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Anisotropy of turbulence at the core of the tip
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Large-eddy simulation on a grid consisting of 5 billion points was utilized to study
the properties of turbulence at the core of the tip and hub vortices shed by a marine
propeller across working conditions. Turbulence at the core of the tip vortices was found
to be initially isotropic, moving towards a ‘cigar-shaped’ axisymmetric state as instability
grows, dominated by turbulent fluctuations of the velocity component directed in the radial
direction of the cylindrical reference frame centred at the wake axis. The break-up of the
coherence of the tip vortices is instead characterized by turbulence recovering an isotropic
state. This process is accelerated by growing load conditions of the propeller. In contrast,
during instability of the hub vortex, turbulence at its core develops a ‘pancake-shaped’
axisymmetric state, dominated by the fluctuations of the radial and azimuthal velocities.
However, at higher propeller loads turbulence at the core of the hub vortex keeps close to
isotropy, thanks to a faster instability. Within both tip and hub vortices the deviations
from Boussinesq’s hypothesis were found very significant, providing evidence of the
unsuitability of conventional turbulence modelling. At the core of the tip vortices they
become especially large at their break-up and for increasing load conditions of the
propeller, equivalent to more intense structures. In contrast, at the core of the hub vortex
they were verified to be decreasing functions of the propeller load.

Key words: turbulence simulation, vortex dynamics, wakes

1. Introduction

Marine propellers shed large structures, especially from the tip of their blades and from
their hub, having an important impact on their acoustic signature (Bagheri et al. 2017;
Cianferra, Petronio & Armenio 2019; Wang, Göttsche & Abdel-Maksoud 2020; Ebrahimi
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et al. 2021; Razaghian et al. 2021; Petris, Cianferra & Armenio 2022; Posa et al. 2022b)
and affecting their interaction with downstream devices, such as rudders (Kinnas et al.
2007; Felli, Camussi & Guj 2009; Felli & Falchi 2011; Felli, Grizzi & Falchi 2014; Badoe,
Phillips & Turnock 2015; He & Kinnas 2017; Villa et al. 2018; Hu et al. 2019b, 2021;
Wang et al. 2019; Villa, Franceschi & Viviani 2020; Felli 2021; Posa & Broglia 2021,
2022a,c,d; Zhang et al. 2022). A number of studies dealing with the wake of marine
propellers are currently available in the literature, including both physical experiments
and numerical simulations. However, the latter class of works often faces limitations in
terms of accuracy of the approach, coming from modelling assumptions or the resolution
of the computational grid.

Several Reynolds-averaged Navier–Stokes (RANS) computations on the subject were
reported (see, for instance, Hong & Dong 2010; Morgut & Nobile 2012; Baek et al. 2015;
Paik et al. 2015; Wang et al. 2017, 2018; Heydari & Sadat-Hosseini 2020; Zhao, Zhao &
Wan 2020). Unfortunately, although RANS was demonstrated to be an appropriate tool
for the prediction of the global performance of marine propellers, it is inherently not well
suited to reproduce the instability mechanism typical of their wake, since turbulence is
fully modelled, rather than resolved (Cai, Li & Liu 2019). Meanwhile, most turbulence
models were developed on canonical, less challenging flow problems, so they are not
specifically designed to represent the unsteady dynamics of the large tip and hub vortices
shed by marine propellers and the properties of turbulence at their core. Detached-eddy
simulation (DES) is aimed at improving the predictive capabilities of the computations,
compared with RANS, since the large, energy-carrying structures of the flow are explicitly
resolved away from walls. However, the RANS approach and its limitations are retained
in the vicinity of the surface of the bodies immersed within the flow. Examples of this
technique for the numerical prediction of the wake of marine propellers can be found in
Muscari, Di Mascio & Verzicco (2013), Gong et al. (2018, 2020), Guilmineau et al. (2018),
Zhang & Jaiman (2019), Sun et al. (2020), Shi et al. (2022), Wang et al. (2021a, 2022b,c)
and Wang, Luo & Li (2022e). In these studies, computational grids consisting of O(107)
points are utilized, which is a significant step forward, in comparison with the typical
resolutions adopted to conduct RANS computations, usually relying on meshes consisting
of a few million points.

Large-eddy simulation (LES) is less often adopted in the field, due to its higher
computational cost; LES computations need to be carried out using solvers with optimal
conservation properties on computational grids able to explicitly resolve most energetic
scales, limiting subgrid-scale (SGS) modelling to the smallest, dissipative scales only.
These scales are more homogeneous and isotropic. As a result, for them the errors
associated with modelling assumptions for turbulence are smaller. In recent years LES
has become an increasingly popular tool for the simulation of marine propellers, thanks
to the growing computing power of supercomputers. However, the LES studies currently
available in the literature typically rely on computational grids consisting of O(107)
points, similar to those for the DES computations reported above, and are usually
targeted at analysing the process of instability of the wake system of marine propellers
and the cavitation phenomena occurring within the large coherent structures they shed
(Liefvendahl 2010; Liefvendahl, Felli & Troëng 2010; Asnaghi, Svennberg & Bensow
2018a,b, 2020a; Hu et al. 2019a; Zhu & Gao 2019; Ahmed, Croaker & Doolan 2020;
Asnaghi et al. 2020b; Long et al. 2020; Kimmerl, Mertes & Abdel-Maksoud 2021a,b;
Wang et al. 2021b, 2022a; Wang, Liu & Wu 2022d). However, the resolution of the
computational grid and in turn the range of scales that LES is able to explicitly resolve
to accurately reproduce the mechanism of wake instability has been pushed even forward
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in the works by Balaras, Schroeder & Posa (2015), Kumar & Mahesh (2017), Posa et al.
(2019), Posa, Broglia & Balaras (2022a) and Posa (2022b).

Kumar & Mahesh (2017) adopted an unstructured grid consisting of 181 million
hexahedral cells to conduct wall-resolved computations and analyse in detail the
development and eventual instability of the wake shed by the five-bladed DTMB
4381 propeller at the design working condition, using a body-fitted approach. Their
state-of-the-art computations revealed that the onset of the instability of the tip vortices
was attributable to their interaction with the smaller vortices arising from the roll-up by
the thin wakes shed from the trailing edge of the propeller blades. An immersed-boundary
(IB) technique was instead adopted by Balaras et al. (2015), Posa et al. (2019, 2022a) and
Posa (2022b). Balaras et al. (2015) studied the seven-bladed INSEAN E1619 propeller,
using a cylindrical grid consisting of more than 3 billion points. Their computations
demonstrated the ability of the overall LES/IB approach in reproducing the process of
instability of the tip vortices at both design and heavy-loaded conditions, developing
according to the mechanisms discussed in the theoretical work by Widnall (1972) and
observed in the physical experiments by Felli, Camussi & Di Felice (2011). A cylindrical
grid of 840 million points was adopted by Posa et al. (2019) to reproduce the wake
generated by the seven-bladed INSEAN E1658 propeller across three values of advance
coefficient, reporting detailed comparisons with the particle imaging velocimetry (PIV)
measurements by Felli & Falchi (2018) and demonstrating a very close agreement with
them. The same propeller was simulated by Posa et al. (2022a), using a finer computational
grid consisting of 3.8 billion points. A detailed vortex core analysis was reported for both
tip and hub vortices. Both studies by Posa et al. (2019, 2022a) revealed the importance
of the interaction between the tip vortices and the wake shed by the following blades
in promoting the instability of the former, accelerated at higher rotational speeds by
their decreasing pitch, shifting the streamwise location of this interaction closer to the
propeller plane. More recently, Posa (2022b) utilized a grid of 5 billion points to simulate
both conventional and tip-loaded propellers at design working conditions, to compare the
development of their wakes and in particular their tip vortices. The LES computations
revealed that, despite the use of pressure side winglets at the end of the tip-loaded blades,
splitting the tip vortices into two smaller helical structures, tip loading still resulted in
more intense tip vortices, in comparison with the conventional blade design.

Although all LES studies above provided important information on the wake dynamics
of marine propellers, several details on the properties of turbulence and their evolution
during the instability of the tip and hub vortices are still missing. They are required,
since they could serve as a reference for lower-fidelity approaches, relying on more
conventional strategies of turbulence modelling, such as RANS, to verify their predictive
capabilities and their deviations from the actual behaviour of turbulence. Information on
the properties of turbulence is especially needed at the core of the tip and hub vortices,
where conventional modelling is challenged the most. In contrast, studies targeted at
the vortex core analysis are quite limited in the literature. In other words, data from
high-fidelity computations could be useful to tune turbulence models, with the purpose
of improving their accuracy in this particular class of flows. Taken into account the
limited access to supercomputing resources, this achievement is important to make the
computational study of propellers more affordable to a wider community of scientists and
engineers, by decreasing the computational cost of the simulation of their fluid dynamics.

In the present study, results from LES simulations, conducted on a computational grid
consisting of approximately 5 billion points, are exploited to gain insight into the properties
of turbulence at the core of the tip and hub vortices shed by a marine propeller. This work is
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the extension of an earlier study (Posa 2022a), focused on the analysis of the dependence of
the intensity of the tip and hub vortices on the working conditions of the propeller. While
vorticity at their core was found almost proportional to the rotational speed of the propeller,
the growth of both turbulence maxima and pressure minima, which are potential sources
of cavitation phenomena, was verified to be faster than linear. In addition, in the earlier
work by Posa (2022b) the wake development of the same tip-loaded propeller, including a
downstream shaft, was compared against that of a conventional propeller without winglets,
to assess the ability of winglets of reducing the intensity of the tip vortices, despite the
higher load at the outer radii of the propeller blades.

In this study, the anisotropy of turbulence at the core of the tip and hub vortices is
analysed as a function of both the streamwise coordinate downstream of the propeller
and its load conditions. Furthermore, its deviation from the assumption of Boussinesq’s
hypothesis of proportionality between the deformation tensor and the deviatoric part of
the Reynolds stresses is explored. Despite the importance of the subject, the literature
on the anisotropy of turbulence within vortices is rather limited, due to the challenge of
performing a vortex core analysis through both experiments and computations.

Hot-wire probes were utilized to perform measurements at the core of a vortex by
Phillips & Graham (1984). The vortex was coaxial with a jet or a wake in their experiments.
These conditions were found to accelerate the radial dispersion of vorticity, by producing
higher levels of Reynolds stresses. However, in the wake flow the Reynolds stresses were
found to be an order of magnitude lower than in the jet flow, in agreement with the slower
rate of decay of the tangential velocity within the vortex. The results by Phillips & Graham
(1984) did not show strong levels of anisotropy of turbulence at the core of the vortex, with
similar tangential and radial stresses and only slightly lower axial stresses.

