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A UNIFORM L1 ESTIMATE
OF THE SMOOTHING OPERATORS

RELATED TO PLANE CURVES

KANGHUI GUO

ABSTRACT. In dealing with the spectral synthesis property for a plane curve with
nonzero curvature, a key step is to have a uniform L1 estimate for some smoothing
operators related to the curve. In this paper, we will show that the same L1 estimate
holds true for a plane curve that may have zero curvature.

1. Introduction. Let S(Rn) be the space of Schwartz class functions and S0(Rn) be
the dual space of S(Rn). It is obvious that for 1 � p � 1, we have Lp(Rn) ² S0(Rn).
For f 2 S(Rn), we define the Fourier transform of f (x) by f̂ (ò) =

R
Rn eiòÐxf (x) dx. Also for

T 2 S0(Rn), define T̂ by the formula hT̂Ò f i = hTÒ f̂ i. For 1 � p � 1, let FLp(Rn) = fT 2
S0(Rn) ; T̂ 2 Lp(Rn)g. For a compact subset E of Rn, denote

I(E) = ff 2 FL1(Rn) ; f (E) = 0g

J(E) = ff 2 S(Rn) ; f (E) = 0g

K(E) = ff 2 S(Rn) ; supp f \ E = ;g

Obviously K(E) ² J(E) ² I(E) in FL1 norm. We call E a set of spectral synthesis if
K(E) = I(E) and a set of weak spectral synthesis if J(E) = I(E).

It is easy to see that the unit ball of Rn is a set of spectral synthesis. For n ½ 3,
L. Schwartz [11] discovered that the unit sphere Sn�1 in Rn is not a set of spectral
synthesis. The first surprising result is due to C. Herz [9], who proved that the unit circle
S1 of R2 is a set of spectral synthesis. Then N. Varopoulos [12] obtained that Sn�1 is a
set of weak spectral synthesis. Y. Domar ([1], [2]) used a totally different approach to
generalize Herz’s result to compact smooth plane curves with non-vanishing curvature
and generalize Varopoulos’s result to compact smooth (n� 1)-dimensional manifolds in
Rn with non-vanishing Gaussian curvature. Domar’s idea was followed by D. Muller [10]
and the author [7], slightly weakening the curvature and the smoothness assumptions on
the manifolds.

The basic idea in [1] is to prove a uniform L1 estimate for some smoothing operators
related to a curve with nonzero curvature. Motivated from Domar’s work in [3], in this
paper we will show that one could get the same uniform L1 estimate for a plane curve
that may have zero curvature, namely, we will prove
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434 KANGHUI GUO

THEOREM A. Let k ½ 2 be an integer and M =
n�

xÒ †(x)
�

; x 2 [aÒ b]
o

, where
†(x) 2 Ck+1([aÒ b]) such that †(k)(x) Ù 0 for all x 2 [aÒ b]. Let T 2 FL1(R2) with
supp(T) ² M. Then for all small positive h, there exists a family of smooth measures Th

on M such that

lim
h!0

T̂h(ëÒ ò) = T̂(ëÒ ò)(1)

kT̂hkL1(R2) � CkT̂kL1(R2)(2)

where C is independent of all small h.

The structure of this paper is as follows. In Section 2, some preliminary results will be
given. Section 3 will state and prove Theorem B, a local result, from which Theorem A
will be derived in Section 4.

In the rest of this paper, the same letter C will stand for different uniform constants,
but the involvement of parameters in each occurrence of C will be stated explicitly.

We thank Professor Domar for his suggestions and criticism during the preparation
of the current work.

2. Preliminaries. The following lemma can be proved by the Beurling-Pollard
technique (see the proof of Lemma 1 in [6]).

LEMMA 1.1. Let E be a compact C1 curve in Rn(n ½ 2). Let T 2 FL1(Rn) with
supp(T) ² E and f 2 FL1(Rn) with f (E) = 0. If f is Lipschitz continuous on a neighbor-
hood of E, then we have hTÒ f i = 0.

