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REAL INTERPOLATION FOR DIVISIBLE CONES

by MARIA J. CARRO,* STEFAN ERICSSON and LARS-ERIK PERSSON

(Received 21st March 1997)

We give necessary and sufficient conditions on a general cone of positive functions to satisfy the
Decomposition Property (DP) introduced in [5] and connect the results with the theory of interpolation of
cones introduced by Sagher [9]. One of our main result states that if Q satisfies DP or equivalently is
divisible, then for the quasi-normed spaces £0 and £,,

(2n £„, en £,).., = en(£?. £?),.,.
where £« = {/; Qf e £} with Qf = inf{9 6 Q; \f\ < g\.

According to this formula, it yields that the interpolation theory for divisible cones can be easily obtained
from the classical theory.

1991 Mathematics subject classification: 46M35.

1. Introduction and preliminaries

Given a vector space V, a set Q c V is called a cone if Q + Q c Q and XQ c Q, for
every k > 0.

In [9], the author gives the definition of the interpolation spaces (Qo, Qi)Oq where g,
is a cone instead of a quasi-normed space £,, as in the classical case (see [2]).

In particular, if Q is a cone contained in the sum space Eo + £| and we consider
Qt = Qn£„ it yields that

- <°°>.
where

K?(t./;I) = infdl/oll^ + (||/,||£l : / =/ 0 +fuf, e Q).

From this fact, it follows immediately that

• This work has been partly supported by the DGICYT PB94-0879.
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(Go. Qi)».,cfin(£0, £,),,,,

and a cone Q c Eo + E, is called a Marcinkiewicz cone (MC) (see [9]) if, for every
0 < 9 < 1 and every 0 < q < oo,

(Go. 6i)9., = Gn(£o, £,)«,.

To get such an equality is not an easy task, but it follows immediately if we can
show that, for every/ e Q,

K%t,f;E)*K(t,f-E). (1)

For the case when Q — Dc is the cone of positive and decreasing right-continuous
functions on (0, oo), this has been studied in [5] where the authors define Marcinkiewicz
pairs as those pairs E satisfying (1).

For this purpose, it turns out to be fundamental what they called the Decomposition
Property for cones:

Definition (Decomposition Property). We say that a cone Q satisfies the
Decomposition Property or simply Q satisfies DP, if the following condition holds:
given f,fo,fi e Q so that / < f0 +fu there exists $0, 0, € Q such that <f>0 <f0, <j>x </ , and

In [5] the Decomposition Property is proved for Q = Dc.
Another example of a cone satisfying DP is given by the cone Q = C of positive

concave functions in (0, oo) (see [3]). Moreover, the Decomposition Property for this
cone is fundamental in the study of the K-divisibility property for compatible couples
([1, 3]).

The results of [9] and [5] have had interesting applications in the setting of Fourier
series and in the theory of boundedness of operators acting on decreasing functions,
respectively.

The paper is organized as follows. In Section 2, we give necessary and sufficient
conditions on a general cone of positive functions to satisfy DP and in Section 3, we
establish the connection of this property with the theory of interpolation of cones, we
have mentioned above. Section 4 is devoted to present some formulae for the K-
functional for different divisible cones.

Important remark. In Section 2, we deal with a cone Q of pointwise defined
functions on an arbitrary set Cl and hence f — g means /(x) = g(x) for every x e Q,
while in Section 3, we work with a cone [Q] of equivalence classes of measurable
functions defined on a ff-finite measure space fi and consequently / = g means
/(x) = g(x) almost everywhere. (We use the same convention for the symbols <
and >).

Also, we shall wri te/< g or g > / if there exists a strictly positive constant M such
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that, / < Mg. If / < g and g <f, f and g are said to be equivalent and we write

Acknowledgment. The first named author wants to express her gratitude to the
department of Mathematics at Lulea University for their hospitality while she was
visiting Lulea in the period August-December 1996. We also thank the referee for some
good advice which has improved the final version of the paper.

2. Some general results concerning the Decomposition Property

Let T(Cl) be the set of all real valued functions defined on an arbitrary set Q and
let T(£l) be T(Q) together with the constant function +oo.