Moore et al. (1994) analysed the turbulence within the tip leakage vortex generated by a
linear turbine cascade on a plane located just upstream of the trailing edge of the cascade,
by using data from hot-wire measurements. Turbulence was found to be almost isotropic
in the region between the core of the tip leakage vortex and the endwall separation.
Anisotropy developed away from there, due to the shear between the vortex and the free
stream as well as to the flow recirculating from the tip leakage vortex towards the suction
side of the blades composing the cascade. In other words, the study by Moore et al. (1994)
found the most significant contributions to anisotropy of turbulence originating from the
interaction of the tip leakage vortex with the surrounding flow and walls, rather than from
phenomena occurring at the core of the vortex itself. A more recent study on a similar
subject was reported by Li, Chen & Katz (2019). They conducted experiments in the
optical refractive index-matched facility of the Johns Hopkins University, dealing with the
blade tip region of two water jet pumps and an aviation compressor, focusing their analysis
on the region populated by the tip leakage vortex. Interestingly, they reported that the
distribution of the Reynolds stresses, although extremely anisotropic, was similar across
different geometries. They also verified the lack of correlation between the Reynolds
stresses and mean strain rates, resulting in a complex distribution of both positive and
negative values of turbulent viscosity. However, also for the turbulent viscosity, similar
patterns were observed across different turbomachinery geometries.

Chow, Zilliac & Bradshaw (1997a,b) studied the anisotropy of turbulence within the
vortex shed from the tip of a wing by using triple-wire probe measurements. Also in this
case a lag of the Reynolds stresses, relative to the strain rate tensor, was observed. In the
cylindrical frame of reference centred at the core of the vortex, the radial turbulent stresses
were found to be higher than the tangential ones. These results were verified in a later
study by Ramasamy et al. (2007, 2009), who performed PIV measurements at the core
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of the vortex shed from the tip of a rotor. However, they reported the stresses in the axial
direction to be the highest. The turbulent stresses within the vortex shed from the tip of a
wing were also studied by Churchfield & Blaisdell (2009), who utilized the experimental
data by Chow et al. (1997a,b) to verify the accuracy of a number of turbulence models.
In particular, they found the best performance by the Spalart–Allmaras model with a
curvature correction (Spalart & Shur 1997), while both the standard Spalart–Allmaras
(Spalart & Allmaras 1994) and Menter shear stress transport (Menter 1994) models
overpredicted the Reynolds stresses. Churchfield & Blaisdell (2009) concluded also that,
although the Rumsey–Gatski κ–ε (κ , turbulent kinetic energy; ε, turbulent dissipation)
algebraic Reynolds stress model (Rumsey & Gatski 2001) was not the best performing,
it was the only one to properly predict some lag of the tensor of the Reynolds stresses,
relative to the deformation tensor. They reported a resolution of their computational grid
within the vortex core of 21 grid points. In the same line, Skinner, Green & Zare-Behtash
(2020) recently conducted stereo PIV on the vortex shed by a swept-tapered planar wing,
representative of the flow structures shed by typical mid-sized commercial aircraft wings.
Their study revealed relaminarization at the vortex core for all investigated angles of attack.
They also reported a four-lobed topology for both Reynolds stresses and strain rates, but
characterized by different orientations. However, this comparison was limited to only one
component of the two tensors.

The anisotropy of turbulence at the core of the sonar dome tip vortex generated by a
surface combatant ship in static drift was studied by Visonneau, Guilmineau & Rubino
(2018, 2020) by means of DES computations and experiments. At the onset of the vortex,
significant deviations from isotropy were found, which explained the poor predictions by
RANS computations. The experiments revealed an axisymmetric ‘cigar-shaped’, rod-like
state, characterized by the lead of one component of the velocity fluctuations over the other
two components. As the vortex developed away from the wall of the ship, turbulence at its
core was found to approach gradually a more isotropic state. The comparison between DES
and experiments was good, although at the onset of the vortex DES predicted, in contrast
with the experiments, turbulence spanning a wider range of anisotropic conditions,
including two-component turbulence and a ‘pancake-shaped’, disk-like axisymmetric
state, characterized by one component of the turbulent fluctuations of velocity being
smaller than the others.

Although all studies reported above provided a remarkable insight into the anisotropy
of turbulence at the core of the vortices shed by wings, rotors, ships or even in
turbomachinery devices, a detailed discussion of its properties within the tip and hub
vortices shed by propellers is missing. Meanwhile, the same studies suggested that the
anisotropy of turbulence at the core of vortices is significantly affected by the particular
features of their generators. This is problematic if turbulence models need to be tuned
to properly handle this class of flows by exploiting data available through high-fidelity
computations or experiments.

The results of the present study will show the development of a ‘cigar-shaped’
axisymmetric turbulence at the core of the tip vortices shed by a marine propeller, as their
instability develops. Then, the break-up of the tip vortices results in turbulence shifting
again towards a more isotropic state. In contrast, during instability the hub vortex will
show the development of a ‘pancake-shaped’ axisymmetric turbulence, characterized by
larger turbulent fluctuations of the radial and azimuthal velocities, in comparison with
those affecting the axial velocity. However, also for the hub vortex the faster instability at
higher loads results in a faster recovery of a isotropic state of turbulence.
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The present paper is organized as follows. In § 2, the LES methodology, coupled with
an IB technique, is introduced, providing also information about the approach adopted
for the numerical solution of the problem. In § 3, the numerical set-up of the simulations
is presented, including details on the flow problem and the resolutions adopted in both
space and time. In § 4, the results of the LES computations are analysed, dealing with the
anisotropy of turbulence at the core of the tip and hub vortices shed by a marine propeller,
its deviations from Boussinesq’s hypothesis for turbulence and comparisons between
resolved and modelled Reynolds stresses, demonstrating that the present computations
were able to resolve most of the turbulence. Finally, the conclusions of this study are
summarized in § 5.

2. Methodology

The filtered Navier–Stokes equations (NSEs) for incompressible flows were resolved in
non-dimensional form

∂ui

∂xi
= 0, i = 1, 2, 3, (2.1)

∂ui

∂t
+ ∂uiuj

∂xj
= − ∂p

∂xi
− ∂τij

∂xj
+ 1

Re
∂2ui

∂x2
j

+ fi, i, j = 1, 2, 3, (2.2)

where t is time, xi the coordinate in space along the direction i, ui the component in
the same direction of the filtered velocity vector, p the filtered pressure and τij the SGS
stress tensor. Scaling the dimensional equations results in the non-dimensional Reynolds
number, Re = UL/ν, where U is the reference velocity scale, L the reference length scale
and ν the kinematic viscosity of the fluid.

The NSEs were filtered, which means that only the large, energy-carrying structures
of the flow were resolved, while the smallest, dissipative scales were modelled using a
SGS model. Practically, when the NSEs are numerically resolved, the size of the filter
is defined by the local resolution of the computational grid utilized to discretize the
domain. Filtering the NSEs results in an additional term, the SGS stress tensor, τij, coming
from the convective terms of the original equations. This tensor represents the action of
the smallest, unresolved scales on the largest, resolved ones. In the present study it was
modelled using the wall adaptive local eddy-viscosity model, developed by Nicoud &
Ducros (1999), which was already successfully utilized in a number of studies dealing with
marine propellers, also in the framework of the present solver (Posa, Broglia & Balaras
2020a,b, 2021; Posa & Broglia 2022b). It utilizes the square of the velocity gradient tensor
of the resolved field to reconstruct the unresolved stresses. This way, it is able to account
for both regions of large strain and rotation within the flow. More details on the WALE
model can be found in the work by Nicoud & Ducros (1999).

The last term in (2.2), fi, was utilized in the framework of an IB methodology to enforce
the no-slip condition on the surface of the bodies immersed within the flow. In IB methods
the computational domain is discretized by means of a regular, Eulerian grid, where the
NSEs are resolved. This grid is not required to fit the bodies immersed within the flow.
They are represented by means of Lagrangian grids, which are ‘immersed’ within the
Eulerian grid and free to move across its cells. These Lagrangian grids allow separation
of the Eulerian points into ‘solid’, ‘fluid’ and ‘interface’. The interface points are those
placed at the boundary between the solid and fluid regions of the computational domain.
The boundary conditions are enforced by means of fi at the solid and interface points.
At the solid points, fi is computed as the value of the forcing term which results in a
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velocity condition corresponding to the velocity of the body. At the interface points, the
velocity condition enforced through fi comes from a linear reconstruction of the solution
between the no-slip requirement on the surface of the Lagrangian grid and the solution
at the fluid points in the vicinity of the particular interface point. The IB methods are
well-established techniques utilized for the solution of fluid dynamic problems involving
complex geometries. For more details on the particular implementation utilized in the
framework of this study, the reader is referred to the work by Yang & Balaras (2006).

The NSEs were numerically resolved on a staggered, cylindrical grid, using
second-order, central finite differences. As discussed in detail by Fukagata & Kasagi
(2002), this strategy achieves optimal conservation properties for the discretized version
of the NSEs, that is the exact conservation of mass, momentum and kinetic energy.
The advancement of the solution in time utilized a fractional-step technique (Van Kan
1986). For the discretization in time of the convective, viscous and SGS terms of the
momentum equation the explicit, three-step Runge–Kutta scheme was adopted. However,
for efficiency of the solution, in the regions of the highest resolution in space the implicit
Crank–Nicolson scheme was exploited. This was the case of the terms of azimuthal
derivatives in the vicinity of the axis of the cylindrical grid and those of radial derivatives
at the coordinates close to the tip of the propeller blades. Although the angular spacing
of the cylindrical grid was uniform, its linear, azimuthal spacing was a function of the
radial coordinate, going to zero towards the grid axis. The radial grid was refined at the tip
of the propeller blades to properly resolve the helical vortices they shed. The Poisson
problem arising from the continuity requirement was resolved by using trigonometric
transformations along the azimuthal direction, splitting the hepta-diagonal system of
equations into a series of penta-diagonal systems. Each of them was inverted using an
efficient direct solver (Rossi & Toivanen 1999). The same, LES/IB NSE solver was already
successfully adopted in a number of studies dealing with marine propellers, including also
validations against physical experiments (Balaras et al. 2015; Posa et al. 2019, 2022a; Posa
2022b). More details on the overall methodology can be found in the works by Balaras
(2004) and Yang & Balaras (2006).