LEMMA 1.2. Let k ½ 2, x0 2 [aÒ b] and f (x) 2 Ck([aÒ b]) with f (x0) = 0. Let
g(x) = f (x)

x�x0
. Then

(i) g(x) =
R1
0 f 0

�
(1 � t)x0 + tx

�
dt, x 2 [aÒ b]

(ii) kgkCm([aÒb]) � kfkCm+1([aÒb]), for all 0 � m � k � 1
(iii) infx2[aÒb] jg(x)j ½ infx2[aÒb] jf 0(x)j � kfkC2([aÒb])(b � a)

PROOF. (i) is obvious if we let u = (1 � t)x0 + tx so that dt = 1
x�x0

du. (ii) follows
immediately from (i), while (iii) follows from (ii) with m = 1 and the identity f 0(x) =
g0(x)(x � x0) + g(x).

REMARK. One corollary of (iii) is that if f 0(x) ½ 1 for all x 2 [aÒ b] and (b � a) �
1

2kfkC2 ([aÒb])
, then we have g(x) ½ 1

2 for all x 2 [aÒ b]. The author thanks Dr. Yibiao Pan for

suggesting the above simple proof of (ii) in Lemma 1.2.

LEMMA 1.3. Given a Ú x1 Ú x2 Ú Ð Ð Ð Ú xm�1 Ú xm Ú b, there exist ûj(x) 2 C(R),
1 � j � m, such that

(i) 0 � ûj(x) � 1, for all x 2 R
(ii)

Pm
j=1 ûj(x) = 1, for all x 2 R

(iii) kû01(x)kL1 � 2
x2�x1

, and kû0m(x)kL1 � 2
xm�xm�1

kû0j(x)kL1 � maxf 2
xj�xj�1

, 2
xj+1�xj

g, for 2 � j � m � 1
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(iv) supp(û1) \ [aÒ b] ² [aÒ x1 + 3
4 (x2 � x1)]

supp(ûj) ² [xj�1 + 1
4 (xj � xj�1)Ò xj + 3

4 (xj+1 � xj)], for 2 � j � m � 1
supp(ûm) \ [aÒ b] ² [xm�1 + 1

4 (xm � xm�1)Ò b]

PROOF. We define the functions û1(x), ûm(x) and ûj(x), 2 � j � m � 1 as follows.

û1(x) =

8>>>>>><
>>>>>>:

1 if x Ú x1 + 1
4 (x2 � x1)

� 2
x2�x1

�
x �

�
x1 + 3

4 (x2 � x1)
��

if x1 + 1
4 (x2 � x1)

� x Ú x1 + 3
4 (x2 � x1)

0 if x ½ x1 + 3
4 (x2 � x1)

ûj(x) =

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

0 if x Ú xj�1 + 1
4 (xj � xj�1)

2
xj�xj�1

�
x �

�
xj�1 + 1

4 (xj � xj�1)
��

if xj�1 + 1
4 (xj � xj�1)

� x Ú xj�1 + 3
4 (xj � xj�1)

1 if xj�1 + 3
4 (xj � xj�1)

� x Ú xj + 1
4 (xj+1 � xj)

� 2
xj+1�xj

�
x �

�
xj + 1

4 (xj+1 � xj)
��

if xj + 1
4 (xj+1 � xj)

� x Ú xj + 3
4 (xj+1 � xj)

0 if x ½ xj + 3
4 (xj+1 � xj)

ûm(x) =

8>>>>>><
>>>>>>:

0 if x Ú xm�1 + 1
4 (xm � xm�1)

2
xm�xm�1

�
x �

�
xm�1 + 1

4 (xm � xm�1)
��

if xm�1 + 1
4 (xm � xm�1)

� x Ú xm�1 + 3
4 (xm � xm�1)

1 if x ½ xm�1 + 3
4 (xm � xm�1)

The above definitions give (i), (ii) and (iv) directly. It remains to verify (iii). It is easy
to check that in the distributional sense, û0j(x)(2 � j � m � 1) is a step function, taking
the values 0, 2

xj�xj�1
, 0, � 2

xj+1�xj
, 0 on the blocks in the definition of ûj(x), while û01(x)

takes the values 0, � 2
x2�x1

, 0 and û0m(x) takes the values 0, 2
xm�xm�1

, 0 respectively. This
verifies (iii).