Let us consider an arbitrary nonempty cone Q of ^(Q). Throughout the paper the
functions in Q are assumed to take nonnegative values. To this cone, we associate the
sublinear function Q : T -*• T defined as

Qf := inf{0 e G; | / | < g],

where Qf s -f oo when no g e Q majorizes \f\.
Let us define, for x, y e Q,

In what follows this function will be fundamental.
We also need to deal with an explicit formula for Qf and this will be given in the

next proposition. We observe that if inf, fteQ whenever fteQ for every i, then one
can easily see that

However, for our purpose, it will be very much useful to interchange the inf and sup
in the above expression.

Proposition 2.1. Let Qbe a cone and let us define, for y eQ,

Ff(y) := sup(|/(x)|*fl(x, y)).
X

(i) IfFf € Q, then Ff = Qf.

(ii) If there exists yeQ such that Ff(y) = +co , then Qf = +oo.
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Proof, (i) First we note that

f?(y)>\f(y)\hQ{y.y) =

and hence Ff is a majorant of | / | and thus, Qf < Ff. On the other hand, if g e Q is
a majorant of | / | , then

( *|) ( ^ ) = rfy).

and since Ff e Q, it follows that F^ < Qf and the proof is complete.
(ii) By hypothesis, given A > 0, there exists an x such that A < |/(x)|/ie(x, y). Assume

that Qf is finite; that is, there exists g e Q which is a majorant of | / | . Then
A < |/(x)|/ie(x, y) < g(x)hQ{x, y) < g{y). Hence g 4 Q and we are done. •

Let now *FQ be the collection of sets of the type {x e Q; /(x) > g(x)} for/, g e Q.
Then, our first main result is the following:

Theorem 2.2. Assume that the cone Q c ^"(fi) satisfies the following conditions:

(a) F / e Q /or a/// e T such that FJ is finite.

(b) Ifg0, g{eQandEe »Fe are such that Qig^s) = 9iJor i = 0, 1, then Qdg0 + g^)xE) =

Then, Q satisfies DP.

Proof. First, we observe that (a) implies that if {/,} is a linearly ordered subset of
Q, then inf fx e Q. In fact, since/, e Q and (a) holds, we have that/a = s\ipx fa(x)hQ(x, •)
and, by taking infimum on both sides, we find that

inf/„ < supfinf Ux)hQ(x, •)] < inf/.,
a r L a J a

which again is in Q by (a).
Take/, f0, /, in g such t h a t / < /0 + / , . We begin by following the proof of Theorem

3.2.2 from [3]. Consider the set

A := {(g, h)eQxQ;f<g + h,g<fozndh </ ,}.

On A we define the order

(0. h) < (g1, H) <> g < g1 and /i < fc'.

We will now show that a minimal element of A gives the decomposition of/ that we
are looking for. Let (g0, g{) be a minimal element in .4, which exists by Zorn's Lemma
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and (a), and let us prove tha t / = g0 4- gt. Assume that, for some OQ < 1, and for every
a e [oo, 1), the set

is nonempty. Hence since Qf =f and

y _ /0O , /01
00+01 00 + (

we get

)
l/

Thus, by the minimality of (g0, gx) we have that, for i — 0, 1,

which, by Proposition 2.1, implies that

We now observe that it is sufficient to take supremum over Ec
a, since,

SUP f f - f i i v ^ * ' y) ̂  asup3,(x)/.e(x, y)
xe£, 0oW + 0 l W xe£a

Hence,

= sup f f f ' ( X) / g (x , y) < suPft(x)*e(x, y) <
0W + 0W

and we have that CK&XE;) = 0,. Hence, it follows from (b) that

(0o + 0,)XE, = (Q(0OXES) + Q(SIXE0)XB1 = 2((0o +

and letting a go to 1, we find that

(00 + 0l)*£, </*£, < (00 + 0l)*E, •
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which is a contradiction. Therefore we conclude that £„ = 0 for every 0 < a < 1 and
hence f — go + 9i which finishes the proof. •

The next result shows that, under a fairly mild restriction, condition (b) above is also
necessary.

Theorem 2.3. If a cone Q C .F(n) satisfies DP and for every g e Q and every set
E, Q(9XE)

 e Q- tnen (b) holds for every set E C Q.