3. Computational set-up

The present study deals with the tip-loaded propeller with pressure side winglets illustrated
in figure 1, which was designed at the Naval Surface Warfare Center (Carderock Division)
of the US Navy by Brown et al. (2014). It was simulated in open-water conditions, which
means that the propeller works in isolated conditions within a uniform flow. This is
the same configuration for which Brown et al. (2014) reported experimental results on
the global parameters of performance, adopted here for validation purposes. It is also
worth noting that, in the present computations, the geometry was simulated with no
downstream shaft, to allow the generation of a large hub vortex in the propeller wake.
This was one of the major subjects of the analysis reported in this study, together with the
vortices shed from the tip of the propeller blades. The downstream shaft was obviously
required in the physical experiments conducted by Brown et al. (2014) for supporting and
rotating the propeller during their open-water tests. However, marine propellers work in
push-type configuration, with no downstream shaft. Therefore, removing the shaft from the
computational set-up allows the present simulations to reproduce more realistic working
conditions, which are also characterized by the formation of a hub vortex in the wake of
the propeller. This was not allowed in the experimental set-up considered by Brown et al.
(2014). However, in the framework of this study, LES computations were also conducted

969 A23-7

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

53
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.532


A. Posa

U∞

U∞

U∞

ω

ω

ω

z
ϑ ϑ

r

z

r
zr

(b)(a) (c)

Figure 1. Visualizations of the propeller geometry.

on the geometry including the downstream shaft and the effect on the anisotropy of the
turbulence at the core of the tip vortices is illustrated in § 4.7.

Brown et al. (2014) performed both physical experiments and RANS computations
across a range of working conditions, to reconstruct the characteristic curves of propeller
performance. The working conditions of marine propellers are characterized by means of
the advance coefficient, which is the typical quantity expressing their rotational speed in
non-dimensional form. It is defined as J = V/nD, where V is the advance velocity, n the
frequency of the propeller rotation and D its diameter. Since open-water conditions are
considered, the advance velocity is equal to the free-stream velocity, U∞. The design
advance coefficient for the particular propeller is equal to J = 0.923. This case was
simulated in the framework of the present study and will be denoted as J0 hereafter. Four
additional working conditions were computed, moving towards lower values of advance
coefficient: J = 0.8 (J1), J = 0.7 (J2), J = 0.6 (J3) and J = 0.5 (J4). It should be noted
that decreasing the advance coefficient is equivalent to increasing the rotational speed,
corresponding to growing loads and to more intense tip and hub vortices shed by the
propeller.

In the field of marine propellers the Reynolds number is typically defined assuming as
reference the chord of the propeller blades at 70 %R, where R = D/2 is the radial extent of
the propeller, and the relative velocity of the flow at the same radial location. The definition
of the Reynolds number is

Rep = c(70 %R)
√

V2 + (0.7 2πnR)2

ν
, (3.1)

where c is the chord of the propeller blades, which is a function of the radial coordinate,
and ν is the kinematic viscosity of water. Brown et al. (2014) performed experiments
and computations at model-scale Reynolds numbers of O(105). The present simulations
were carried out in the same conditions. In particular, the values of Reynolds number
corresponding to the five simulated advance coefficients range from Rep ≈ 430, 000 at J0
to Rep ≈ 750 000 at J4, since decreasing advance coefficients are equivalent to increasing
velocities.

All computations were conducted within a cylindrical domain (figure 2) of radial
extent equivalent to 5.0D, centred at the axis of the propeller. Its inflow and outflow
sections were placed 2.5D upstream and 5.0D downstream of the propeller plane,
respectively. For clarity of the following discussion, it is worth noting that the origin of
the radial coordinates is located on the propeller axis, and that of the axial coordinates
on the propeller plane. They are oriented outwards and downstream, respectively. The
azimuthal coordinates are oriented in the counter-clockwise direction, looking from
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Figure 2. Propeller model (yellow) within the computational domain (cyan).

downstream. To mimic open-water conditions a uniform axial velocity, equal to U∞, was
enforced at the inlet section, while convective conditions were prescribed at the outlet
section for all velocity components, using U∞ as the convective velocity. At the lateral,
cylindrical boundary of the domain, homogeneous Neumann conditions for velocity
allowed reproduction of free-stream conditions. At all (inlet, outlet and lateral) boundaries
of the computational domain, homogeneous Neumann conditions were prescribed for
both pressure and eddy viscosity. For all variables, periodic conditions were utilized at
the azimuthal boundaries. The no-slip requirement on the surface of the propeller was
prescribed by means of the IB technique discussed in § 2.

The computational domain was discretized by using a cylindrical, Eulerian grid,
consisting of an overall number of 1192 × 2050 × 2050 points along the radial, azimuthal
and axial directions, respectively. Cross-stream and meridian slices of this grid are shown
in figures 3 and 4, where only a small sample of points is represented, for visibility of
the grid lines (1 point of every 256 on both slices). The use of a regular grid was allowed
by the IB technique. The cylindrical topology was preferred to the Cartesian one, since
it allowed clustering of Eulerian points in the region of interest of the domain, at inner
radial coordinates, where the propeller and its wake are placed, since the linear, azimuthal
spacing of the grid becomes finer towards its axis, even using a constant angular spacing.
The radial and axial grids were also refined in the vicinity of the propeller and in its wake.
In particular, the radial grid reaches its minimum spacing at the tip of the propeller blades
(Δr/D = 4 × 10−4 at r/D = 0.5), with the purpose of resolving the tip vortices and their
downstream development and instability, as demonstrated by the following discussion on
the wake features. Also, the axial grid achieves its minimum spacing across the propeller
blades (Δz/D = 5 × 10−4 at z/D = 0.0) and is smoothly stretched downstream, up to
z/D ≈ 3.5, again to properly capture the development of instability phenomena. Some
details on the distribution of the grid points are illustrated in figures 3 and 4. In particular,
it was verified from the present computations that the adopted Eulerian grid was able to
achieve, on average, levels of resolution corresponding to 4, 25 and 12 wall units across
the normal, streamwise and spanwise directions, respectively, relative to the surface of
the propeller blades. This resolution can be considered adequate for wall-resolved LES,
based on the criteria reported in the literature (Georgiadis, Rizzetta & Fureby 2010). The
following discussion of the results in § 4.5 will also demonstrate that the modelled stresses
are two orders of magnitude lower than the resolved ones, even at the core of the tip and
hub vortices, giving confidence about the accuracy of the computations and their ability
in resolving all important, energy-carrying scales of the flow.

Although it is necessary to acknowledge that a sensitivity study on the level of
resolution of the computational grid was not carried out in the present case, due to
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Figure 3. Cross-stream slice of the cylindrical grid. For visibility, only 1 of every 256 points is shown.

z

r

z

r

(b)(a)

Figure 4. Meridian slice of the cylindrical grid. For visibility, only 1 of every 256 points is shown.

limitations of computational resources, the adopted resolution was selected based on
the author’s experience of the LES simulation of marine propellers. For instance, in the
work by Balaras et al. (2015), the seven-bladed, submarine INSEAN E1619 propeller was
simulated, adopting two computational grids consisting of 840 million and 3.3 billion
points, respectively, finding in both cases a close agreement with measurements on global
parameters of performance. In a later study (Posa et al. 2019), a grid consisting of
840 million points was utilized to analyse the performance and wake development of the
INSEAN E1658 propeller, including also successful comparisons against dynamometric
measurements on thrust and torque and PIV experiments on the wake topology by Felli
& Falchi (2018). It is worth noting that this grid was coarser than the one adopted for
the present study across all directions in space, consisting of an overall number of points
six times smaller. Nonetheless, the agreement with the flow fields measurements by Felli
& Falchi (2018) was found to be very satisfactory, also in terms of the ability of the
simulations in capturing the tip vortices shed by the INSEAN E1658 propeller. In a later
study (Posa et al. 2022a), a finer grid of 3.8 billion points was adopted for the same
flow problem, to analyse in more detail the development of the tip and hub vortices. The
comparison with the experiments by Felli & Falchi (2018) was almost unchanged, relative
to the one reported on the coarser grid considered by Posa et al. (2019). Therefore, the
present grid was designed, based on that utilized by Posa et al. (2022a), with the purpose
of increasing its resolution across the span of the propeller blades and especially at their
tip, to take into account the presence of end plates.

In the framework of the adopted IB methodology, the geometry of the propeller was
represented by using a Lagrangian grid, discretizing its surface by means of 106 000
triangular elements and ‘immersed’ within the Eulerian grid. A visualization of this
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Figure 5. Details of the Lagrangian grid of the propeller: (a) upstream, (b) lateral, (c) downstream and
(d) isometric views.

Lagrangian grid is provided in figure 5. It is shown that the regions of the highest curvature
of the propeller geometry are characterized by the finest refinement of the Lagrangian grid,
which is achieved at the tip of the propeller blades and their pressure side winglets.

The resolution in time of all computations was prescribed by the stability restrictions
coming from the explicit discretization of the convective terms of the momentum equation.
During all simulations a constant value of the Courant–Friedrichs–Lewy number equal to 1
was enforced, to meet the stability requirements of the three-step Runge–Kutta scheme. On
average, 6800 steps of advancement of the numerical solution in time were required for the
propeller to perform a full revolution. Each case was advanced during two flow-through
times to develop the wake flow, starting from uniform axial velocity conditions. Then,
for each case, statistics were computed at run time during 10 additional revolutions. By
using this strategy, all instantaneous realizations of the solution were included within the
statistical sample, which allowed maximizing of its size. Statistics were computed as phase
averages on a grid rotating together with the propeller. This way, they were able to isolate
the coherent structures shed by the propeller, in particular its tip and hub vortices, as long
as they remained synchronized with its rotation, before wake instability led to large-scale
deviations. In the following, the phase average of any quantity f will be indicated as f̂ ,
and the phase-averaged root-mean-squares of their fluctuations as f̂ ′. In particular, these
statistics will be reported for the three velocity components along the radial, azimuthal and
axial directions of the cylindrical reference frame centred at the intersection between the
propeller plane and its axis. They will be denoted as u, v and w, respectively. Therefore, the
corresponding phase-averaged normal Reynolds stresses will be indicated below as û′u′,
v̂′v′ and ŵ′w′.