LEMMA 1.4 (CARLSON). If f , f 0 2 L2(R), then f can be changed on a set of measure
zero such that f̂ 2 L1(R), and

kf̂kL1 � C(kfkL2kf 0kL2)
1
2

The following lemma is a corollary of Lemma 1.4.

LEMMA 1.5. Let I be an interval and denote jIj the length of I. Let ú(x) 2 C(R) such
that supp(ú) ² I and ú0(x) 2 L1(R). If kúkL1 � C and kú0kL1 � CjIj�1 , then for any
function f 2 C1(R), we have

kúfkFL1(R) � CfkfkL1(I) + (jIj kfkL1 (I)kf 0kL1(I))
1
2 g
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Now let the interval I in Lemma 1.5 be contained in (�1Ò 1) and let †(x) be a function
on [�1Ò 1] to be specified later. For real ë and ò (ò 6= 0), let g(x) = ë

ò x + †(x). For û(x),
í(x) 2 C1

0 (�1Ò 1) and small positive h such that supp(í) + [�hÒ h] ² [�1Ò 1], define

K(x) = í(x)
Z 1

�1
eiòg(x�hy)û(y) dy

L(x) = í(x)
Z 1

�1
eiò(g(x�hy)�g(x))û(y) dy

The proof of the following two technical lemmas follows easily from Lemma 1.5
and some standard calculations such as changing variables and integration by parts. The
detail computation could be found in [3], where the reader will see that the constant C
in the lemmas does not depend on ë, ò, h and I.

LEMMA 1.6.

kúKkFL1(R) � C
�
1 + (jIjh�1)

1
2

�
(3)

kúLkFL1(R) � C
�
1 + (jIjjòhjkg00kL1(I+[�hÒh]))

1
2

�
(4)

LEMMA 1.7. If kg0kL1(I+[�hÒh])k
1
g0 kL1(I+[�hÒh]) � C, then we have

kúLkFL1(R) � C
²
jòhj�1

 1
g0


L1(I+[�hÒh])

�
1 +

hg00

g0


L1(I+[�hÒh])

�¦ 1
2

Ð
²

1 +
 
jIj
g00

g0


L1(I+[�hÒh])

! 1
2¦

(5)

3. The local result. Let k ½ 2 such that †(x) 2 Ck+1[�1Ò 1] and Ψ(k)(x) ½ 1 for all
x 2 [�1Ò 1]. Let Γ =

n�
xÒ †(x)

�
; x 2 (�1Ò 1)

o
. Let T 2 FL1(R2) with supp(T) ² Γ.

Following Domar, we construct a family of smooth measures fThg on Γ for all small
positive h as follows. Let

ã: R2 ! R given by (xÒ y) ! xÒ

å: (�1Ò 1) ! Γ given by x !
�
xÒ †(x)

�


We first define a distribution Σ 2 S0(R) by

hΣÒ gi = hTÒ g Ž ãi for g 2 S(R)

This makes sense since supp(T) is compact. From the construction of Σ, it is obvious
that supp(Σ) ² (�1Ò 1). It follows that one can find í(x) 2 C1

0 (�1Ò 1) such that Σ = íΣ.
Let û(x) 2 C1

0 (�1Ò 1) with
R
R û(x) dx = 1. Denote ûh(x) = 1

hû( x
h ) and û̌h(x) = ûh(�x).