Proof. Let us assume that (b) does not hold. Then there exist g0 and gx in Q and
E so that Q(giXE) = 0. and

Q((0o+0.)z£)#0o + 0.- (2)

Since the Decomposition Property holds, we have that Q((g0 + g\)xE) = 0̂ + hx f°r

some hi < gh ht e Q. Obviously, h,xE = gfa and hence Q(hiXE) = g{. Therefore,

which contradicts (2) and we are done. •

In the sequel, we say that Q is a divisible cone if it satisfies DP and a non-divisible
cone if it does not.

2.1. Divisible cones

We already know that the cone C of concave and the cone Dc of decreasing right
continuous functions on R+ are divisible cones.

We should point out that it is very easy to check that the cone D of decreasing
functions on R+ satisfies the conditions in Theorem 2.2 and hence, we obtain a proof
of Cerda and Martin's result [5, Lemma 1] without assuming that the functions are
right continuous. On the contrary, this is not the case for C, since although this cone
satisfies (b), it fails to satisfy condition (a).

Also, if a cone satisfies that given f0 and /, in the cone, the functions fofx and fo/fx

belong to Q (whenever it is well defined), then the Decomposition Property holds
trivially. Hence we have, for example, that the cone of positive and radial functions or
the cone of positive and periodic functions on R" are in the set of divisible cones.

Let us give a list of other divisible cones:

1. Decreasing sequences in Z.

2. Quasi-monotone sequences (see [9]); that is, those sequences (an)n so that ajn? is
decreasing for some /? > 0.

3. Sequences (an)n so that an/bn is decreasing for some fixed sequence (&„).

https://doi.org/10.1017/S0013091500020253 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020253


REAL INTERPOLATION FOR DIVISIBLE CONES 291

4. The cone of all functions/ so that//i is decreasing for a fixed function h.

5. Increasing functions (and all the above examples with the increasing property
instead of decreasing).

However, although one can easily see that all these cones satisfy the conditions (a)
and (b) of our Theorem 2.2, the Decomposition Property can be proved as an easy
consequence of the decreasing case D.

Let us consider now the following cone: let A be any set in R+ and let us say that
a function/ is decreasing in A if, for every x, y e A, x > y we have/(x) <f(y). If

DA = {/ : R+ ->• R+; / is decreasing in A],

then DA is a divisible cone.
To see this, we first observe that

f l ifx = y,

hD"(x, y) - I 1 if x > y and x,ye A,

I 0 elsewhere.

Hence,

FD\ = Ilfiy)l ify¥A,
f \ supx;j, |/(x)x^(x)| if ye A,

and condition (a) holds,
Also, for a function / € DA, we can deduce from the previous expression that

DA(JXE) —f if and only if

f(y) =

0 if y& EVA,

limx-xy.x6xn£ fix) if y e ^ and xy # A n E n [y, oo),
/(x ) if y e A and x e /I n £ n [y, oo),

where xy = inf /4 D E D [y, oo) and the above limit is zero whenever A D £ D [y, oo) = 0.
From this, also condition (b) is easily checked.

Using the same technique one can easily see that, for a collection of sets {.4,}, in an
ordered measure set Q (say, R+ or Z), also

Q = {/ : Q - • K+; / i s decreasing in/I,, Vi"},

is a divisible cone.
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2.2. Non-divisible cones

Using Theorem 2.3 we can also give some examples of non-divisible cones.

Example 1. Let Q = QC be the cone of quasi-concave functions; that is, increasing
functions so that /(x)/x is decreasing. If we consider

i f y < L , , P if y < 1/2.
y ify>l, [2y i f y > l / 2 ,

and E = (0, 1/3] U [8/3, oo), then one can easily see that Q(gaE) = gt(i = 0, 1) but

2 if y < 2/3,
+ 9\)XE) — i -, -c ~ , ,3y if y > 2/3,

and hence Q((g0 + <?I)XE) ¥" 9o + 9\- Therefore, QC is a non-divisible cone.
Similarly, one can easily see that, if hx is an increasing function, h2 is decreasing

and hx /h2 is a bijection, then

Qk£ = {/ : R+ -* R+; /ft, increases and/7i2 decreases}

is a non-divisible cone. To see this, we only have to observe that / e gjj if and only
if 0o(/°0i) e QC where

(3)

Hence, we get that Qh^ is a non-divisible cone since this holds for QC and gs (j — 0,1)
are increasing functions.

