CORRESPONDENCE.

GRADUATION FORMULAS.

To the Editor of the Journal of the Institute of Actuaries.
Sir,-In his Prize Essay on Friendly Societies, which appears in the current number of the Journal, Mr. George F. Hardy makes kindly reference to some contributions of mine on the subject of graduation, and then proceeds to add a formula for the purpose which he describes as new, and superior both in smoothness and simplicity to any yet given (J.I.A., xxvii, 277). If Mr. Hardy had stated the manner in which he arrived at this formula, I think it would appear that he has paid me the further compliment of adopting, with a trifling alteration, a formula of mine which will be found in J.I.A., xxv, 23.

The stages of procedure, stated in each case in the same order, are as follows :
Higham.
Divide by 12.5 (which is done
by multiplying by 08).
Sum three middle terms of five.
Sum two outer terms of same.
Dednct the twe from the three.
Sum in fives.
Sum in fives, and divide by 10.
Sum in fives.

Hardy.
Divide by 12.

Identical with mine.
Ditto.
Ditto.
Sum in fours.
Identical with mine.
Sum in sixes.

The only alteration which Mr. Hardy makes is, that he substitutes a summation in fours and one in sixes for two summations in fires. The change in the divisor is not an independent alteration but results from the other. Working with foars and sixes we bring out the coefficients of the terms of u as Mr. Hardy prints them; and the sum of these being 120 , that number becomes his divisor, as 125 is mine and Mr. Woolhouse's.

In regard to simplicity, the formula as originally written has somewhat the advantage. It is a little easier to multiply by 8 than to divide by 12; and it is a little easier to work contimuously with fives than to shift from fours to fives and sixes-to say nothing of the inconvenience of inter-spacing the fours and sixes for half-terms, as printed in the Table on page 278.

That Table is more compact than mine (already referred to) for two reasons.

First.-Mr. Hardy does not show his initial division by 12.
Second.-He is content with a final column to the same number of decimals as the first, and this enables him to keep down the figures by making the division his first operation; whereas I had to make the division the last operation in order to give correctly an additional figure corresponding with an extension of the radix from 10,000 to 100,000 .

But for the same requirement, Mr. Ackland's columnar arrangement of Mr. Woolhouse's formula (J.I.A., xxiii, 354) would look much less formidable than it does.

To measure the improvement in smoothness it is necessary to obtain the original unadjusted data by multiplying Mr. Hardy's first column by 12; after which I multiply by 08 , in order that the succeeding table may start from the same point as his.

Age	$\frac{1}{12} u^{2}$	$\begin{gathered} \tilde{u}_{x} \\ \text { (Unadiusted } \\ \text { Material) } \end{gathered}$	$\begin{aligned} & \times \cdot 08, \\ & \frac{1}{\text { giving }} \\ & \frac{1}{12 \cdot 5} u_{x} \end{aligned}$	Say
19	$\cdot 068$	816	-06528	-065
20	$\cdot 064$	$\cdot 768$	$\cdot 06144$. 061
21	$\cdot 070$	-840	'06720	-067
22	-064	-768	-06144	-061
23	-064	$\cdot 768$	-06144	. 061
24	. 068	-816	. 06528	-065
25	-071	-852	-06816	-068
26	-066	-792	-06336	-063
27	.065	780	-06240	$\cdot 062$
28	-056	672	-05376	-054
29	-066	$\cdot 792$	-06336	-063
30	-065	$\cdot 780$	-06240	$\cdot 062$
31	$\cdot 069$	-828	-06684	-066
32	. 067	-804	-06432	$\cdot 064$
33	$\cdot 076$	-912	-07296	-073
34	$\cdot 673$	-900	.07200	$\cdot 072$
35	-081	$\cdot 972$	07776	$\cdot 078$
	1.155	$13 \cdot 860$	110880	1105

It will be observed that the last column, reduced to two significant figures, adds up 004 less than $\frac{1}{12 \cdot 5}$ of the sum of the terms of u_{x} in consequence of the preponderance of terms in which the two rejected figures are below 50 . An arbibrary amendment of this would be unfair to one side or the other in a comparison limited to the question of orderly progression.