Let U = (�1Ò 1), then for 0 Ú h Ú 1
2 dist

�
] UÒ supp(õ)

�
(we shall call such h small), we

see that supp(Σ Ł û̌h) ² (�1Ò 1). Now we define Th 2 S0(R2) by

hThÒ f i = hΣ Ł û̌hÒ f Ž åi for f 2 S(R2)

It is easy to check that for all small h, Th are mass measures on Γ. Our local result is
the following estimate.
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THEOREM B. Let (ëÒ ò) be any point in R2 and let T and Th be as above. Then one
has

lim
h!0

T̂h(ëÒ ò) = T̂(ëÒ ò)(6)

kT̂hk1 � CkT̂k1Ò(7)

where C is independent of all small h.

For (ëÒ ò) 2 R ð R n f0g and (xÒ y) 2 R ð R, let X(xÒ y) = ei(ëx+òy). Then from the
construction of Th, we have

T̂h(ëÒ ò) = hThÒXi = híΣÒ (X Ž å) Ł ûhi

=
−

TÒ í(x)
Z

R
ei[ë(x�õ)+ò†(x�õ)]ûh(õ) dõ

×
(8)

Let g(x), K(x) and L(x) be as in Lemma 1.6 and Lemma 1.7. Then (8) implies

jT̂h(ëÒ ò)j � CkKkFL1(R)kT̂kL1(R2)(9)

And Lemma 1.1 and (8) yield

jT̂h(ëÒ ò)j � CkLkFL1(R)kT̂kL1(R2)(10)

We notice that in (9) and (10), K(x), L(x) depend on ë, ò and h, but the constant C is
independent of ëÒ ò and h.

REMARK. If the curve Γ has nonzero curvature, then one can use (10) alone to get
(7) (see [1], or [7]), that is, one can control kLkFL1(R) uniformly for all ë, ò and small
h. When a curve has zero curvature at some points, Gustavsson [8] gave an example,
showing that in this case kLkFL1(R) is not uniformly bounded for all ë, ò and small h.
Following the idea in [3], in this paper we divide the set of ë, ò, h into two subsets S1

and S2 so that a uniform estimate of kKkFL1(R) on S1 and a uniform estimate of kLkFL1(R)

on S2 could be obtained. The inequality (7) follows from these two estimates.

PROOF OF THEOREM B. The identity (6) follows from the construction of Th, so it
remains to verify (7). Let M = maxx2[�1Ò1] j†00(x)j. We divide our discussion into two
cases.

CASE 1. jëj ½ 2Mjòj.

From the definition of L(x), we have L(x) = eiëxí(x)
R

R ei(�hëõ)+hò †(x�hõ)�†(x)
h )û(õ) dõ =

eiëxL1(x), where L1(x) = í(x)
R

R ei(�hëõ)+hò †(x�hõ)�†(x)
h )û(õ) dõ. So it is enough to control

kL1kFL1(R) since kLkFL1(R) = kL1kFL1(R).
Integrating by parts for L1(x) yields that kL1kL2 � C(jhëj)�1 with C independent of

ëÒ ò and h. Also it is trivial to see that kL01kL2 � Cjhòj � C
2M jhëj with C independent of

ëÒ ò and h. Thus (7) follows from Lemma 1.4 and (10).
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CASE 2. jëj � 2Mjòj.

In this case, when jòhj � 1, (7) follows from the argument given in Case 1, so from
now on we assume that jòhj ½ 1. Let PëÒò(x) = ë

ò + †0(x). Then PëÒò(x) 2 Ck[�1Ò 1] and

P(k�1)
ëÒò (x) = †(k)(x).

Let u be a nonnegative integer and let a1Ò a2Ò    Ò au be the zeros in [aÒ b] of PëÒò(x) with
multiplicity l1Ò l2Ò    Ò lu respectively. From Rolle’s theorem, we see that k1 =

