Y. Miyata Nagoya Math. J. Vol. 73 (1979), 61-68

ON THE MODULE STRUCTURE IN A CYCLIC EXTENSION OVER A p-ADIC NUMBER FIELD

YOSHIMASA MIYATA

Let p be a prime. Let k be a p-adic number field and o be the ring of all integers of k. Let K/k be a cyclic totally ramified extension of degree p^n with Galois group G. Clealy the ring \mathfrak{O} of all integers of K is an $\mathfrak{o}[G]$ -module, and the purpose of this paper is to give a necessary and sufficient condition for the $\mathfrak{o}[G]$ -module \mathfrak{O} to be indecomposable.

In $\S\S 1-2$, we shall prepare some lemmas. In $\S\S 3-4$, we shall obtain the necessary and sufficient condition (Theorem 3).

Throughout this paper, let π be a prime element of k and e be the absolute ramification index of k. For a positive rational integer a, we define a function m(a) by

$$m(a) = \left[\frac{(p-1)(a+1)}{p}\right].$$

1.

In this section, we shall obtain some inequalities for ramification numbers. Let F/k be a cyclic ramified extension of prime degree pwith the first ramification number b. Let \mathfrak{O}_F be the ring of all integers of F. Let e, π and m(a) be the same as in Introduction. Then it is well known that

$$m(b) \leq e$$

and

(1)
$$\operatorname{tr}_{F/k} \mathfrak{O}_F = (\pi^{m(b)}),$$

where $\operatorname{tr}_{F/k}$ denotes the trace map from F to k (for example, see [2]). Let ζ be a primitive p-th root of 1. Let F' and k' be the extensions

Received October 8, 1977.

YOSHIMASA MIYATA

 $F(\zeta)$ and $k(\zeta)$ respectively. Then the degree d of k' over k divides p-1 and k'/k is tamely ramified. As F/k is a cyclic extension of degree p, so is F'/k'. As is well known, the only one ramification number b' of F'/k' is db. Then we have the following lemma.

LEMMA 1. Let F, F', b and b' be as stated in the above. Then m(b) < e if and only if m(b') < de.

Proof. Since the extension F'/F is tamely ramified, $\operatorname{tr}_{F'/F} \mathfrak{O}_{F'} = \mathfrak{O}_F$. Then, from (1), we have $\operatorname{tr}_{F'/k} \mathfrak{O}_{F'} = (\pi^{m(b)})$. We can choose a prime element π' of k' such that $\pi'^d \in k$. Clearly $\operatorname{tr}_{k'/k} \pi'^i = 0$ for $1 \leq i \leq d-1$ and $\operatorname{tr}_{k'/k} \pi'^d = d\pi'^d$. d is a unit of k. Then we obtain easily that

$$\operatorname{tr}_{F'/k} \mathfrak{O}_{F'} = \operatorname{tr}_{k'/k} \operatorname{tr}_{F'/k'} \mathfrak{O}_{F'} = (\pi^{[m(b')/d]}).$$

Hence $(\pi^{m(b)}) = (\pi^{[m(b')/d]})$. This proves our assertion.

Let K be a cyclic totally ramified extension of degree p^n of k with the Galois group G. Since K/k is cyclic, we see that there exist n ramification numbers b_1, \dots, b_n . The b_i -th ramification group is a subgroup $\langle g^{p^{i-1}} \rangle$ generated by $g^{p^{i-1}}$, where g denotes a generator of G.

LEMMA 2. Let K/k, b_1, \dots, b_n be as above. Then if $m(b_1) < e$, $m(b_i) < p^{i-1}e$ for each $i, 1 \leq i \leq n$.

Proof. As is easily seen, it is sufficient to prove only for the case n = 2. From Lemma 1, we can assume that k contains a primitive p-th root of 1 without any loss of generality of this proof. From a result of B. F. Wyman ([3], Corollary 26), we have that if $b_1 \ge \frac{e}{n-1}$,

$$b_2 = b_1 + pe ,$$

and if $b_1 < \frac{e}{p-1}$,

$$b_2 \leq \frac{p^2 e}{p-1} - (p-1)b_1$$
.