All simulations were carried out by means of an in-house parallel Fortran solver,
exploiting high performance computing. The overall flow problem was split across 2048
cores of distributed-memory clusters, decomposing the cylindrical grid into cylindrical
subdomains. Communications between them were handled by means of calls to message
passing interface libraries. Most computations were performed on MareNostrum4 at the
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Barcelona Supercomputing Center in Spain, in the framework of a PRACE (Partnership
for Advanced Computing in Europe) project. This cluster was equipped with 2×Intel Xeon
Platinum 8160 24C processors, working at 2.1 GHz, with a total of 48 cores per node. Each
computing node was equipped with 96 GB of main memory. The physical time required
by each step of advancement of the solution was equal to approximately 22 seconds. This
resulted in a physical time of approximately 900 hours required to simulate each working
condition of the propeller. Therefore, the computational cost of each case was equivalent
to approximately 2 million core hours. Due to the large size of the data to be analysed
and the resulting memory requirements, post-processing activities were also conducted
on the same cluster by using in-house-developed parallel Fortran codes, splitting again
the whole problem across 2048 cores. Parallel I/O activities were handled by calls to
HDF5 (Hierarchical Data Format version 5) libraries. However, the computational cost of
post-processing amounted to only a few per cent of that of the main production runs. Most
visualizations reported in this manuscript exploited the parallel capabilities of Paraview
software.

4. Results

4.1. Global performance and comparison with experiments
The performance of marine propellers is characterized through the thrust and torque
coefficients and the resulting efficiency of propulsion, defined as

KT = T
ρn2D4 , KQ = Q

ρn2D5 , η = JKT

2πKQ
, (4.1a–c)

where T is the axial force generated by the propeller, while Q is the moment required for its
rotation. Comparisons between the results of the present computations and the experiments
by Brown et al. (2014) are reported as time averages in figure 6, where the vertical dashed
line indicates the design working condition. In each panel of figure 6 the right vertical
scale deals with the error of the LES compared with the reference experiments. The
agreement was verified to be very satisfactory. On the thrust coefficient (figure 6a) the
error keeps within 2 %. On the torque coefficient (figure 6b) it is only slightly higher than
2 % at the design working condition. For the efficiency of propulsion the error is equal
to approximately 4 % at the design advance coefficient, moving towards smaller values at
higher loads, as shown in figure 6(c). Both the experiments by Brown et al. (2014) and the
present computations show that, for increasing loads (decreasing advance coefficients),
both thrust and torque experience an increase, which is faster for the latter, resulting in
decreasing values of efficiency of propulsion.

Brown et al. (2014) did not perform flow field measurements in the wake. However,
they conducted cavitation tunnel visualizations of the tip vortices. From them, Brown,
Schroeder & Balaras (2015) were able to provide information on the final contraction ratio
of the tip vortices, Rc = rc/R, which is the ratio between the final radial coordinate of
the tip vortices at the end of the initial wake contraction, rc, due to acceleration of the
flow through the propeller plane, and the radial extent of the propeller, R. In addition,
they provided the helical pitch angle of the tip vortices, β, which is their angle relative to
the azimuthal direction. Their values are available for the experiments conducted at the
nominal working condition only. The definitions of Rc and β are reported in figure 7,
where the signature of the tip vortices is isolated in the flow fields generated by the
present LES computations by means of time-averaged and phase-averaged contours of
vorticity magnitude in (a,b), respectively. Brown et al. (2015) reported values of Rc = 0.90
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Figure 6. Comparison between the experiments by Brown et al. (2014) and the present LES computations:
time-averaged values of (a) KT , (b) 10KQ and (c) η. The right vertical scale for the relative error of LES against
the experiments. The dashed vertical line for the design working condition.
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Figure 7. (a) Contours of time-averaged vorticity magnitude on a meridian plane: definition of the final
contraction ratio, Rc. (b) Contours of phase-averaged vorticity magnitude on a cylindrical slice of the
computational grid: definition of the helical pitch angle, β. Vorticity values scaled by U∞/D. Flow fields
from the LES computation at the design working condition, J0.

and β = 21.5◦. In the present simulations at the same working condition, J0, the final
contraction ratio and the helical pitch angle were equal to Rc = 0.89 and β = 22.0◦,
respectively.

4.2. Wake topology
An overview of the wake topology is provided in this section. Figure 8 shows isosurfaces of
pressure coefficient from instantaneous realizations of the solution, coloured by vorticity
magnitude. The pressure coefficient was defined as cp = ( p − p∞)/(0.5ρU2∞), where p∞
and U∞ are the free-stream pressure and velocity, respectively, while ρ is the density of the
fluid. Regions of minima of the pressure coefficient, cp, were utilized to identify the major
vortices shed by the propeller, as three-dimensional isosurfaces, which are the helical tip
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Figure 8. Isosurfaces of pressure coefficient, cp, from instantaneous realizations of the solution, coloured by
vorticity magnitude (scaled by U∞/D). Comparison across advance coefficients: (a) J0 (cp = −0.4); (b) J1
(cp = −0.6); (c) J2 (cp = −0.8); (d) J3 (cp = −1.2); (e) J4 (cp = −1.6). Note that both the colour scale of
the contours and the cp value utilized to generate the isosurfaces change across panels.

vortices at the outer boundary of its wake and the hub vortex at its axis. It is worth noting
that their intensity is a function of the advance coefficient. Therefore, the isosurfaces in
figure 8 refer to growing minima of pressure coefficient for lower values of the advance
coefficient. Also the colour scale for vorticity changes across panels.

The visualizations in figure 8 demonstrate the ability of the computations in capturing
the instability of the tip vortices. It is interesting to see that increasing load conditions
result in an upward shift of this instability, which moves closer to the propeller plane.
This is mainly the result of smaller values of the pitch of the helix of the tip vortices:
smaller relative distances between tip vortices cause faster mutual inductance phenomena,
promoting their faster destabilization and break-up, as illustrated in the visualizations from
the experimental studies on the wake of marine propellers conducted by Felli, Guj &
Camussi (2008) and Felli et al. (2011). This physics is shown also by means of isosurfaces
of the second invariant of the velocity gradient tensor (the Q-criterion proposed by Jeong
& Hussain 1995) in figure 9 from phase-averaged statistics of the flow. The signature
of the tip vortices in the phase-averaged fields can be isolated as long as they remain
synchronized with the rotation of the propeller blades. When they develop large-scale
instability and eventual break-up, this synchronization is lost. As a result, the tip vortices
can be identified up to shorter distances downstream of the propeller plane for decreasing
values of advance coefficient, as shown by the contours of figure 9.
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Figure 9. Isosurfaces of the second invariant of the velocity gradient tensor (Q-criterion, Q̂D2/U2∞ = 40)
from phase-averaged statistics, coloured by vorticity magnitude (scaled by U∞/D). Comparison across advance
coefficients: (a) J0; (b) J1; (c) J2; (d) J3; (e) J4.

Also the visualizations in figure 9 highlight the reduction of the pitch of the tip
vortices for decreasing advance coefficients. Meanwhile, the values of vorticity at their
core experience an increase. Its reduction at the most downstream coordinates is instead
an indication of their growing instability, causing their signature to spread over a wider
region around the average location of the vortex core. It is also interesting to see that
the values of vorticity on the isosurfaces associated with the hub vortex are much lower
than those characterizing the tip vortices. Actually, the hub vortex was verified to be more
intense than the tip vortices, as expected and discussed in detail in an earlier work (Posa
2022a). However, the particular value of the second invariant of the velocity gradient
tensor selected for the visualizations in figure 9 is targeted at the identification of the
signature of both tip and hub vortices. Therefore, at the wake axis this value shows the
outer region of the hub vortex, where vorticity levels are quite small. It is also worth
noting that especially the last panel of figure 9 highlights the development of instability
phenomena affecting also the hub vortex, which are revealed by the divergence of its
signature, spreading towards outer radii.

The faster instability of the wake system for decreasing values of the advance coefficient
is also illustrated in figure 10 through contours of phase-averaged root-mean-squares of
fluctuations of the pressure coefficient, which were found very convenient to isolate the
core of both tip and hub vortices. Isolines of ĉp are also shown. All panels of figure 10
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provide confirmation of the strong intensity of the hub vortex at the wake axis, which
is characterized by large fluctuations in time of the pressure coefficient. Local maxima
characterize also the core of the tip vortices at the outer boundary of the propeller wake.
However, as their instability develops, those maxima spread across wider areas. Actually,
this is also the case for the hub vortex, which experiences increasing deviations from
the wake axis. Meanwhile, the isolines of pressure coefficient become unable to isolate
the core of the tip vortices, as they lose their coherence. Again, all these phenomena are
obviously accelerated for decreasing advance coefficients.

A detail of figure 10(e), dealing with the working condition J4, is provided in
figure 11(a), to show the number of grid points resolving, for instance, the tip vortices
at the streamwise coordinate z/D ≈ 0.5. An isoline of ĉp = −0.6 is again considered to
isolate the signature of the tip vortex at the particular location. It is shown that the tip
vortices are resolved by a large number of points, even in a region of the computational
grid downstream of the propeller plane where coarsening already started. In particular,
the number of grid points within the area encompassed by the isoline of the pressure
coefficient is equal to 262 in the radial direction and 60 in the streamwise direction.
A similar visualization is provided in figure 11(b), where a detail of a cross-stream slice of
the grid is shown at z/D = 0.5. Also in this case the number of grid points in the region
bounded by the isoline around the vortex core is quite large. They number 152 in the
azimuthal direction and 290 in the radial direction.

4.3. Anisotropy of turbulence

4.3.1. Turbulence anisotropy at the core of the tip vortices
The anisotropy of turbulence at the core of the tip vortices was analysed by considering
the map of the invariants proposed by Lumley & Newman (1977). They introduced the
anisotropy tensor for turbulence, defined as

aij =
û′

iu
′
j

2k̂
− δij

3
, i, j = 1, 2, 3, (4.2)

where û′
iu

′
j are the turbulent stresses (in the present case from phase-averaged statistics),

k̂ = 0.5û′
iu

′
i is the phase-averaged turbulent kinetic energy and δij is the Kronecker delta.

This tensor has three invariants. Actually, the first one is equal to zero, while the second
and the third ones, II and III , are utilized to characterize the level of anisotropy of
the turbulence on the map shown in figure 12, depending on the relative importance
of the different elements of the tensor. It should be noted that, for convenience, in the
representation utilized by Lumley & Newman (1977) the quantities II and III on the
vertical and horizontal axes of figure 12 are actually proportional to the second and third
invariants of the anisotropy tensor, II = −2II and III = 3III , respectively, as clarified
in the later work by Lumley (1979). The same definitions as in Lumley & Newman
(1977) were utilized in the present study. This approach to the analysis of the anisotropy
of turbulence at the core of vortices was also recently adopted in the field of naval
hydrodynamics in the works by Visonneau et al. (2018, 2020).