Pu
j=1 li �

k � 1. Thus we have

PëÒò(x) = +(x � a1)l1 (x � a2)l2 Ð Ð Ð (x � au)lu QëÒò(x)Ò(11)

where QëÒò(x) is a Ck�k1 function on [aÒ b] such that QëÒò(x) Ù 0 for all x 2 [aÒ b]. We
emphasize that what makes the argument complicated is that the roots aj are depending on
ë and ò. If QëÒò(x) ½ C1 Ù 0 with C1 independent of ë, ò and x 2 [aÒ b] (we keep in mind
that j ëò j � 2M), then we say that PëÒò(x) has a level 1 structure (11). If there is no such
C1, let c = infx2[aÒb] QëÒò(x) (we know that c Ù 0) and let au+1Ò au+2Ò    Ò au+v be the zeros
of QëÒò(x) � c with even multiplicity lu+1Ò lu+2Ò    Ò lu+v respectively (it is possible that
aj = ai for some j, i with 1 � j � u, u + 1 � i � u + v). Then k2 =

Pu+v
j=u+1 lj � (k�1)� k1

and we have

PëÒò(x) = +(x � a1)l1 (x � a2)l2 Ð Ð Ð (x � au)lu[(x � au+1)lu+1

Ð (x � au+2)lu+2 Ð Ð Ð (x � au+v)
lu+v SëÒò(x) + c]Ò(12)

where SëÒò(x) is a Ck�(k1+k2) function on [aÒ b] such that SëÒò(x) Ù 0 for all x 2 [aÒ b].
Again if SëÒò(x) ½ C2 Ù 0 with C2 independent of ë, ò and x 2 [aÒ b], then we say that
PëÒò(x) has a level 2 structure (12).

Similarly one can define a structure of level 3, level 4 and so on. Combining Lemma 1.2
and an induction argument (if necessary one can divide the interval [�1Ò 1] into finite
many subintervals), one can follow the remark after Lemma 1.2 to see that there are at
most k�1 levels. To simplify the notation, we only give the proof of Case 2 when PëÒò(x)
has a structure of level 2 since the proof for other levels follows the same line.

Now assume that PëÒò has the expression (12). We remark that jajj � C, 1 � j � u + v
with C independent of ëÒ ò. From the choice of í(x), one can find a small è Ù 0 such that
supp(í) ² [�1 + è, 1� è]. Based on whether the points aj are all contained in [�1 + 1

2è,
1 � 1

2è] or not, we have the following two subcases.

CASE 2.1. All aj are contained in the interval [�1 + 1
2è, 1 � 1

2è].

PROOF OF CASE 2.1. From the argument below we will see that we may assume that
ai 6= aj if i 6= j. Also we will see that the order of aj is not important, so let us assume that
�1 Ú a1 Ú a2 Ú Ð Ð Ð Ú au Ú au+1 Ú Ð Ð Ð Ú au+v Ú 1.

Applying Lemma 1.3 for m = u + v, a = �1, xj = aj, b = 1, one can find ûj(x) as in
Lemma 1.3 so that (if some aj are the same, then only the distinct aj will be used in the
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partition of unity)

T̂h(ëÒ ò) =
−

TÒ í(x)
Z

R
ei[ë(x�õ)+ò†(x�õ)]ûh(õ) dõ

×

=
−

TÒ
mX

j=1
ûj(x)í(x)

Z
R

ei[ë(x�hõ)+ò†(x�hõ)]û(õ) dõ
×

=
mX

j=1

−
TÒ ûj(x)í(x)

Z
R

ei[ë(x�hõ)+ò†(x�hõ)]û(õ) dõ
×

=
mX

j=1
Ij(ëÒ ò)

As in Lemma 1.5, we let g(x) = ë
ò x +†(x) so that g0(x) = PëÒò(x). Then using the product

rule, we see that g00(x) has u + v + 1 terms (if S(x) is a constant, then g00(x) has only u + v
terms). For each term, we take the absolute value and then sum all the u + v + 1 terms
together to get a new function denoted by ḡ(x), which contains all factors as shown in
(13). For é Ù 0 and each j, 1 � j � u + v, let Ḡj(é) be the function of é obtained from
ḡ(x), replacing S(x), S0(x) by 1, (x�aj) by é, and (x�ai) by jai �ajj+ é if i 6= j. Similarly
let F̄j(é) be the function of é obtained from g0(x), replacing S(x) by 1, (x � aj) by é, and
(x � ai) by jai � ajj + é if i 6= j. It is easy to see that Ḡj(é) is an increasing function of é
and that éḠj(é) � CF̄j(é) for 0 Ú é � 1 with C independent of ë, ò and h.