Graduation by Formula in J.I.A., xxv, 23.

Age	$\frac{1}{12 \cdot 5} u_{x}$	$\begin{aligned} & \text { Three } \\ & \text { Midele } \\ & \text { Terrs } \\ & \text { of Five } \end{aligned}$	$\begin{aligned} & \text { Two } \\ & \text { Outer } \\ & \text { Terms } \end{aligned}$	(3)-(4)	$\underset{\text { Sives }}{\text { Sum in }}$	$\frac{\frac{1}{10} \text { Sum }}{\text { in Fives }}$	$\begin{array}{\|c\|} \text { Sum in } \\ \text { Fives } \\ \text { (Adjusted } \\ \text { Values) } \end{array}$
(1)	(2)	(3)	(4)	(5)	(6)	${ }^{\text {(7) }}$	(8)
10	-065	\ldots	...	\ldots	\ldots	\ldots	\ldots
11	-065				\ldots	...	\ldots
12	-065	195	130	65	
13	065	195	130	65		...	
14	-065	195	130	65	325	...	\ldots
15	-065	195	130	65	325		
16	$\cdot 065$	195	130	65	329	163	
17	-065	195	130	65	323	163	
18	-065	195	126	69	325	162	-807
19	-065	191	132	59	323	160	$\cdot 802$
20	$\cdot 061$	193	126	67	321	159	-798
21	$\cdot 067$	189	126	63	304	158	$\cdot 795$
22	$\cdot 061$	189	126	63	315	159	795
23	$\cdot 061$	187	135	52	321	159	$\cdot 795$
24	. 065	194	124	70	332	160	$\cdot 794$
25	-068	196	123	73	317	159	787
26	-063	193	119	74	319	157	$\cdot 778$
27	-062	179	131	48	300	152	$\cdot 768$
28	$\cdot 054$	179	125	54	300	150	...
29	-063	179	128	51	282	150	\ldots
30	-062	191	118	73	303	...	\ldots
31	$\cdot 066$	192	136	56	314	\ldots	...
32	-064	208	134	69	\ldots
33	$\cdot 073$	209	144	65	\ldots	...	\ldots
34	$\cdot 072$...	\ldots	\ldots	\cdots	...	\ldots
35	$\cdot 078$	\ldots	...			\ldots	

The number of figures in the two graduations is precisely the same. My results are smaller than Mr. Hardy's for a reason already stated. One has to look closely for the improved smoothness of the latter; nevertheless it is there.

His differences are

$$
\begin{aligned}
& 4,3,1,0,0,3,6,9,9 \\
& 5,4,3,0,0,1,7,9,10
\end{aligned}
$$

Mine are
If a summation be made twice in fives the resulting coefficients become

$$
1,2,3,4,5,4,3,2,1 ; \text { divisor } 25
$$

If in fours and sixes the coefficients are

$$
1,2,3,4,4,4,3,2,1 ; \text { divisor } 24
$$

The flattening in the middle tends to soften asperities; but when it is combined with the other processes, the formula ceases to be correct to third differences.* The error, however, only amounts to

* Mr. Hardy notices this defect, and suggests in a foot note a correction which is absolutely a change back to my formula withont alteration.
$\frac{1}{12}$ of the second difference $+\frac{7}{12}$ of the third difference, and this seems practically as unimportant as the shades of modification previously noticed.

To sum the matter up: the formula which Mr. Hardy produces can hardly be regarded as new. It is rather to be described as a previously known formula in which an alteration has been made with the result of rendering it slightly more smooth, slightly less simple, slightly less accurate, than it was.

I am, Sir,
Your obedient servant,
J. A. HIGHAM.

[^0]
[^0]: Royal Exchange, October 1888.

