authors’
research. These discrepancies may be related to the absence
or very low levels of endogenous gastric or plant lipases, or
to the fact that no exogenous lipases were added to the
diets, resulting in levels of MCFA in the stomach and duo-
denum that were too low to influence the gut flora.

Intact medium-chain fatty acid-containing triacylglycerols
for growing pigs and pre-ruminant calves. In growing
pigs (30-90 kg), Glaps (1970) did not observe any differ-
ence in performance when feeding 2 ml MCTAG/d per kg
compared with LCTAG. This was also the conclusion of
Takada et al. (1992), feeding 8 % MCTAG in comparison
with 8 % LCTAG. However, substituting part of the tallow in
the milk replacer by tricaproin or tricaprylin, combined with
coconut oil, for preruminant calves resulted in a 30—40 %
increase in growth rate and energy efficiency (Aurousseau
et al. 1984).

Feeding non-esterified MCFA instead of feeding intact
(i.e. non-hydrolysed) MCTAG to weaned piglets had no
effect (Cera et al. 1989b), but with growing pigs Rys et al.
(1969/70) fed 5 % pure non-esterified MCFA (C5-C12) and
obtained an increase in the growth rate of 6 %, in compari-
son with an isoenergetic control diet. The lack of a positive
effect of non-esterified MCFA in young pigs may be related
to the fatty acid level and profile of the fat sources used and
to negative effects on feed intake, as mentioned earlier.

Effects on product quality

The concept of using TAG containing proper amounts of
MCFA combined with exogenous lipolytic enzymes as an
alternative to nutritional antibiotics has initially been tar-
geted at piglet and early grower nutrition. However, apply-
ing higher doses of MCTAG, alone or in combination with
lipases, with the objective to increase the energetic value of
the pig feed, may selectively increase the firmness of the
carcass fat by MCFA chain elongation (Takada ef al. 1992).
In order to avoid increases in the degree of saturation of the
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carcass fat in slaughter pigs and because the major changes
in fatty acid composition due to diet influences will occur
within 4-5 weeks (Wiseman & Agunbiade, 1998), high lev-
els of MCTAG (4 % or more) are not recommended in the
finishing phase of pigs.

Finally, some reports indicate that high levels of MCFA
in the diet may reduce the deposition of fat and decrease
protein catabolism in mammals, poultry and fish
(Aurousseau et al. 1984; Crozier et al. 1987; Chiang et al.
1990b; Mabayo et al. 1993; Rgsjg et al. 2000). This may be
related to the lower gross energy and net energy content
(=20 %) of MCTAG (gross energy of 34-9 and net energy
of 28-6 kJ/g) compared with LCTAG (Ingle et al. 1999).

Effects on the gastrointestinal mucosa and physiology

Bacteria differ from eukaryotic cells in that they have rigid
cell walls. Sheu et al. (1975) reported growth inhibition and
morphological alterations in mammalian cell cultures
(HeLa, human fibroblasts and mouse neuroblastoma cells)
by millimolar concentrations of C6-C10 fatty acids, most
probably due to alterations in cell attachment structures or
processes. Nevertheless, Odle et al. (1991), studying the
metabolism of even- and odd-C MCFA as Na salts
(1 mmol/l) in isolated piglet hepatocytes, did not mention
any alterations. However several authors warned of epithe-
lial cell damage and disorders in phospholipid bilayers and
membranes by MCFA and related compounds (Wargovich
et al. 1984; Van Hoogdalem et al. 1989; Bergner &
Sommer, 1994; Shima et al. 1998, 1999; Kimura et al.
2001). Kanai & Kondo (1979) concluded that, because
MCFA and their acylglycerols are anionic surface-active
compounds, in vitro cytotoxicity and membrane disorders
and perturbations in tissue culture cells can occur.
However, it is generally believed that the same events
would not occur in living bodies in which various neutraliz-
ing agents such as serum, chyme and mucins are abundant.
A higher susceptibility of isolated cells in vitro compared
with tissue-associated cells in a natural environment was
also observed with volatile fatty acids (Wachtershiuser &
Stein, 2000).