In particular, given a > ft, the cone

Qi = {/ : R+ ->• R+; f{x)x" increases and/(x)x^ decreases}

is a non-divisible cone.

Example 2. Let us now consider the cone Q = Dn of positive functions on R"+ so
that they are decreasing in each variable. For simplicity, we shall restrict ourselves to
the case n = 2.

If z = (z,, z2) G M+ and by x < 3) we mean x, < y,, i = 1,2, we find that

1 if y < x,

0 elsewhere,

and, thus,
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= sup|/(x)|.

Therefore, if we take E = {(1,2), (2, 1)}, then

1
3 if 0 < x < 1 and 0 < y < 2,

2 if 1 < x <2andO <) /< 1,
0 elsewhere,

and

( 7 if 0 < x <2andO < y< 1,

3 if 0 < x < 1 and 1 < y < 2,
0 elsewhere,

so that Q(g,XE) = 9i but Q((g0 + gy)xE) ^ 9o + 9i and, hence, D2 and similarly Dn are
non-divisible cones.3. Connection between the Decomposition Property and interpolation theory

Let now L0(Q) be the set of all equivalence class [/] of real valued measurable
functions defined on a ff-finite measure space (Q, E, n).

A function lattice E is understood to be a quasi-normed space in L0(Q) which
satisfies that if | / | < \g\ a.e. and g e E, then/ e E and ||/|| < ||gr||.

Throughout, the convention that \\f\\x — +°° for / & X will be used and X = Y will
mean that X and Y are equal as sets and their quasi-norms are equivalent.

Also the letter Q will indicate through the rest of the paper a cone of measurable
functions pointwise defined on fl while we shall write

[Q] = {[/]; f e 0 .

From now on, we shall write as usual f,g,... instead of [/"], \g\,... when it is clear
from the context but we shall try to be precise with the notation Q and [Q]. However,
when working with a couple of lattices E, we shall write KQ(t, / ; E) to indicate
KlQ\t, [f]; E).

Following the notation in the previous section, let L0(Q) be L0(Q) together with the
constant function +00 and set Q:L0^-L0 defined by

Qf := inf {g e [Q]; | / | < g],

in the sense that either Qf = 00 or Qf is a measurable function so that | / | < Qf and
for every g e [Q] so that | / | < g we have Qf < g.

For a function lattice £, we define

£ « : = { / € Lo; Q/ e £},
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which will be a function lattice under the quasi-norm

II/IIEB : = WQSWE-

Clearly, we have EQ ̂  E, and if Q is bounded from E into E, then E — Ea. We will
also consider FQ, with the obvious definition, when F is only a subset of a lattice. It
trivially holds that

Throughout the rest of the paper, we shall assume that Qf is measurable, for every
/ e L0(Q) and when working with E = (Ee, Ef) we shall also assume that

Qfe[Q] for all / e ( £ 0 + £,)G.

Moreover,

Theorem 3.1. If[Q] satisfies DP, then

Proof. Let Qf —fo+f\, w i t h / e [Q]. Then, according to the lattice property, we
find that

K(t,f; E^) < K{t, Qf; £G) < ||/oo||£o

For the converse, we take / =y | ,+ / , . According to the sublinearity property of Q,
we have that Qf < Qf0 + Qfx and, by the Decomposition Property, there exist
4>o> <i>\ e [Ql such that Qf — <f>0 + 0, and <£, < Qft, i = 0,1. Hence

t,Qf;E) < ||0o||£o + t||0,||£, < ||G/o||£o+|G/i||£,=

and the proof follows by taking the infimum. •

In particular, we have that if [Q] is divisible,

KQ(t,f;E) = K(t,f;EQ), (4)

for every/ e [Q] and then, the following useful corollary is easily obtained.

Corollary 3.2. If [Q] satisfies DP and Qt = Et n [Q], then

for all 0 < 9 < 1 and 0 < q < oo.
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Remark 3.3. (a) Since [Q] n £, = [Q] n £?, it follows from Corollary 3.2, that if [Q]
satisfies DP, then [Q] is a MC with respect to the couple (£Q , Ef), (this fact also follows
from Lemma 2 in [6]).