The map in figure 12 is bounded on the top side by the two-component turbulence,
on the bottom left side by the axisymmetric ‘pancake-shaped’ turbulence, for which one
component is smaller than the others, and on the bottom right side by the ‘cigar-shaped’
axisymmetric turbulence, for which one component is larger than the others. The top
side of the map is represented by the equation II = 2/9 + 2III, and the bottom side by
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Figure 10. Contours of phase-averaged root-mean-squares of the fluctuations of pressure coefficient.
Comparison across advance coefficients: (a) J0; (b) J1; (c) J2; (d) J3; (e) J4. White isolines of phase-averaged
pressure coefficients: (a) ĉp = −0.1, (b) ĉp = −0.2, (c) ĉp = −0.3, (d) ĉp = −0.4 and (e) ĉp = −0.6. Note the
variation of the colour scale across panels.
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Figure 11. Contours of phase-averaged root-mean-squares of the fluctuations of pressure coefficient at the
working condition J4: (a) detail on the meridian plane of figure 10(e) at z/D ≈ 0.5; (b) detail on the
cross-stream section at z/D = 0.5. Black isolines of phase-averaged pressure coefficient ĉp = −0.6 isolating
the core of the tip vortices. Grid points shown to visualize the resolution of the computational grid within the
tip vortices.
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Figure 12. Turbulence anisotropy map by Lumley & Newman (1977).
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Figure 13. Turbulence anisotropy at the core of the tip vortices from phase-averaged statistics. Comparison
across advance coefficients: (a) J0; (b) J1; (c) J2; (d) J3; (e) J4.

the equation 3/2 (4/3|III|)2/3, describing both left and right sides of Lumley’s map.
In particular, the limiting case of the three-component isotropic turbulence, for which
all elements of the anisotropy tensor are equal to 0, is characterized by values II = 0
and III = 0 (bottom vertex), the two-component isotropic turbulence by values II = 1/6
and III = −1/36 (left vertex) and the one-component turbulence by values II = 2/3 and
III = 2/9 (right vertex).

For each simulated condition the invariants of the anisotropy tensor were computed at
the core of the tip vortices from phase-averaged statistics. In particular, at some selected
streamwise coordinates the average of the turbulent stresses was computed within the core
of the tip vortices. They were identified as local minima of pressure. Then, the Reynolds
stresses were averaged within areas centred at the vortex core and having a radial extent
equal to 0.002D. These values were averaged further across all five tip vortices shed by the
propeller. The results, in terms of anisotropy maps, are illustrated in figure 13, where only
the lower region of the Lumley map is shown. This ‘zoomed-in’ representation of the map
is chosen for clarity, since turbulence never moves further away from the isotropic state in
the direction of one-dimensional turbulence.
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It should be noted that, although phase-averaged statistics are considered, the results
are not dependent on the particular phase of the position of the propeller blades, since
phase-averaged fields are characterized by the same symmetry as the propeller geometry
and for different phases they are just rotated according to the particular phase of
the propeller. Therefore, the results on the anisotropy of turbulence at each particular
streamwise location are not affected by the choice of the phase angle, thanks to the
symmetry of the open-water configuration of the propeller. In addition, averaging across
all five tip vortices allows an increase in the size of the statistical sample, improving the
time convergence of the statistics.

Figure 13 demonstrates that, just downstream of the propeller, at z/D = 0.5, turbulence
at the core of the tip vortices is close to isotropy. However, this is increasingly not the
case for growing load conditions, for which turbulence anisotropy at z/D = 0.5 gradually
moves along the right-bottom boundary of the Lumley map. This behaviour was verified
to be associated with a faster rise of the turbulent fluctuations of the radial velocity
component, in comparison with the azimuthal and axial ones. This is the same trend
verified across the streamwise evolution of the tip vortices. As their instability develops,
the fluctuations of the radial velocity component grow at a faster rate, so turbulence at the
core of the tip vortices moves away from isotropy along the right boundary of the Lumley
map. This process is accelerated at higher loading conditions, that is, at lower values of the
advance coefficient. Eventually, when the break-up of the tip vortices occurs, resulting in
turbulent diffusion and more homogeneous values of Reynolds stresses, turbulence moves
again towards a more isotropic state, as illustrated by the representation of its anisotropy
in figure 13.

The streamwise evolution of turbulence anisotropy at the different working conditions is
shown in better detail in figure 14, where for each case the three normal turbulent stresses
along the radial, azimuthal and axial directions are reported. A number of results can be
inferred from figure 14:

(i) Turbulent stresses are quickly growing for increasing rotational speeds (note the
variation of the vertical scale across the five panels of figure 14).

(ii) The near wake is characterized by an increase of the level of anisotropy of
turbulence at the core of the tip vortices, dominated by the fluctuations of the
radial velocity component. In contrast, the lowest turbulent fluctuations affect the
azimuthal velocity component.

(iii) In the near wake, turbulence grows as a result of the increasing instability of the tip
vortices, affecting especially the radial velocity component.

(iv) Instability develops faster at lower advance coefficients, for which turbulence peaks
closer to the propeller plane.

(v) The growing streamwise evolution across the near wake is followed by a decreasing
trend of the turbulent stresses, affecting the radial and streamwise velocity
components. In contrast, the turbulent fluctuations of the azimuthal velocity undergo
an increase. These trends, associated with the break-up of the tip vortices and the
resulting turbulence diffusion, lead to a more isotropic state of turbulence.

A more global overview of the flow is reported in figures 15, 16 and 17, dealing
with contours of normal, turbulent stresses from phase-averaged statistics, visualized on
a meridian plane. For limitation of space, only the working conditions J0, J2 and J4
are considered, respectively. In the same figures, isolines of pressure coefficient were
utilized again to isolate the minima of pressure occurring at the core of the tip (white
isolines) and hub (magenta isolines) vortices. It should be noted that the colour scales for
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Figure 14. Streamwise evolution of the phase-averaged normal, turbulent stresses at the core of the tip vortices
in the radial (û′u′), azimuthal (v̂′v′) and axial (ŵ′w′) directions, respectively. Comparison across advance
coefficients: (a) J0; (b) J1; (c) J2; (d) J3; (e) J4. Note the variation of the vertical scale across panels.

the Reynolds stresses are different across figures 15, 16 and 17, due to the substantial
increase of turbulence levels across working conditions. This is also the case for the
minima of pressure associated with the core of the tip and hub vortices at different advance
coefficients. It should be also mentioned that the position of the wake structures, relative
to the propeller, is not a function of the particular choice of the phase angle of its blades.
As discussed above, the phase-averaged statistics are computed in synchronization with
the rotation of the propeller, to capture the coherence of its wake. Therefore, the rotation
of the phase angle of the propeller results in the same rotation of the phase angle of the
phase-averaged statistics of the wake flow. In other words, a different phase from that
considered in figures 15, 16 and 17 can be simply reconstructed by ‘cutting’ the same
phase-averaged fields across a different meridian plane.

In figure 15 the development of instability phenomena for the tip vortices is reflected in
the increase of the turbulent fluctuations and the diffusion of the peaks of turbulent stresses
and pressure coefficient: the sharp maxima at the core of the tip vortices are replaced by
wider areas of large turbulent stresses, which are the result of vortex meandering. Also
figure 15 highlights the lead by the fluctuations of the radial velocity, affecting also wider
areas of the outer boundary of the propeller wake as the instability of the tip vortices
develops, if compared with the turbulent fluctuations of the other velocity components.
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Figure 15. Contours of phase-averaged normal, turbulent stresses at the working condition J0, scaled by U2∞:
(a) radial, û′u′; (b) azimuthal, v̂′v′; (c) axial, ŵ′w′. White and magenta isolines of pressure coefficients ĉp =
−0.4 and ĉp = −2.0, respectively.

In figure 16 the anisotropy at turbulence is not substantially modified. Upstream of
the break-up of the tip vortices and the diffusion of the turbulent stresses at the outer
boundary of the propeller wake, the stresses associated with the fluctuations of radial
velocity are higher. However, as demonstrated above by the statistics at the core of the tip
vortices, the development of the wake is accelerated, due to the faster instability of the tip
vortices: at the most downstream locations turbulence is closer to isotropy than in figure 15.
These trends are reinforced in 17, dealing with the working condition corresponding to
the lowest advance coefficient, that is, the highest propeller load. The signature of the
tip vortices is lost more upstream, due to their faster break-up. As long as they remain
coherent, the turbulent stresses are the highest in the radial direction and the lowest in the
azimuthal direction. To summarize, for all cases of advance coefficient the development
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Figure 16. Contours of phase-averaged normal, turbulent stresses at the working condition J2, scaled by U2∞:
(a) radial, û′u′; (b) azimuthal, v̂′v′; (c) axial, ŵ′w′. White and magenta isolines of pressure coefficients ĉp =
−1.2 and ĉp = −6.0, respectively.

of instability phenomena by the tip vortices was found to be characterized by a shift
from isotropic turbulence at their core towards a state of ‘cigar-shaped’ axisymmetric
turbulence, dominated by the fluctuations of the radial velocity. After vortex break-up,
turbulence experienced instead an opposite shift again towards isotropy.

4.3.2. Turbulence anisotropy at the core of the hub vortex
A similar analysis was conducted at the core of the hub vortex. Turbulent stresses were
averaged at the core of the hub vortex by using the same criterion adopted for the tip
vortices. Actually, for the hub vortex the dependence of the anisotropy of the turbulence
on the load conditions was found to be reinforced, in comparison with the tip vortices.
Figure 18(a) shows the anisotropy map for J0. Also in this case turbulence is initially
close to isotropy. However, in contrast with the results for the tip vortices, as the hub vortex
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Figure 17. Contours of phase-averaged normal, turbulent stresses at the working condition J4, scaled by U2∞:
(a) radial, û′u′; (b) azimuthal, v̂′v′; (c) axial, ŵ′w′. White and magenta isolines of pressure coefficients ĉp =
−2.0 and ĉp = −10, respectively.

develops downstream, turbulence moves along the left boundary of the Lumley map, which
indicates that it is approaching a two-component state. A similar but reinforced behaviour
is observed at the conditions J1 and J2 (see figure 18b,c), with some exceptions in the
former case at the most downstream locations, where turbulence tends to be dominated by
a particular normal stress (the azimuthal one, as shown below), shifting to the right side
of the anisotropy map. In contrast, at the most-loaded conditions turbulence remains close
to isotropy at all streamwise coordinates, as shown in figure 18(d,e), which was found to
be the result of a much quicker diffusion of the vortex core, as discussed in more detail
below.