At first, we suppose $b_1 \ge \frac{e}{p-1}$. Then

$$m(b_2) = \left[\frac{(p-1)(b_1 + pe + 1)}{p}\right] = (p-1)e + \left[\frac{(p-1)(b_1 + 1)}{p}\right]$$
$$= (p-1)e + m(b_1).$$

62

From the assumption $m(b_1) \le e$, it follows that $m(b_2) \le pe$.

Next, we suppose $b_1 < \frac{e}{p-1}$. Put

$$\frac{(p-1)(b_1+1)}{p} = m(b_1) + \frac{r}{p}$$

Then

$$m(b_2) \leq \left[\frac{(p-1)\left\{ \frac{p^2 e}{p-1} - (p-1)b_1 + 1 \right\}}{p} \right]$$
$$= pe + (p-1) - (p-1)m - r.$$

From $r \leq p - 1$ and m < e, it follows $m(b_2) < pe$. Clearly this completes the proof.

2.

In this section, we study the properties of idempotents of the group ring k[G]. Let G be a cyclic group of order p^n and let g denote a generator of G. Let θ be a primitive p^n -th root of 1 and let k' be k' $= k(\theta)$. Setting

$$arepsilon_i = rac{1}{p^n}\sum\limits_{j=0}^{p^n-1} (heta^{-i})^j g^j \ , \qquad 0 \leq i \leq p^n-1 \ ,$$

we see that ε_i is an idempotent and $g\varepsilon_i = \theta^i \varepsilon_i$. Let H be $H = \langle g^{p^{n-1}} \rangle$. Obviously H is a subgroup of order p. We denote by T the idempotent $\frac{1}{p} \left(\sum_{h \in H} h \right)$ in k[G]. The canonical map from G onto the factor group G/H induces the ring homomorphism φ from the group ring k[G] onto k[G/H]. Then we have the following two lemmas.

LEMMA 3. Let G be a cyclic group of order p^n . Let ε_i and φ be as stated in the above. Suppose that k contains a primitive p^n -th root θ of 1. Then $\varphi(\varepsilon_i) = 0$ for $0 \leq i < p^n$ if and only if (i, p) = 1.

Proof. From easy computations, we can obtain ker $\varphi = k[G](1 - T)$. Then $\varepsilon_i \in \ker \varphi$ if and only if $\varepsilon_i T = 0$. From $g^{p^{n-1}}\varepsilon_i = \theta^{ip^{n-1}}\varepsilon_i$, $T\varepsilon_i = \frac{1}{p} \left\{ \sum_{j=0}^{p-1} (\theta^{ip^{n-1}})^j \right\} \varepsilon_i$. We note that $\sum_{j=0}^{p-1} (\theta^{ip^{n-1}})^j = 0$ if and only if (i, p) = 1.

YOSHIMASA MIYATA

Clearly this completes the proof of the lemma.

LEMMA 4. Suppose that k does not contain a primitive p^n -th root θ of 1. Let G be a cyclic group of order p^n and let S be a subgroup $\langle g^p \rangle$. Let ε be an idempotent of k[G] such that $\varphi(\varepsilon) = 0$. Then, if $n \geq 2, \varepsilon \in k[S]$.