(b) Since Q : Ef -*• Ep is bounded, it follows by interpolation that

(£?,£?),, = (£?.£?)?,. (5)

(c) Following the notation in [4], we have that Qt = QEJ.Q and hence formula (4) could
also be obtained from Remark 2.4 above and Theorem 2 in the mentioned paper.
However, with this technique we can only obtain K6(t, / ; £) « K(t, / ; E6) but not the
equality.
(d) We should point out that the Decomposition Property for cones is connected with
the S-divisibility property introduced in [4], in the following sense: if a cone [Q] satisfies
DP, then [Q] is g-divisible with respect to [Q] and every couple of lattices E.

Now, using Corollary 3.2 and expression (5), we can obtain the following reiteration
formula which, in the case Q — Dc, was proved in [5]:

Theorem 3.4. If [Q] satisfies DP and Qt = Ei D [Q], then

((Go. C i ) w (Go. 6.V,,),,, = (Go. GiW

where 80 ^ 0, and 0 = (1 - X)d0 + A0,.

Proof. By Corollary 3.2, (5) and the classical reiteration theorem, we obtain that

((Go. G . W (Go. Q.)*. JA , , = ([61 n (£o
e, £?)*.», [Q] n (£?, £?)„„„),.,

= [Q] n

= [Gin (£?,£?)„., = (Go. GiW D

Similar technique can be used to prove the following extension of the Holmstedt
formula (see also [5] for the decreasing case):

Theorem 3.5. If[Q] satisfies DP and Q, = £, n [Q], then

0 < 0O < 0, < 1 and X = 0, - 0O.
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Proof. Le t / e [Q]. Then

,/; (fio, Q,)*.». (Go. Gi)Ol.,,) = K(t,/; [fi] n (£?, E°\^ [Q] n (£?, £?)9iift)

and the result now follows from the classical Holmstedt formula and (4). •

Remark 3.6. Let F = (Fo, F,) be a compatible couple of lattices. Using again (4)
and the general reiteration formula (see [1, 8, 4]) we get that if

EF:KQ := {/ e (£0 + £.) n [Q]; KQ(; / ; £) e F},

then

K(t, / ; lFo;KG) £fi;KC) * K(t, K%, / ; I ) ; Fo
c, Ff),

and, consequently, for every lattice G,

Moreover, if we deal with Marcinkiewicz cones (see [9]), we have the following
result:

Corollary 3.7. If [Q] c Eo + £, is a Marcinkiewicz cone satisfying DP, then

(£o
e, £?),., = (£o. £1)?,. (6)

/or all 0 < 0 < \ and 0 < q < 00.

Proof. By Theorem 3.1, we have that, if Q, = £, n [Q], then

(£o
e, £f)B-, = {/ 6 £0

C + Ef; Qf e (go. 6i)«.f}.

and, hence,

(El £?)„., = {/ e £o
e + £?; Qf e [(£0. £,)(,,, n [GDI

= {/ € £o
e + £f; fif e (£0. £•)<,.,} = (£0. £,)o

e,- •

Our next step is to extend (6) to cones which are not divisible. For this purpose we
have to introduce the notion of equivalent cones.
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Definition 3.8. We say that the cones Qo and Qx are c-equivalent, and we write
Qo ^ Gi. if t n e following condition is satisfied: for every/ e Qo o r / e Q,, there exists
3 e Qi or g e Go> respectively, so that \g < f <cg and if so, we write/ « 3.

The next result establishes the connection between two cones Qt which are equivalent
and the corresponding equivalence for the operators Qt.

Proposition 3.9. Let c > 0 be fixed.

(a) / / G o * G i . ^ » Q o * Q i -

(b) ^5ju/we f/iaf & / e 6,,/or every/e (),_, (i = 0,1). &

Proof, (a) Let / : Q -*• K+ and let g e Qo so that / < g. Let AeQ, so that
/ <g <h< c2g. Then,

QJ<h< c'g.

and therefore QJ < c2QJ.
- C -

(b) Let / e g o . Since Q0*Gi. we find that l
cQ\f<Q.of=f<cQxf and since

Qi/ e Gi t n e r e exists an equivalent function t o / in Q,. Using the same argument for
/ 6 Q,, we get the result. •

We say that a cone is quasi-divisible if it is equivalent to a divisible cone.
It is known that C « gC (see [3]) and, from this, we obtain that, for every hx and

h2 as before, the cone

with g} as in (3), is equivalent to the cone Q^. Moreover, using that C is a divisible
cone, one can easily see that same holds for C^ and, therefore, Q^ is a quasi-
divisible cone.