Also for the hub vortex more details are provided by considering the streamwise
evolution of the three normal turbulent stresses at the core of the hub vortex for each case
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Figure 18. Turbulence anisotropy at the core of the hub vortex from phase-averaged statistics. Comparison
across advance coefficients: (a) J0; (b) J1; (c) J2; (d) J3; (e) J4.

of advance coefficient (figure 19). In figure 19(a), dealing with the working condition J0,
turbulence levels at z/D = 0.5 are quite homogeneous. However, the growing instability
of the hub vortex leads to a substantial increase, affecting the radial and azimuthal
normal stresses only, in agreement with the results observed in the anisotropy map of
figure 18(a), indicating the development of a ‘pancake-shaped’ axisymmetric turbulence.
In figure 19(b,c) the streamwise evolution is not substantially different from that in
figure 19(a), but higher levels of turbulent stresses are achieved as the instability of the
hub vortex develops. However, it should be also noted for the case J1 (figure 19b) that
at the most streamwise locations a decline of û′u′ occurs, resulting in the dominance of
the turbulent stress v̂′v′, reflected in the Lumley map of figure 18(b), where a shift of
turbulence towards the right branch occurs. Important qualitative differences are instead
observed in figure 19(d,e), dealing with the most-loaded conditions. Much higher values
of turbulent stresses are achieved just downstream of the propeller at z/D = 0.5, in
comparison with the other, more lightly loaded conditions. Then, a dramatic drop occurs,
as a result of the diffusion of turbulence at the core of the hub vortex, approaching an
almost isotropic state already at about a diameter downstream of the propeller.
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Figure 19. Streamwise evolution of the phase-averaged normal, turbulent stresses at the core of the hub vortex
in the radial (û′u′), azimuthal (v̂′v′) and axial (ŵ′w′) directions, respectively. Comparison across advance
coefficients: (a) J0; (b) J1; (c) J2; (d) J3; (e) J4. Note the variation of the vertical scale across panels.

Additional details can be inferred from the visualizations in figures 15, 16 and 17, where
the core of the hub vortex is identified by means of the magenta isolines. They demonstrate
that, at the working conditions J0 and J2, the core of the hub vortex remains coherent,
characterized by sharp maxima of the turbulent stresses. In particular, in the near wake,
higher values of radial and azimuthal turbulent stresses are achieved, in comparison with
the axial ones. As the instability of the hub vortex develops, they spread across wider areas
around the axis of the propeller wake, but keep a sharp peak at the wake axis. It should be
noted that some details, dealing with the anisotropy of turbulence and illustrated through
figure 19(a,c), are actually not distinguishable in figures 15 and 16. Their contours of the
turbulent stresses were saturated for visibility of the maxima at the core of the tip vortices,
which are lower than those at the wake axis. In contrast, it is interesting to notice that, in
figure 17, dealing with the highest-loaded condition J4, the sharp minimum of pressure
at the core of the hub vortex, identified by the magenta isoline just downstream of the
propeller plane, experiences diffusion at a short distance away. This is due to the faster
instability of the hub vortex, leading the maxima of the Reynolds stresses at the wake axis
to experience a substantial drop, due to diffusion, and achieve quickly an almost isotropic
state, as demonstrated in both figures 18(e) and 19(e).
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4.4. Comparison between resolved Reynolds stresses and deformation tensor

4.4.1. Tip vortices
Figure 20 displays contours from phase-averaged statistics for all elements of the
symmetric tensors R̂d

ij and −Ŝij. The working condition J0 is considered. Here, R̂d
ij is the

deviatoric part of the tensor of the resolved Reynolds stresses

R̂d
ij = û′

iu
′
j − 2

3 k̂δij, i, j = 1, 2, 3, (4.3)

while Ŝij is the resolved deformation tensor

Ŝij = 1
2

(
∂ ûi

∂xj
+ ∂ ûj

∂xi

)
, i, j = 1, 2, 3. (4.4)

In this section the tensors R̂d
ij and −Ŝij are compared, using the same criterion adopted

in the work by Chow et al. (1997a). A thorough overview is provided about the limitations
of Boussinesq’s hypothesis in reproducing the correct behaviour of the Reynolds stresses
in the wake of marine propellers. These data could serve as a reference to the community
for the correction of conventional, isotropic turbulence models. According to Boussinesq’s
hypothesis, the contours of the two tensors should display the same shape in the left and
right panels of figure 20. It is evident that this is not the case at the core of the tip vortices,
where the lobes of the contours display a different orientation. This is especially clear for
the elements rr (figure 20i), zz (figure 20iii), rz (figure 20v) and ϑz (figure 20vi). This
comparison provides confirmation that most RANS models are unsuitable to reproduce
the behaviour of turbulence at the core of the tip vortices shed by propellers. This
finding recommends the use of more sophisticated approaches of turbulence modelling, for
instance based on the solution of the transport equation of the Reynolds stresses, relaxing
Boussinesq’s hypothesis of proportionality between the deviatoric part of the Reynolds
stresses tensor and the deformation tensor. Although a similar result was found at the core
of the hub vortex, the visualizations of figure 20 are not the best choice to capture it, so
more details will be reported below on a plane orthogonal to the axis of the hub vortex. As
expected, as the instability of the tip vortices develops, the Reynolds stresses experience an
increase. In contrast, all elements of the deformation tensor from phase-averaged statistics
undergo a decrease, due to the diffusion of the signature of the tip vortices in the mean
velocity field, because of vortex meandering. In conventional turbulence modelling for
RANS, this flow physics results in increasing values of the turbulent viscosity required to
represent the Reynolds stresses, based on the gradients of the mean flow.

Although both Reynolds stresses and mean gradients at the core of the tip vortices
undergo an increase at lower advance coefficients, results were found to be qualitatively
similar at the other simulated working conditions, which is actually encouraging in terms
of turbulence modelling. For limitation of space, this is illustrated only for the load
conditions J2 and J4 in figures 21 and 22, where a similar visualization of the Reynolds
stresses and deformation tensor is provided. Besides the increase of both of them (note
the variation of the colour scales against those in figure 20), an earlier break-up of the
coherence of the tip vortices is shown, whose signature in the phase-averaged fields is lost
more quickly downstream of the propeller. As a result, the Reynolds stresses experience a
faster streamwise growth, while the mean gradients decay more quickly than in figure 20,
due to the diffusion of the signature of the tip vortices in the phase-averaged flow fields.
In RANS modelling this is equivalent to increasing values of the turbulent viscosity to
properly represent the Reynolds stresses as the propeller load grows.
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Figure 20. Contours of (a) R̂d
ij and (b) −Ŝij from phase-averaged statistics at the working condition J0.

Components of the tensors, scaled by U2∞ and U∞/D, respectively: (i) rr; (ii) ϑϑ ; (iii) zz; (iv) rϑ ; (v) rz;
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969 A23-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

53
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.532


Turbulence at the core of the vortices shed by a propeller

–0.04 –0.02 0 0.02 0.04 –30 –18 –6 6 18 30

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

r

z

r

z

r

z

r

z

r

z

r

z

r

z

r

z

r

z

r

z

r

z

r

z

(b)(a)

(iii)

(iv)

(vi)

(v)

(i)

(ii)

(iii)

(iv)

(vi)

(v)

(i)

(ii)

Figure 21. Contours of (a) R̂d
ij and (b) −Ŝij from phase-averaged statistics at the working condition J2.

Components of the tensors, scaled by U2∞ and U∞/D, respectively: (i) rr; (ii) ϑϑ ; (iii) zz; (iv) rϑ ; (v) rz;
(vi) ϑz. White and black isolines of pressure coefficients ĉp = −1.2 and ĉp = −6.0, respectively.

969 A23-29

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

53
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.532


A. Posa

–0.10 –0.06 –0.02 0.02 0.06 0.10 –50 –30 –10 10 30 50

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

r

z

r

z

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

r

z

r

z

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

r

z

r

z

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

r

z

r

z

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

r

z

r

z

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

z/
D

 =
 0

.2

z/
D

 =
 0

.4

z/
D

 =
 0

.6

z/
D

 =
 0

.8

z/
D

 =
 1

.0

z/
D

 =
 1

.2

z/
D

 =
 1

.4

z/
D

 =
 1

.6

z/
D

 =
 1

.8

z/
D

 =
 2

.0

r

z

r

z

(a) (b)

(iii)

(iv)

(vi)

(v)

(i)

(ii)

(iii)

(iv)

(vi)

(v)

(i)

(ii)

Figure 22. Contours of (a) R̂d
ij and (b) −Ŝij from phase-averaged statistics at the working condition J4.

Components of the tensors, scaled by U2∞ and U∞/D, respectively: (i) rr; (ii) ϑϑ ; (iii) zz; (iv) rϑ ; (v) rz;
(vi) ϑz. White and black isolines of pressure coefficients ĉp = −2.0 and ĉp = −10, respectively.
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Turbulence at the core of the vortices shed by a propeller

To summarize the results above, Boussinesq’s hypothesis was utilized to compute at
the core of the tip vortices the turbulent viscosity that should be predicted by an isotropic
RANS model, based on the phase-averaged Reynolds stresses and deformation tensor from
the present LES computations

νT = −R̂d
ij/2Ŝij, i, j = 1, 2, 3. (4.5)

Also in this case, the values at the core of the tip vortices were computed at each
streamwise coordinate as averages across an area of radial extent equal to 0.002D and
centred at the peak of negative pressure produced by the tip vortices. Boussinesq’s
hypothesis should result, at the same location, in the same value of νT across elements
of the two tensors R̂d

ij and Ŝij. This is obviously not the case, as demonstrated in figure 23,
where the turbulent viscosity was scaled by using the molecular viscosity, ν. It is also
interesting to see that, in some cases, the ratio of (4.5) is characterized even by large
negative values. Increasing load conditions result in higher values of turbulent viscosity
and deviations from Boussinesq’s hypothesis (note the variation of the vertical scale across
the five panels of figure 23). This is especially the case when the process of instability of
the tip vortices leads them to meandering and eventual break-up, which are characterized
by a significant increase of νT . These phenomena occur earlier at higher loads, for which
the instability process of the tip vortices develops at a faster rate. Therefore, also the
maxima of νT shift to upstream coordinates for lower values of the advance coefficient.