For Ij(ëÒ ò), we define 0 Ú éj � 1 (since jòhj ½ 1) by the equation

jòhjéjḠj(éj) = 1(13)

Set dj = maxfhÒ éjg. Since h is small, we see that 0 Ú dj � 1. It should keep in mind
that dj does depend on ë and ò since éj does. Thanks to the similarity of the argument for
each Ij , we will only show

kI1kL1 � CkT̂kL1Ò(14)

where C is independent of ë, ò and h.
Find L, N such that a1 +1 = 2Ld1 and 3

4 (a2�a1) = 2Nd1. Denote the integer part of L, N
by [L], [N] respectively. When L Ù 0 and N Ù 0, we cut the interval [�1Ò a1 + 3

4 (a2�a1)]
by the points fa1 � 2ld1 ; 1 � l � [L]g and fa1 + 2nd1 ; 1 � n � [N]g. When N Ù 0
and L � 0, we cut the same interval by the points fa1 + 2nd1 ; 1 � n � [N]g. When
N � 0 and L Ù 0, we cut the interval by the points fa1 � 2ld1 ; 1 � l � [L]g. Finally
if L � 0 and N � 0, we leave the interval alone. To simplify the notation and show the
idea, we restrict ourselves to the case when N Ù 0 and L � 0 (if N is an integer, then
we use fa1 + 2nd1 ; 1 � n � N � 1g to cut the interval). The treatment for other cases
is similar. In the rest of this section, the letter C will stand for the constants independent
of ëÒ ò and h.

From Lemma 1.3, there exist functions zn(x) 2 C(R), 1 � n � [N] such that
(i) 0 � zn(x) � 1 for all x 2 R

(ii)
P[N]

n=1 zn(x) = 1, for all x 2 R
(iii) kz01(x)kL1 � 1

d1
, and kz0n(x)kL1 � 1

2n�2d1
, for 2 � n � [N]
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(iv) supp(z1) \ [�1Ò a1 + 3
4 (a2 � a1)] ² [�1Ò a1 + 7

2 d1]
supp(zn) ² [a1 + 5

4 2n�1d1Ò a1 + 7
4 2nd1], for 2 � n � [N] � 1

supp(z[N]) \ [�1Ò a1 + 3
4 (a2 � a1)] ² [a1 + 5

4 2[N]�1d1Ò a1 + 3
4 (a2 � a1)]

From the construction of zn(x), we have

I1(ëÒ ò) =
[N]X
n=1

−
TÒ zn(x)û1(x)í(x)

Z
R

eiòg(x�hõ)]û(õ) dõ
×

=
[N]X
n=1

Jn(ëÒ ò)

To prove (14), it is sufficient to show that

kJnkL1 � C2�nkT̂kL1(15)

Let ún(x) = zn(x)û1(x), then j supp(ún)j � C2nd1 and kú0n(x)kL1 � C(2nd1)�1. Let
K(x), L(x) be as in Lemma 1.6. It is easy to see that

kJnkL1 � CkúnKkFL1(R)kT̂kL1(R2)(16)

Let å(xÒ y) 2 C1
0 (R2) such that å = 1 on a neighborhood of Γ̄. For fixed ëÒ ò and h,

define
f (xÒ y) = å(xÒ y)(ei(ëx+òy)e�iòg(x) � 1) ún(x) í(x)

Z
R

eiòg(x�hõ)]û(õ) dõ

We observe that f (xÒ y) 2 C(R2) such that f is Lipschitz continuous on a neighborhood
of Γ̄ and f (Γ̄) = 0. Also using Lemma 3.1 in [10], one can verify that f 2 FL1(R2).
Evoking Lemma 1.1, one has

kJnkL1 � CkúnLkFL1(R)kT̂kL1(R2)(17)

First we control J1(ëÒ ò). When d1 = h, (15) (n = 1) follows from (3) of Lemma 1.6
and (16). So assume that d1 = é1. In this case it is easy to see that kg00kL1(supp(ú1)+[�hÒh]) �
CḠ1(é1). Thus from the definition of é1, one obtains (15) (n = 1) by using (4) of
Lemma 1.6 and (17).