Observe that if Qo and Q, are two cones in T(Q) so that Qo«« Q,, then [g0] « [Q,] and
hence fc ft

Remark 3.10. (1) Obviously, if g0 « g,, then E6" = £C| and, hence, Corollary 3.7
can be extended, in the obvious way, to quasi-divisible cones.

(2) Also, it is important to observe that, for ()£, formula (6) is a reiteration result in
the following sense: We have that

and
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(Gj/)G0 = ess sup(|/(x)|^(xt y))

Hence, if, for a lattice E, we define E by ||/| |£ = I I ( / ° (V>»2) ) /ME> with g, as in (3),
then, for Q = Q%,

ll/ll*> = WQfh =

and hence Ea = {Lao{hi),Loa{h1))EK. Therefore, if 1 = (Lx(hx), Lx(h2)), formula (6)
reads

which also follows from the more general reiteration formula for X-spaces in [8] and
the fact that (£0, EiK., = (Eo, £,)„„.

4. The ^-functional for divisible cones

The purpose of this section is to compute some X-functionals for several divisible
cones and for the couples (L"°(w0), L"(w,)) and (X, L00) where X is a lattice. We shall
use formula (4) from Section 3 and the fact that the ^-functional for the couple E ,
can sometimes be explicitly computed as follows (see [4]):

Theorem 4.1. Let E be a compatible couple of lattices and let us assume that the
function hQ(x, •) is measurable for a.e. x and that the functions g^x) = \\he(x, -)\\^ are also
measurable. If, for each t > 0, there exist measurable sets B0(i) and B,(t) such that
B0(t) U B,(t) = n and

supmaxf - \\XBOW/9I M , t||*,Mi)/0ollEe ) < oo, (7)

then

K{t, / ; I 6 ) « Il/Z^ollaf + f|l/zBl(,,ll£f. (8)

for allf e [Q].

Lemma 4.2. (a) The cone [D] is divisible.

(b) Let ht and h2 be as in Section 2. Then [C£j] is a divisible cone.

https://doi.org/10.1017/S0013091500020253 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020253


REAL INTERPOLATION FOR DIVISIBLE CONES 299

Proof, (a) Let/, /0, /, 6 [D] be such that / < f0 +/ , . Let E be so that \E\ = 0 and

+ /

for every x. Then, (fxE°)> UOXEC)
 a n ^ (ZIXEO belong to the cone De = {g; g is decreasing

in F/}. Since, we have shown in Section 2 that this cone is divisible, we get that there
exists <?, e De (i = 0, 1) so that (fx?) = go + gl and gt < (Ja?\ Then [f] = [g0] + [g,]\
with \gt] <fj. Since clearly [gj e [D], we are done. (An alternative proof can be given
using the fact that the cone Dc is divisible and if/ e [D] there exists a representative in
the class that it is in Dc.)

(b) Let now/ /0, /, e [C^] be such tha t /< / 0 +/ , and set E as in (a). Then,

for every x e E?, where gt are as in (3). Now, since the above functions are continuous
(they are concave), we get that the above inequality holds for every x e Q and hence,
using that C is a divisible cone we get that there exist Fo and F, so that
9o(x)(f o gr,)(x) = F0(x) + F,(x) and Ff(x) < firo(x)C/i ° 9i)(*) for every x e fi. From this
the results follows immediately. •

Let us now consider the couple E = (//"(wo), //'(w,)) and let us write

Corollary 4.3. (see [4]) If w0 and w, satisfy that, for every t > 0, there exists
a, e [0, oo] such that

and

then, for every decreasing function f

KD{t,f; L»(w0),

In particular, the conditions (9) and (10) are satisfied in the following cases:

(i) If w,(x) < W{(x)/x, i = 0,1, for almost every x and W^O'^WKO"1""*"' is increasing
for some c > 0.

(ii) If there exist a > 0 and /? > 0 such that ap0 < /?p, and W£/Wf increases.
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As a corollary of the previous result, one can easily get conditions on the weights
w0 and w, so that KQh can be computed for the cone Qh of positive functions / such
that fh is decreasing.