Proof. From our assumption, the extension $k(\theta)/k(\theta^p)$ is a cyclic extension of degree p with the Galois group V. It is easily seen that there exists an element σ of V such that $\sigma(\theta) = \theta^{1+p^{n-1}}$. We can consider σ as an automorphism of k'[G] in the usual way. Now for $0 \leq i < p^n$, $\varepsilon \varepsilon_i = \varepsilon_i$ or 0. If $\varepsilon \varepsilon_i = \varepsilon_i$, then $\varepsilon \varepsilon_i^\sigma = \varepsilon_i^\sigma$ because $\varepsilon^\sigma = \varepsilon$. Hence $\varepsilon (\sum_{j=0}^{p-1} \varepsilon_i^{\sigma^j}) = \sum_{j=0}^{p-1} \varepsilon_i^{\sigma^j}$. Put $\sum_{j=0}^{p-1} \varepsilon_i^{\sigma^j} = \sum_{\ell=0}^{p^{n-1}} a_\ell g^\ell$ in k'[G]. Then

$$a_{\ell} = \sum_{j=0}^{p-1} (\theta^{-i\ell})^{\sigma j} = \theta^{-i\ell} \left(\sum_{j=0}^{p-1} (\theta^{-i\ell})^{p^{n-1j}} \right).$$

Therefore, if $(i, p) = 1 = (\ell, p)$, we have $a_{\ell} = 0$. Since $\varphi(\varepsilon) = 0$, it follows from Lemma 3 that if $\varepsilon \varepsilon_i = \varepsilon_i$, then (i, p) = 1. Let $\varepsilon = \sum_{\ell=0}^{p^{n-1}} b_{\ell} g^{\ell}$ in k[G]. The fact which we have just shown implies $b_{\ell} = 0$ for $0 \leq \ell$ $< p^n$ with $(\ell, p) = 1$. This completes the proof.

2	
3	٠

In this section, we treat the case that the extension K/k is a Kummer extension. We use the same notations as in previous two sections. Let K/k be a cyclic totally ramified extension of degree p^n . Throughout this section, we suppose k contains a primitive p^n -th root θ of 1. Then we see that there exists an element A of K such that

$$K = k(A)$$
 and $A^{p^n} = \pi^{p^m} u$,

where $0 \leq m \leq n$ and u is a unit of k. Furthermore, we may take the unit u such that $u - 1 \in (\pi)$ since the degree of the extension is a power of p. Let b_1, \dots, b_n be the sequence of the ramification numbers of K/k as in §1. Let $K_i = k(A^{p^{n-i}})$ for $0 \leq i \leq n$. Then the degree of the extension K_i/k is p^i .

LEMMA 5. Let A, m and u be as stated in the above. Then, if m = 0, or m > 0 and $u - 1 \in (\pi^2)$, we have $m(b_1) = e$.

Proof. By the hypothesis, $K_1 = k(\sqrt[p]{\pi u})$ or $K_1 = k(\sqrt[p]{u})$. From a

64

result of B. F. Wyman ([3], Corollary 13), we have $b_1 = \frac{pe}{p-1}$ or

 $\frac{pe}{p-1} - 1. \quad \text{Then } m(b_1) = e.$

Now we consider the case that m > 0 and $u - 1 \in (\pi^2)$. Write u in the form $u = 1 + \pi^2 u_0$, where u_0 is an integer of k. For $1 \leq i < p^{n-1}$ with (i, p) = 1, we define an element B_i of K by

$$B_i = rac{A^i}{\pi^j} \Big\{ 1 + rac{A^{p^{n-1}}}{\pi^{p^{m-1}}} + \cdots + \Big(rac{A^{p^{n-1}}}{\pi^{p^{m-1}}} \Big)^{p-1} \Big\} ,$$

where $j = \left[\frac{ip^m}{p^n}\right] + 1$.

LEMMA 6. Suppose that m > 0 and $u - 1 \in (\pi^2)$. Let B_i be as stated in the above. Then B_i is an element of \mathfrak{O} .

Proof. We denote the valuation of K by val. Clearly val $\pi = p^n$. From m > 0, $K_1 = k(\sqrt[p]{u})$. Put $\sqrt[p]{u} = 1 + U$. $(1 + U)^p = 1 + \pi^2 u_0$. Therefore we have val $U \ge 2p^{n-1}$.