4.4.2. Hub vortex
Figure 24 provides a similar visualization of the elements of R̂d

ij and −Ŝij as figure 20,
dealing with the case J0, but on the cross-section at z/D = 1.0, which is orthogonal
to the axis of the hub vortex. Also in figure 24 the data from LES highlight that the
two tensors are not aligned, in contrast with Boussinesq’s hypothesis for turbulence.
For instance, at the core of the hub vortex, −Ŝrr, −Ŝϑϑ and −Ŝϑz display a two-lobe
structure that is missing for the corresponding Reynolds stresses R̂d

rr, R̂d
ϑϑ and R̂d

ϑz,
which are characterized instead by a strong axial peak (see the left and right panels of
figure 24(i,ii,vi), respectively). The opposite phenomenon occurs for the elements rϑ and
rz of the two tensors (left and right panels of figure 24(iv,v), respectively): while the
deformation tensor is characterized by strong maxima at the wake axis, a two-lobe pattern
is visualized in the corresponding contours relative to the Reynolds stresses, having a local
minimum at the core of the hub vortex. Also, while R̂d

zz in the left panel of figure 24(iii)
achieves large values at the core of the hub vortex, characterized by a bimodal distribution
with a negative peak at the wake axis and a positive one at slightly outer radial coordinates,
the corresponding element of the deformation tensor in the right panel of figure 24(iii) is
very small there. In the contours of figure 24 also the signature of one of the tip vortices
is visible, confirming that also there the two tensors R̂d

ij and −Ŝij are not aligned. This is
especially evident looking at the elements rr, zz and ϑz of the two tensors (figure 24i,iii,vi).

At the working condition J2 the comparison between R̂d
ij and −Ŝij is not substantially

modified. This is shown in the contours of figure 25. At the core of the hub vortex local
maxima are distinguishable for all diagonal elements R̂d

ii as well as for R̂d
ϑz, while they

are missing in the contours of the corresponding elements of −Ŝij (figure 25i,ii,iii,vi).
The opposite behaviour occurs for the elements rϑ and rz (figure 25iv,v). Once again,
deviations between the orientations of the two tensors are also evident at the core of the
tip vortex at outer radial coordinates.
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Figure 23. Turbulent viscosity, computed as in (4.5), at the core of the tip vortices. Comparison across
advance coefficients: (a) J0; (b) J1; (c) J2; (d) J3; (e) J4. Note the variation of the vertical scale across panels.

Some more significant changes are distinguishable in figure 26, dealing with the
heaviest-loaded condition J4, for which the instability of the hub vortex develops more
quickly, affecting the shape of R̂d

ij. For instance, all elements of R̂d
ij develop broader maxima

and a bimodal distribution, characterized by a local minimum at the wake axis and a
local peak at outer radial coordinates. Meanwhile, their comparison with −Ŝij is still
inconsistent with Boussinesq’s hypothesis, with the exception of the elements rz: within
the signature of the hub vortex the contours of R̂d

rz and −Ŝrz in the left and right panels of
figure 26(v) display a similar shape. Also −Ŝrϑ develops a bimodal distribution, but not
correlating well with that for R̂d

rϑ (see the left and right panels of figure 26iv), while all
other elements of the tensor −Ŝij are small within the hub vortex, where no local maxima
are distinguishable, in contrast with the contours characterizing the deviatoric part of the
tensor of the Reynolds stresses in the left panels of figure 26.

A more detailed comparison at the core of the hub vortex is reported in figure 27, using
the same strategy adopted at the core of the tip vortices in figure 23. Figure 27(a) highlights
that, especially for the elements zz of R̂d

ij and −Ŝij, Boussinesq’s hypothesis is not accurate,
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Figure 24. Contours of (a) R̂d
ij and (b) −Ŝij from phase-averaged statistics at the working condition J0.

Components of the tensors, scaled by U2∞ and U∞/D, respectively, at the streamwise coordinate z/D = 1.0:
(i) rr; (ii) ϑϑ ; (iii) zz; (iv) rϑ ; (v) rz; (vi) ϑz. White and black isolines of pressure coefficients ĉp = −0.4 and
ĉp = −2.0, respectively. Dotted-dashed line encompassing the projection of the area swept by the propeller.
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Figure 25. Contours of (a) R̂d
ij and (b) −Ŝij from phase-averaged statistics at the working condition J2.

Components of the tensors, scaled by U2∞ and U∞/D, respectively, at the streamwise coordinate z/D = 1.0:
(i) rr; (ii) ϑϑ ; (iii) zz; (iv) rϑ ; (v) rz; (vi) ϑz. White and black isolines of pressure coefficients ĉp = −1.2 and
ĉp = −6.0, respectively. Dotted-dashed line encompassing the projection of the area swept by the propeller.
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Figure 26. Contours of (a) R̂d
ij and (b) −Ŝij from phase-averaged statistics at the working condition J4.

Components of the tensors, scaled by U2∞ and U∞/D, respectively, at the streamwise coordinate z/D = 1.0:
(i) rr; (ii) ϑϑ ; (iii) zz; (iv) rϑ ; (v) rz; (vi) ϑz. White and black isolines of pressure coefficients ĉp = −2.0 and
ĉp = −10, respectively. Dotted-dashed line encompassing the projection of the area swept by the propeller.
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Figure 27. Turbulent viscosity, computed as in (4.5), at the core of the hub vortex. Comparison across
advance coefficients: (a) J0; (b) J1; (c) J2; (d) J3; (e) J4. Note the variation of the vertical scale across panels.

resulting in very large and strongly variable values of the turbulent viscosity, much larger
than those associated with all other elements of the two tensors: the values of Ŝzz are too
small to be suitable to represent the corresponding Reynolds stresses R̂d

zz. This issue is
actually diminished at lower advance coefficients, in contrast with the results observed at
the core of the tip vortices, since for increasing loads the core of the hub vortex loses its
coherence more quickly. However, it is still evident across all panels of figure 27 that the
tensors R̂d

ij and −Ŝij are not aligned at the wake axis, resulting in a strong dispersion of the
values of νT estimated from (4.5).

4.5. Comparison between resolved and modelled Reynolds stresses

4.5.1. Tip vortices
This section provides evidence that the present computations were able to resolve most of
turbulence, by comparing the resolved Reynolds stresses against the modelled ones. It is
worth recalling that SGS modelling relies on the ability to resolve a wide range of scales,
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limiting modelling to the smallest scales only, which are more universal, homogeneous
and isotropic. For them Boussinesq’s hypothesis can be assumed to be more accurate.
Moreover, all errors associated with this assumption affect a much narrower range of less
energetic scales, compared with the conventional turbulence modelling adopted for RANS,
with beneficial effects on the accuracy of the computations.

Figure 28 shows the ratios between all elements of the deviatoric parts of the tensors of
the SGS stresses and resolved Reynolds stresses at the core of the tip vortices, indicated as
τ̂ d

ij and R̂d
ij, respectively, across cases of advance coefficient. All stresses were averaged

within the core of the tip vortices, using the same criterion already discussed above.
The ratios in figure 28 are usually well below 1 %, with a few higher peaks, keeping
within 10 %. The only exception is the ratio τ̂ d

zz/R̂d
zz for the case J2 in figure 28(c) at

the streamwise location z/D = 0.5. Interestingly, in all panels of figure 28 the streamwise
trend is declining. This result indicates that the resolution of the computational grid is
adequate to capture the downstream evolution of the tip vortices, as also demonstrated by
its ability in reproducing their instability process, which was found to be in agreement
with the one visualized in the physical experiments by Felli et al. (2011): the contribution
by SGS modelling is indeed diminishing towards downstream coordinates. It is also
interesting to observe that the ratios in figure 28 are not a growing function of the
load conditions, despite the increasing intensity of the tip vortices and Reynolds stresses
resulting from their instability.

4.5.2. Hub vortex
The ratios τ̂ d

ij /R̂d
ij are reported across cases of advance coefficient and streamwise

coordinates at the core of the hub vortex in figure 29. Overall, values are even lower
than those found at the core of the tip vortices. Also in figure 29 a streamwise decrease
is distinguishable, with the highest peaks at the closest streamwise coordinates. Again,
no obvious dependence on the working conditions and intensity of the hub vortex can
be inferred, confirming that the overall approach remains suitable to represent the most
energetic scales of the wake flow even moving towards higher-loaded conditions.

4.6. Comparison against the conventional propeller geometry without winglets
A similar, conventional propeller without winglets was also developed by Brown et al.
(2014), by prescribing the same requirements of global performance. Its geometry is shown
in figure 30. A detailed comparison between the wake features of the propellers with and
without winglets is reported in the earlier work by Posa (2022b), although in that study a
downstream shaft was included, using exactly the same geometries as those considered by
Brown et al. (2014). In this section, some additional comparison is provided, focusing on
the anisotropy of turbulence at the core of the tip and hub vortices. It is worth noting that
the conventional propeller was simulated at the design condition only. Therefore, all data
reported in this section refer to the working condition J0.

Anisotropy maps at the core of the tip vortices are shown in figure 31(a,b). The solid
symbols deal with the conventional propeller, and the hollow symbols the tip-loaded one.
For convenience, the streamwise locations were split between panels (a,b) of figure 31.
The deviations between the two cases remain small up to z/D ≈ 2.0. The development
of turbulence anisotropy at the core of the tip vortices shed by the conventional propeller
is similar to that illustrated in § 4.3.1. However, the tip vortices shed by the conventional
propeller move back towards isotropic turbulence more quickly, in comparison with those
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Figure 28. Ratios between the deviatoric parts of the SGS and resolved Reynolds stresses tensors, τ̂ d
ij and R̂d

ij,
at the core of the tip vortices. Comparison across advance coefficients: (a) J0; (b) J1; (c) J2; (d) J3; (e) J4.
Note the variation of the vertical scale across panels.

from the tip-loaded propeller. This is actually the result of a slightly faster instability. It
should be recalled from the discussion in § 4.3.1 that, as the tip vortices develop instability,
the growth of the fluctuations of radial velocity at their core is faster. Then, at their
break-up, turbulence diffusion results in a shift again towards isotropic turbulence. This
point is shown in better detail in the bottom panel of figure 31. Also at the core of the
tip vortices shed by the conventional propeller, û′u′ has the lead during the process of
instability development: it achieves higher values in the near wake than in the case of
the tip-loaded propeller. Meanwhile, the faster instability results in faster phenomena of
diffusion, which are reflected in the behaviour of turbulence in Lumley’s map. However,
the results in terms of anisotropy of turbulence at the core of the tip vortices are quite
similar between the two propellers.

Similar visualizations are reported for the anisotropy of turbulence at the core of the
hub vortex in figure 32. Also in this case the behaviour of turbulence in Lumley’s map
is not substantially modified in the wake of the conventional propeller. Turbulence is
initially isotropic, but at downstream coordinates it moves along the bottom-left branch
of the map, because of the lead on the Reynolds stresses of the fluctuations of radial and
azimuthal velocities, over those affecting the streamwise velocity. Also in this case a shift
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Figure 29. Ratios between the deviatoric parts of the SGS and resolved Reynolds stresses tensors, τ̂ d
ij and R̂d

ij,
at the core of the hub vortex. Comparison across advance coefficients: (a) J0; (b) J1; (c) J2; (d) J3; (e) J4.
Note the variation of the vertical scale across panels.