Now we prove (15) for n ½ 2. The formula
þþþ
�Qm

1 fj(x)
�0

Qm
1 fj(x)

þþþ � Pm
1

þþþ f 0j (x)

fj(x)

þþþ leads us to the
inequality þþþþþg

00(x)
g0(x)

þþþþþ � C
 þþþþþS

0(x)
S(x)

þþþþþ +
u+vX

1

þþþþþ 1
x � aj

þþþþþ
!

(18)

From (18), one easily has (since h � d1)hg00

g0


L1(supp(ún)+[�hÒh])

� C(19)

Since 2[N]d1 � 3
4 (aj � a1) for all 2 � j � u + v, it is easy to see that

kg0kL1(supp(ún)+[�hÒh]) � CF̄1(2nd1)(20)  1
g0


L1(supp(ún)+[�hÒh])

� C
�
F̄1(2nd1)

��1
(21)

Moreover F̄1(2nd1) ½ C2nd1Ḡ1(2nd1) ½ C2né1Ḡ1(é1), so (15) follows from the
definition of é1, (17), (19), (20), (21) and Lemma 1.7.

https://doi.org/10.4153/CMB-1997-051-8 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1997-051-8


PLANE CURVES 441

CASE 2.2. Some aj are not contained in the interval [�1 + 1
2èÒ 1 �

1
2è].

PROOF OF CASE 2.2. Without loss of generality, let us assume that only a1 is not
contained in the interval [�1 + 1

2 èÒ 1 �
1
2è]. In this case, we only use a2Ò    Ò au+v to cut

the interval [�1Ò 1] and obtain fûj(x)Ò 2 � j � u + vg in the partition of unity. Since
jx � a1j ½ 1

2è if x 2 supp(í), a minor modification of the argument for Case 2.1 yields
the proof for this case.

The proof of Theorem B is now complete.

4. Proof of Theorem A. Let the compact curve M and the distribution T be as in
Theorem A. For any open ball U, denote by Ux the projection of U onto the x-axis.
There exist three open balls Uj with Ux

j = (ajÒ bj), 1 � j � 3, functions ãj(x) 2 C1
0 (R2),

1 � j � 3 such that
(i) M ² [3

1Uj

(ii) †k(x) ½ c Ù 0 on [ajÒ bj]
(iii) supp(ãj) ² Uj

(iv)
P3

1 ãj(x) = 1 in a neighborhood of M
Since supp(T) ² M, we see that T =

P3
1(ãjT) =

P3
1 Tj. We may assume (a2Ò b2) ²

(aÒ b), (a1Ò b1) contains the point a and (a3Ò b3) contains the point b. For T2, one can apply
Theorem B directly, so it remains to control T1 and T3.

For T1, following the proof of Theorem B, we first define Σ1 and let í(x) 2 C1
0 (a1Ò b1)

so that Σ1 = íΣ1. Then let û(x) 2 C1
0 (�1Ò 0) (

R
R û(x) dx = 1) so that supp(û̌h) ² (0Ò h).

This implies that for all small h, supp(Σ1 Ł û̌h) ² [aÒ b1) since supp(Σ1) ² [aÒ b1). Now
we define T1h 2 S0(R2) by

hT1hÒ f i = hΣ1 Ł û̌hÒ f Ž åi for f 2 S(R2)

This construction guarantees (1) when T, Th are replaced by T1, T1h respectively. The
verification of (2) is the same as the proof of Theorem B.

The treatment for T3 is similar. This finishes the proof of Theorem A.
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