Today, based on clinical observations in human subjects,
it is clear that MCTAG and MCFA may have several posi-
tive effects on gut physiology. First, they improve intestinal
morphology and function, through their positive effects on
crypt cell activation and reactive villous hyperplasia (mal-
nutrition, ageing) (Galluser et al. 1993; Jenkins &
Thompson, 1993; Czernichow et al. 1996; Iba et al. 1998).
Second, they have positive effects on epithelial cell mem-
brane-bound enzyme activities (Takase & Goda, 1990).
Third, they enhance absorption as measured in Caco-2 cell
monolayers (Lindmark et al. 1995, 1998). Fourth, they are
an excellent fuel as a source of acetate for small-intestinal
enterocytes (Greenberger et al. 1965; Guillot et al. 1993)
and a more suitable energy source than LCFA for epithelial
cells in the treatment of Crohn’s disease (Andoh et al.
2000). As already mentioned, Odle (1997, 1999) did not
indicate any deleterious effect of MCFA when studying
their metabolism in isolated hepatocytes of neonatal piglets.
Finally, Traul et al. (2000) reviewed the toxicological prop-
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erties of MCTAG for pigs. There was no evidence that
dietary administration of MCTAG adversely affected the
reproductive performance of sows or resulted in maternal
or fetal toxicity and teratogenic effects in doses up to
4 g/kg live weight per d in the diet, in accordance with the
results of Hendrich er al. (1993) obtained with three gener-
ations of mice. For all these reasons, negative effects of
MCFA on host epithelial cells are unlikely. This is in line
with our results (Dierick et al. 2003) where an increased
villus:crypt ratio and a lower number of IEL, indicative of a
more healthy and better functional status of the mucosa,
was observed when feeding a Cuphea + lipase-containing
diet to weaned piglets. It can be argued that the combined
use of TAG and lipases reduces the potential for tissue irri-
tation and toxicity that could be produced by the ingestion
of large amounts of ionized NEFA together with large
quantities of damaging cations such as Na* (Bergner &
Sommer, 1994; Wichtershiduser & Stein, 2000).

Although MCTAG and MCFA are ‘generally regarded as
safe’ (GRAS) and of benefit for oral and enteral use in
human nutrition by the Food and Drug Administration in
the USA, their effects on mucosal integrity need further in
vivo research, especially with large doses or sudden incor-
poration in the diet.

Gut flora, pathogens and resistance

The antibacterial mechanism(s) of organic acids and SCFA
are not fully understood and activity may vary depending
on the growth phase of the organism and on environmental
characteristics. An autolytic enzyme (autolysin) seems to be
involved in the bacterial death and cellular lysis induced by
MCFA (Tsuchido et al. 1985). The fate of MCFA, once
inside the microbial cell, is not clear. According to Fay &
Farias (1975), MCFA are not metabolised by E. coli. In
contrast, Cherrington et al. (1991) claimed that Gram-nega-
tive bacteria are capable of metabolising MCFA. According
to these authors, MCFA penetrate the membrane via porins
and once inside the cell they should be degraded via the B-
oxidation cycle, of which the necessary enzymes are
induced by the acid.

At present there is some evidence that (potentially) path-
ogenic bacteria may be inactivated by MCFA or their
monoacylglycerols (Kabara et al. 1972; Kabara, 1984;
Isaacs er al. 1990, 1992; Boddie & Nickerson, 1992; Wang
& Johnson, 1992; Guthery, 1993; Oh & Marshall, 1993;
Kinderlerer et al. 1996; Petrone et al. 1998; Petschow et al.
1998; Sprong et al. 2002).

An emerging potential problem is that organic acids and
SCFA have been observed to enhance the survivability of
acid-sensitive food-borne pathogens (Salmonella, E. coli,
Listeria, etc) exposed to low pH (gastric contents) by the
induction of an acid-tolerance response, linked to an
increased virulence (Ricke, 2003). According to Petschow
et al. (1998), it is important to note that MCFA do not
induce a notable resistance and, in any case, the induction
of resistance must be very low in comparison with antibi-
otics. The exact mode of action of MCFA in inhibiting the
growth and colonization of pathogens (E. coli, Salmonella,
Serpulina, Clostridium, etc) needs to be further elucidated,
however.
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Role of preduodenal lipases in the release of medium-chain
fatty acids in the stomach and proximal gut