ω

ω

ω

z
z

z

r
rrU∞

U∞

U∞

ϑ ϑ

(b)(a) (c)

Figure 30. Visualizations of the conventional propeller design without winglets.

towards the inner region of the map occurs. Then, turbulence moves back towards the left
branch. This process is slightly faster in the case of the conventional propeller. Actually, the
deviations between the two cases are more evident in the bottom panel of figure 32. Higher
turbulent stresses are achieved at the core of the hub vortex shed by the conventional
propeller, while differences fade out as the two vortices develop downstream. This initial
difference between the two hub vortices is actually reflected in figure 32(a) by a faster shift
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Figure 31. Comparison between conventional (solid symbols) and tip-loaded (hollow symbols) geometries.
Turbulence anisotropy at the core of the tip vortices from phase-averaged statistics at the streamwise locations
(a) 0.5 ≤ z/D ≤ 2.0 and (b) 2.5 ≤ z/D ≤ 4.0. Panel (c) shows the streamwise evolution of the phase-averaged
normal, turbulent stresses at the core of the tip vortices in the radial (û′u′), azimuthal (v̂′v′) and axial (ŵ′w′)
directions.

away from the condition of isotropic turbulence in the case of the conventional propeller.
However, also for the hub vortex, the behaviour in terms of anisotropy of turbulence
is not substantially modified between the two propeller geometries, indicating that it is
not a strong function of the particular design. It should be noted that the geometrical
differences between the tip-loaded and conventional propellers are quite significant. They
are not limited to the tip of the blades, affecting their whole spanwise extent. Brown et al.
(2014) designed the two geometries by enforcing the same requirements of performance.
Therefore, the same overall load was distributed in different ways across the span of their
blades. In the conventional design of marine propellers the load is diminished towards the
outer radii, to reduce the intensity of the tip vortices, which is problematic because of
cavitation phenomena and their acoustic signature. Tip-loaded propellers utilize winglets
to achieve higher loads at outer radii. As a result, the geometries of the blades of the two
propellers shown in figures 1 and 30 are significantly different.

The different distribution of the load across the blades of the two propellers is able
to explain, for instance, the slightly faster instability of the tip vortices shed by the
conventional design. Figure 33 shows a detail of the contours of phase-averaged azimuthal
vorticity on a meridian plane, focusing on the near wake. These contours are saturated to
highlight the signature of the shear layer shed from the trailing edge of the propeller blades,
which is weaker, compared with that of the tip and hub vortices. It is shown that the wake
of each blade is characterized by an increasing pitch from the outer radii towards the inner
ones. In particular, their pitch is larger, in comparison with that of the tip vortices, which
means that their advancement in the streamwise direction is faster. A number of earlier
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Figure 32. Comparison between conventional (solid symbols) and tip-loaded (hollow symbols) geometries.
Turbulence anisotropy at the core of the hub vortex from phase-averaged statistics at the streamwise locations
(a) 0.5 ≤ z/D ≤ 2.0 and (b) 2.5 ≤ z/D ≤ 4.0. Panel (c) shows the streamwise evolution of the phase-averaged
normal, turbulent stresses at the core of the hub vortex in the radial (û′u′), azimuthal (v̂′v′) and axial (ŵ′w′)
directions.

works on marine propellers have acknowledged that this delay of the tip vortices, relative
to the shear layer from the blades, causes their interaction, promoting the instability of
the tip vortices (Di Felice et al. 2004; Felli et al. 2006, 2008, 2011; Posa et al. 2019,
2022a). The contours in figure 33 show that the streamwise elongation of the wake shed
by the propeller blades changes significantly between the two cases, since the profiles of
their blades are different. In particular, the shear of the tip vortices with the wake shed by
the following blades occurs earlier downstream of the conventional propeller, accelerating
their instability, in comparison with the case of the tip-loaded propeller.

The differences between the wake systems of the two propellers have also some
influence on the hub vortex. Actually, its intensity was verified to be similar between
the two cases. The higher turbulent stresses at the core of the hub vortex shed by the
conventional propeller are likely attributable to a different distribution of the load across
the propeller blades. As illustrated by the contours of phase-averaged axial vorticity
in figure 34, dealing with the streamwise coordinate z/D = 1.0, the wake shed by the
conventional propeller blades is characterized by higher levels of vorticity at inner radii,
since their load it shifted away from their tip towards their root. Their wake is rolling
around the hub vortex at the wake axis. Also in this case, the higher level of shear between
wake structures is the likely source of the higher turbulent stresses experienced by the hub
vortex in the near wake, if compared with the case of the tip-loaded propeller, illustrated
in figure 32(c). Once again, despite the non-negligible differences affecting the two wake
systems, arising from a different design of the propeller blades and involving their whole
spanwise extent, turbulence anisotropy at the core of both tip and hub vortices was found
to be almost identical between the two geometries.
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Figure 33. Contours of phase-averaged azimuthal vorticity, scaled by U∞/D, on a meridian plane: near
wakes of the (a) conventional and (b) tip-loaded propellers.
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Figure 34. Contours of phase-averaged axial vorticity, scaled by U∞/D, on a cross-section of streamwise
coordinate z/D = 1.0: near wakes of the (a) conventional and (b) tip-loaded propellers. Dotted-dashed line
encompassing the projection of the area swept by the propeller.

4.7. Comparison against the geometry with downstream shaft
Simulations were carried out also on the propeller with winglets, including a downstream
shaft, which prevents the onset of the hub vortex. Also this geometry was simulated at
the design condition J0 only. Turbulence at the core of the tip vortices was found to be
sensitive to this change, as demonstrated in figure 35(a), where the streamwise evolution
of the normal, turbulent stresses is reported. In the near wake, all of them are higher in the
case without a downstream shaft. However, the impact on the anisotropy of turbulence
is almost negligible, since all turbulent stresses are affected in a similar way by the
presence of the downstream shaft, replacing the hub vortex at the core of the propeller
wake. This is demonstrated in panels (b,c) of figure 35, where the solid symbols deal with
the case including the downstream shaft and the hollow ones with the case without. The
development towards a ‘cigar-shaped’ turbulence state and back to isotropic turbulence is
only slightly accelerated in the latter case. Therefore, the anisotropy of turbulence at the
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Figure 35. Comparison between tip-loaded geometries with (solid symbols) and without (hollow symbols)
downstream shaft. Panel (a) shows the streamwise evolution of the phase-averaged normal, turbulent stresses
at the core of the tip vortices in the radial (û′u′), azimuthal (v̂′v′) and axial (ŵ′w′) directions. Turbulence
anisotropy at the core of the tip vortices from phase-averaged statistics at the streamwise locations (b) 0.5 ≤
z/D ≤ 2.0 and (c) 2.5 ≤ z/D ≤ 4.0.

core of the tip vortices is not significantly modified and the lack of the hub vortex in both
numerical and physical experiments including a downstream shaft is not expected to affect
its properties.

5. Conclusions

Large-eddy simulation on a cylindrical grid consisting of 5 billion points was utilized to
study the features of turbulence at the core of the tip and hub vortices shed by a marine
propeller. This study was especially focused on the anisotropy of turbulence within the
major coherent structures. Details of its deviation from Boussinesq’s hypothesis, adopted
by most turbulence models utilized in the field to conduct RANS computations, were also
reported.

The results of this study pointed out that turbulence at the core of the tip vortices
is initially very close to isotropy. However, as their instability develops at downstream
coordinates, turbulence experiences increasing deviations from isotropy, towards a
‘cigar-shaped’ axisymmetric state, dominated by the fluctuations of the radial velocity
component in the cylindrical reference frame centred at the axis of the propeller. The
break-up of the coherence of the tip vortices is characterized by an inversion of this trend,
shifting turbulence again towards isotropy. This process is accelerated by lower values of
the advance coefficient, corresponding to increasing propeller loads and intensity of the
tip vortices, promoting mutual inductance between them and their faster instability.

Similar phenomena characterize the process of instability of the hub vortex. Also
this wake structure is close to an isotropic turbulence state at its onset. However, as its
instability grows, turbulence at its core moves towards a ‘pancake-shaped’ axisymmetric
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state, dominated by the Reynolds stresses associated with the fluctuations of the radial and
azimuthal velocity components, while those affecting the axial velocity are much lower. In
contrast, for heavier-loaded conditions, promoting a faster instability and diffusion of the
vortex core, turbulence within the hub vortex remains always very close to isotropy.

Interestingly, the anisotropy at the core of both tip and hub vortices was found to be quite
insensitive to the geometry of the propeller. This was shown by the comparisons with the
results of the simulations conducted on a conventional propeller without winglets. In that
case, the differences in the geometries of the propeller blades did not involve just their tip,
but their entire span, since the same load was distributed in a different way, by shifting it
from the tip towards the root of the blades. The anisotropy of turbulence at the core of the
tip vortices was not modified significantly also by the downstream shaft, which prevents
the onset of a large hub vortex in the wake of the propeller. These results are encouraging,
suggesting that the present conclusions may be likely extended to different geometries of
marine propellers.

Detailed comparisons between the tensors of the resolved Reynolds stresses and the
rate of strain were also reported. As expected, at the core of the tip vortices the deviations
from Boussinesq’s hypothesis for turbulence were verified to be very significant, especially
during break-up, when the anisotropy of turbulence achieves its peak. They were also
found to be an increasing function of the load conditions of the propeller, equivalent to
more intense tip vortices and higher Reynolds stresses. Also at the core of the hub vortex
the Reynolds stresses and deformation tensors of the resolved field were obviously not
aligned, with the axial diagonal element of the deformation tensor especially unsuitable to
properly represent the deviatoric part of the Reynolds stresses. However, in contrast with
the results at the core of the tip vortices, the error associated with Boussinesq’s hypothesis
was found to be a decreasing function of the load conditions.

The results from the present analysis are expected to be a useful reference for studies
using lower-fidelity approaches, in particular those relying on isotropic turbulent viscosity
models, and dealing with the wake of propellers. For instance, these results could be
exploited to properly tune conventional turbulence models, utilized in the framework
of RANS techniques, to the simulation of propeller wakes. They are often required in
academia, and especially in industry, due to the limited access to high performance
computing resources and the need for accelerating the process of selection of design
solutions. However, the deviations from isotropy and from Boussinesq’s hypothesis were
found to be so significant, especially at the break-up of the major coherent structures
populating the wake, as to suggest that at least more sophisticated RANS models, based
on the solution of the transport equation for the Reynolds stresses and completely relaxing
Boussinesq’s hypothesis for turbulence, should be adopted when tackling these complex
wake flows.
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