(2)
$$u_0\pi^2 = (1+U)^p - 1 = U\left(\sum_{j=0}^{p-1} (1+U)^j\right).$$

Now we evaluate the valuation of the sum $\sum_{j=0}^{p-1} (1+U)^j$. By the formula $\sum_{r=m}^n \binom{r}{m} = \binom{n+1}{m+1}$, we obtain

$$\sum_{j=0}^{p-1} (1+U)^j = \sum_{j=0}^{p-1} {p \choose j+1} U^j$$

Clearly from val $U \ge 2p^{n-1}$, it follows that val $\sum_{j=0}^{p-1} (1+U)^j \ge p^n$. By (2), we have

(3)
$$\operatorname{val} U \leq p^n + \operatorname{val} u_0$$
.

Here we note that $A^{p^{n-1}} = \pi^{p^{m-1}} \sqrt[p]{u}$. Therefore

$$B_i = rac{A^i}{\pi^j} (1 + \sqrt[p]{u} + (\sqrt[p]{u})^2 + \dots + (\sqrt[p]{u})^{p-1}) \ = rac{A^i}{\pi^j} rac{u-1}{\sqrt[p]{u}-1} \, .$$

Hence

YOSHIMASA MIYATA

$$\operatorname{val}B_i=ip^m+2p^n+\operatorname{val}u_{\scriptscriptstyle 0}-jp^n-\operatorname{val}U$$
 .

By the definition of $j, ip^m + p^n - jp^n \ge 0$, and we obtain

 $\operatorname{val} B_i \geq p^n + \operatorname{val} u_0 - \operatorname{val} U$.

From (3), val $B_i \geq 0$. Then B_i belongs to \mathbb{O} .

We are now ready to prove the following theorem which is the main aim of this section.

THEOREM 1. Suppose k contains a primitive p^n -th root of 1. Let K/k be a cyclic totally ramified extension of degree p^n . Then the ring \mathfrak{O} of all integers in K is an indecomposable $\mathfrak{o}[G]$ -module if and only if $m(b_1) \leq e$.

Proof. First, suppose $m(b_1) = e$. Then, from Lemma 2, we have $m(b_n) = p^{n-1}e$. Let T be the idempotent $\frac{1}{p} \left(\sum_{\ell=0}^{p-1} (g^{p^{n-1}})^{\ell} \right)$ as in §2. Then it follows from (1) that $T\mathfrak{O} \subseteq \mathfrak{O}$, and so \mathfrak{O} possesses a direct sum decomposition

$$\mathfrak{O} = T\mathfrak{O} \oplus (1-T)\mathfrak{O}$$
 .

Therefore \mathfrak{O} is not indecomposable, and we have proved that if \mathfrak{O} is indecomposable, then $m(b_i) \leq e$.

Next suppose $m(b_1) < e$. We use induction on the length n of a tower of intermediate fields

$$k = K_0 \subset K_1 \subset \cdots \subset K_n = K$$
.

As a immediate consequence of Theorem 1 of [1], we obtain the result for n = 1. Assume the result holds for the extension whose length is fewer than n. Let E be an o[G]-endomorphism of \mathfrak{O} such that $E^2 = E$ (i.e. a projection). Then we can consider E as an idempotent of k[G]. Let \mathfrak{O}_i be the ring of all integers in K_i , so \mathfrak{O}_i is an o[G]-submodule of \mathfrak{O} . Then $E\mathfrak{O}_{n-1} \subseteq \mathfrak{O}_{n-1}$. φ denotes the canonical map from k[G] to k[G/H]as in §2, where H is the Galois group of the extension K/K_{n-1} . For any element α of K_{n-1} , we have $E\alpha = \varphi(E)\alpha$. From our inductive assumption, \mathfrak{O}_{n-1} is an indecomposable o[G/H]-module, so that $\varphi(E) = 1$ or 0. Without loss of generality, we may assume $\varphi(E) = 1$. Since T is the identity map of $\mathfrak{O}_{n-1}, E - T \in \ker \varphi$. Put $E = T + E_1$. Let I be the set defined by

$$I = \{i | 0 \leq i < p^n, (i, p) = 1\}$$
.