In most mammals there is a more or less pronounced pre-
duodenal lipase activity, originating from lingual or gastric
secretions. These lipases are active in a broad pH range
with a preference for MCFA in milk fat (Table 2).
Endogenous gastric lipase (optimal pH range 5-9; Holler,
1970) located in the cardiac region of the pig stomach, is
thought to play a significant role in the hydrolysis of fats in
the stomach but its quantitative contribution to overall fat
digestion still remains to be elucidated. The enzyme seems
to be resistant to acid and pepsin and its action is indepen-
dent of bile acids or cofactors. The degree of fat hydrolysis
(17 % NEFA in total fat, Table 4; 25-35 % NEFA in total
fat, Table 5) noted in the stomach of piglets after feeding
diets without added lipases is in accordance with the scarce
literature data (Newport & Howarth, 1985; Chiang et al.
1990a). Jensen et al. (1997) followed the development of
lipases in pigs and noted a pronounced decrease in pancre-
atic and an increase in stomach lipase activity (only 0-2 %
of the pancreatic activity) in newly weaned piglets. Holler
(1970) estimated the gastric lipase activity to be only 5 %
of the pancreatic lipase activity, while Newport & Howarth
(1985) reported that the total lipase activity in stomach tis-
sue was only about 3 % of that found in the pancreas.
Recently Li er al. (2001), investigating the development of
lipase in nursing piglets, reported that total gastric lipase
activity was fully developed on day 21, but reached only
about 5 % of the pancreatic lipase activity at that time.
However, the fact that fatty digesta are retained for a longer
time in the stomach than in the small intestine could
explain why gastric lipase, despite its low activity, may
actually hydrolyse a considerable part of the fat in the
stomach. Furthermore, Hunt & Knox (1986) found that
fatty acids are more effective than the corresponding TAG
in delaying gastric emptying and that increasing the chain
length up to C14:0 (primarily MCFA) led to a progres-
sively slower emptying. Gastric lipase also remains active
in the duodenum, acting in synergy with pancreatic lipase
(Edwards-Webb & Thompson, 1977).

However, it appears that this endogenous lipase activity
in the stomach of piglets is too low (with a degree of
hydrolysis of 15-30 %; Tables 4 and 5) to generate enough
MCFA (0-025 ™M) to control the gut flora. This could be
related to the lower (4-5) than optimal pH (5-9) for pig
gastric lipase activity. As no contaminating bacteria were
detected in any of the prepared feeds, lipolytic activity
from microbial origin also seemed unlikely. Therefore, the
addition of exogenous lipolytic activity, through lipase
supplementation of the diet, with an optimal pH in the acid
range (4-5), seems to be advantageous for releasing suffi-
cient amounts of MCFA for an effective antimicrobial
activity.

Role of endogenous lipases, originating from raw
materials, in the release of medium-chain fatty acids in
the stomach and proximal gut

Besides preduodenal lipases, a second source of endoge-
nous lipases, originating from raw materials or prepared
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feeds, may interfere with the application of the concept.
Information on endogenous lipolysis in raw and processed
materials during storage is very scarce (O’Connor et al.
1992). Plant seeds store TAG in intracellular organelles
called oil bodies or oleosomes, which are oil droplets cov-
ered by a coat of phospholipids and proteins serving as
high-energy C reserves (Beisson et al. 2001). Lipolysis
and subsequent rancidity caused by oxidation is usually
not a problem in intact whole grains or seeds, stored at
normal temperature (< 20°C) and moisture levels (< 12 %).
During germination and in sprouted, cracked, broken or
ground seeds, however, lipase activity may increase con-
siderably. Subsequently, it is evident that the NEFA
content of milled feedstuffs, raw materials and compound
feeds and the subsequent lipolysis during the storage of
compound feeds are important parameters, which will
influence the subsequent nutritional and economic value of
the fat and the feed.

From the authors’ own results, NEFA levels of more
than 50 % in the lipid fraction were found in milled raw
materials and in compound feeds, after a few weeks of
storage. Normally endogenous lipolysis remains low
(5-15 % NEFA in fat) in stored heat-treated cereals, in
milk (products), fish products and Cuphea seeds (Dierick
& Decuypere, 2002; Dierick et al. 2003). It is recom-
mended that lipolysis should be prevented both in feed-
stuffs and compound feeds during storage. Indeed, most
post-weaning diets are supplemented with fats and oils to
increase palatability and energy intake. For the applica-
tion of the proposed concept, preference should be given
to heat-treated raw materials or mixed feeds (for example,
pelleting, expansion, extrusion), showing no or low levels
of endogenous lipase activity. Also an appropriate choice
of the exogenous lipase used can greatly influence the
subsequent lipolysis in the compound feed and is essential
in order to prevent any aggravation of the inevitable
endogenous lipolysis in the feed. The release of small
amounts of MCFA during the storage of feed is not disad-
vantageous per se, however, because it can prevent the
growth of deleterious microbial contaminants in the feed
before ingestion. High amounts of non-esterified MCFA,
however, may produce an adverse odour, as already
mentioned.

The question may arise as to whether the lipase activity
results, entirely or in part, from surface-associated micro-
organisms such as Penicillium, Pseudomonas and
Candida, rather than from the feedstuff itself, as suggested
by Petterson et al. (1999). However, the total microbial
count on the feeds and feedstuffs used in all our experi-
ments (Dierick et al. 2002a,b) was about 1000 colony
forming units/g. A simple calculation indicates that such
populations are much too small to contribute significantly
to lipolytic activity, which is in line with the results of
Petersen (1999).