If we now want to deal with the cone Q — C1?, we first need to observe that
hQ = h<% a n d

,))" = \\hQ{x, O<?/(*) =

Using this fact together with Theorem 4.1, we can obtain the following result:

Proposition 4.4. V/"w0 andwt satisfy that

or

and, for every t > 0, there exists a, e [0, oo] such that

and

then, for every f e Ch
h],

(t, / ; L'°(Wo), L»(w,)) sj) dsj+1( jf(sf>W{ (15)

Proof. Let us assume that (11) holds. The proof follows similarly if instead (12)
holds.

Conditions (13) and (14) imply that (7) holds and, thus, it only remains to prove
that, for / € Cjj,
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In fact,

= / + //,
l i t* (»o)

and to estimate II, we have to use (11) and (13) as follows:

=f(at)hl(at) ( / Jjj

Now, to estimate IV, we observe that (11) is equivalent to saying that

and, hence,

Similarly,

" h2 IL«( W i )
+

Moreover, we use (14) and the above observation on g0, to obtain the following
estimate of V:

i/p,

•" = '/(•".)*.(•",) { £ jjSr) " < /(»,)9o(«,

= Il/Z,.<<>.<!,) II

from which the result follows easily. D
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Our next aim is to present a concrete example of how Proposition 4.4 can be applied
and, for this purpose, let us assume that the following "Bp type" conditions hold, for

Let us write Ut(x) = f'-jrffi dy. Then, one can easily see that g,(x) «/i2(x)t/1(x)l/l"
and the following results follow:

Corollary 4.5. Assume that (16) holds.

(a) Let f/i(oo) = oo and there exist a > 0 and /? > 0 so that l/JC/i increases and
0Pl > ap0, then (15) holds with a, so that t = Ul

0
/p°(at)U;l""{al).

(b) / /

and there exists c > 0 so that U0(t)
l/P0Ul(t)~

1/Plt~c is increasing, then (15) holds for a, so
thatt=Ul

0
/P0(a,)U;Up](at).

Proof. Some straightforward calculations show that conditions (13) and (14) are
satisfied. •

Remark 4.6. If ht(x) = x* and /i2(x) = x~f, then the condition (16) reads w,(x)xA'1 e
B(a+W(>j which in the concave case reduces to w,(x)xPl e BPi.

Concerning the couple (X, L°°) where AT is a lattice, we have the following result:

Theorem 4.7. Let [Q] be a divisible cone such that

(i) For every f e [Q], min(/, 1) e [Q],

(ii) For every f e [Q], there exists g e [Q] so that (/ - 1)+ < g and \\g\\x <

ll(/-l)+llx-

Then, [Q] is a Marcinkiewicz cone with respect the couple (X, L°°).

Proof. It is known (see [7]) that

K{t, / ; X, L°°) = inf{||C/ - X)+\\x + t\\ rnin(/, X)U-

Let / G [Q]. Since, f = (J-X)+ + min(/, ?.), we have that f<g + min(/, X) and by
(i) and the Decomposition Property of [Q], we have that there exist h, e [Q] so that

https://doi.org/10.1017/S0013091500020253 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020253


REAL INTERPOLATION FOR DIVISIBLE CONES 303

f = h^ + h^hf, < g and Ji, < min(/, X). Hence,

K°(t, / ; X, U°) < \\K\\X +1||*, IL < llffll* + til min(/, A)|L

and since k is arbitrary, we find that, for every/ e [Q],

KQ(t, / ; X, L00) < K(t, / ; X, L°°) < KQ(t, / ; X, L°°),

and the proof is complete. •

Corollary 4.8. (a) [D] is a Marcinkiewicz cone with respect to the couple (X, L°°).

(b) If X satisfies that the left translation operator xa : X -*• X is uniformly bounded in
a, then [C] is a Marcinkiewicz cone with respect to the couple (X, L°°).

Proof, (a) The cone [D] trivially satisfies (i) and (ii) with g — (f— 1)+. Since by
Lemma 4.2 [D] is divisible we are done.

(b) Since / is increasing, we can take g — ta[{f— 1)+] for some a and, hence, the
conditions (i) and (ii) are satisfied. •

A different proof of (a) was given in [5].
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