Then, from Lemma 3, there exists a subset I_0 of the set I such that $E_1 = \sum_{i \in I_0} \varepsilon_i$, where ε_i is the primitive idempotent of k[G] defined as in §2. For $1 \leq i < p^{n-1}$ with (i, p) = 1, let I_i be $I_i = \{i, i + p^{n-1}, \dots, i + (p-1)p^{n-1}\}$. Now suppose $I_i \cap I_0 \neq I_i$. Let r be the number of elements in $I_i \cap I_0$. From the hypothesis, $I_i \cap I_0 \neq I_i$, (r, p) = 1. For the integer B_i defined before, it is easy to see that

$$\operatorname{val}\left(EB_{i}
ight)=\operatorname{val}\left\{\left(\sum\limits_{\iota\in I_{0}\cap I_{i}}arepsilon_{\iota}
ight)B_{i}
ight\}=\operatorname{val}\left(rrac{A^{i}}{\pi^{j}}
ight).$$

By the definition of j, val $\left(\frac{A^i}{\pi^j}\right) \le 0$. Since (r, p) = 1, val (r) = 0. Therefore we have val $(EB_i) \le 0$, which is a contradiction. Thus we have obtained $I_0 \supseteq I_i$ for each i with $1 \le i < p^{n-1}$ and (i, p) = 1. This implies $I_0 = I$. Then it follows from Lemma 3 that $E_1 = 1 - T$. Hence E = 1, and which completes the proof.

4.

In this section, we treat the case that k does not contain any primitive p^{n} -th root of 1. We use the same notations as in the previous sections. Then we have

THEOREM 2. Suppose k does not contain any primitive p^n -th root θ of 1. Let K/k be a cyclic totally ramified extension of degree p^n . Then the ring \mathfrak{O} of all integers in K is an indecomposable $\mathfrak{o}[G]$ -module if and only if $m(b_1) < e$.

Proof. Precisely from the same arguments as in the proof of Theorem 1, it is sufficient to prove that if $m(b_1) < e$, then \mathfrak{O} is indecomposable. Now we assume $m(b_1) < e$. We also use induction on n as in the proof of Theorem 1. From Theorem 1 of [1], we obtain at once the result for n = 1. Assume the result holds for the fewer length than n. Then, we can write $E = T + E_1$ and $E_1 = \sum_{i \in I_0} \varepsilon_i$ in $k(\theta)[G]$. Let S be $S = \langle g^p \rangle$ as before. Since $\theta \in k$, it follows from Lemma 4 that $E_1 \in k[S]$. Therefore E belongs to k[S]. Clearly S is the Galois group of the extension K/K_1 , which contains (n - 1) intermediate fields. We see that b_2 is the first ramification number for K/K_1 (for example, see [2]). From Lemma 2 and our assumption $m(b_1) < e$, we have $m(b_2) < pe$.

Then, by the inductive assumption and Theorem 1, we can see that \mathfrak{O} is an indecomposable $\mathfrak{O}_1[S]$ -module. Thus we obtain E = 1, and this completes the proof.

Finally, from Theorem 1 and Theorem 2, we have the following theorem which is the main aim of this short paper.

THEOREM 3. Let K/k be a cyclic totally ramified extension of degree p^n . Let b_1 be the first ramification number for K/k. Then the ring \mathfrak{O} of all integers in K is an indecomposable $\mathfrak{o}[G]$ -module if and only if $m(b_1) < e$.

REFERENCES

- Y. Miyata, On the module structure of the ring of all integers of a p-adic number field, Nagoya Math. J. 54 (1974), 53-59.
- [2] J. P. Serre, Corps Locaux, Paris, 1962.
- [3] B. F. Wyman, Wildly ramified gamma extension, Amer. J. Math. 91 (1969), 135-152.

Faculty of Education Shizuoka University

68