Our results clearly demonstrate that the activity of all
those endogenous lipases (preduodenal, plant raw materi-
als, in-feed microbes) in normal circumstances (fresh feed;
piglets in post-weaning period) is too low for releasing suf-
ficient amounts of MCFA for the antimicrobial manage-
ment in the stomach and foregut of piglets.
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Mode of application

The antibacterial activity of the classic non-esterified
organic acids can be reduced by a decrease in feed intake,
because some of them (for example, propionic acid) have a
bad taste. This is very important in early-weaned pigs
where feed intake is already seriously impaired. Another
cause for reduced efficacy is the direct absorption in the
stomach and upper small intestine (Clark er al. 1969;
Dierick et al. 2002b). Moreover, the use of some of these
acids (acetic acid, formic acid) is limited by problems of
handling, strong odour and corrosion during feed process-
ing and during its use on the farm. The use of specific
preparations that gradually release the active acids (for
example, micro-encapsulated or protected acids) at the
desired site of action represents a strategy to overcome this
problem (Cerchiari, 2000). Taking all these arguments into
consideration, a gradual enzymic release of MCFA, eventu-
ally together with MCFA-containing monoacylglycerols
from TAG, in situ in the foregut, seems to be preferable to
the supplementation of the feed with fixed doses of more
common organic acids or MCFA or their salts. This mode
of application avoids taste aversion, disturbance of the
acid—base balance or possible mucosal damage, which can
also decrease performance (Ostrowski ef al. 1972).

Concluding remarks and needs for further research

During the last decade a lot of research has been directed to
the use of MCTAG in human and animal nutrition, espe-
cially for piglets. Almost no research has been focused,
however, on their use as a potential source of antimicrobial
compounds, when liberated in sifu in the stomach and
foregut by appropriate lipases.

The present review illustrates similarly strong activity of
MCFA and the classical antimicrobial growth promoters
and therapeuticals on the gut flora (total flora, Gram-posi-
tive flora, Gram-negative flora, potential pathogens) espe-
cially in the stomach and the foregut, as well as on the gut
function of piglets. This means that these naturally occur-
ring antimicrobial agents, which have little or no toxicity,
can be an effective alternative to in-feed antibiotics.

A progressive enzymic release of MCFA, eventually
combined with MCFA-containing monoacylglycerols from
TAG, in situ in the foregut, seems to be preferable to the
supplementation of the feed with non-esterified classical
organic acids or non-esterified MCFA or their salts, avoid-
ing taste aversion and disturbance of the acid—base balance
in the animal.

However, when applying this concept, the choice of
feedstuffs and lipases should be done very carefully and
needs further exploration.

Because the recovery rates of bacteria by classical cultur-
ing methods, as compared with direct microscopic counts,
have been reported to range from 30 to 60 %, more research
is needed based on molecular techniques. There are three
techniques used extensively in microbial ecology, based on
the variability in the 16S rRNA-gene (rDNA) or on the use
of specific primers and probes based on 16S rRNA: fluores-
cent in situ hybridization, quantitative polymerase chain
reaction and denaturing gradient gel electrophoresis or tem-
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perature gradient gel electrophoresis (Snel et al. 2002).
These techniques most probably will provide more precise
identification and enumeration of microbial populations,
independent of cultivating on plates. They will enable a
reassessment of the microbial ecology of the pig gastro-
intestinal tract (Simpson et al. 1999; Van Den Bossche et al.
2001; Leser et al. 2002; Akkermans et al. 2003) and the
microbial populations as altered by growth-promoting
antibacterials (Gaskins et al. 2002), including MCFA. As
there are also limitations to these molecular techniques, a
complete picture of the diversity and the role of the complex
microbial ecosystem in the pig gut will need a combination
of both classical and molecular techniques (Knarreborg
et al. 2002).

The role and potential of MCFA in inhibiting the growth
and colonization of an autochthonous microflora, including
food-borne pathogens (E. coli, Salmonella, Clostridium,
etc) needs further investigation, especially with regard to
the possible induction of acid tolerance, mechanisms of
resistance and linked virulence.

More attention should also be given to meat quality,
especially when applying high doses of MCTAG in grow-
ing and finishing pig diets.

Alternatives to the common sources of MCTAG oils,
which have the very serious constraint of being rather
highly priced, should be explored.

Finally, as the concept is not limited to a specific
medium, further development in warm-blooded production
and companion animals and in cold-blooded animals as
well as in plants for treatment of microbial infections
awaits further research.
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