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Reflection of an obliquely incident solitary wave at a vertical wall is studied
experimentally in the laboratory wave tank. Precision measurements of water-surface
variations are achieved with the aid of laser-induced fluorescent (LIF) technique
and detailed features of the Mach reflection are captured. During the development
stage of the reflection process, the stem wave is not in the form of a Korteweg–
de Vries (KdV) soliton but a forced wave, trailing by a continuously broadening
depression. Evolution of stem-wave amplification is in good agreement with the
Kadomtsev–Petviashvili (KP) theory. The asymptotic characteristics and behaviours
are also in agreement with the theory of Miles (J. Fluid Mech., vol. 79, 1977b,
p. 171) except those in the neighbourhood of the transition between the Mach
reflection and the regular reflection. The predicted maximum fourfold amplification
of the stem wave is not realized in the laboratory environment. On the other hand,
the laboratory observations are in excellent agreement with the previous numerical
results of the higher-order model of Tanaka (J. Fluid Mech., vol. 248, 1993, p. 637).
The present laboratory study is the first to sensibly analyse validation of the
theory; note that substantial discrepancies exist from previous (both numerical and
laboratory) experimental studies. Agreement between experiments and theory can be
partially attributed to the large-distance measurements that the precision laboratory
apparatus is capable of. More important, to compare the laboratory results with
theory, the corrected interaction parameter is derived from proper interpretation of
the theory in consideration of the finite incident wave angle. Our laboratory data
indicate that the maximum stem wave can reach higher than the maximum solitary
wave height. The wave breaking near the wall results in the substantial increase in
wave height and slope away from the wall.

Key words: pattern formation, solitary waves, waves/free-surface flows

1. Background
More than 50 years ago, Perroud (1957) studied reflection of solitary wave with

oblique incidence along a vertical wall. He showed that the reflection pattern resembled
the formation of a Mach stem that was known to exist for compressible shock waves

† Email address for correspondence: harry@engr.orst.edu
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Figure 1. Definition sketch for (a) Mach reflection and (b) three-wave resonant-interaction
model by Miles (1977b): ψi , incident wave angle; ψr , reflected wave angle; ψw , angle of
stem-wave development.

(e.g. von Neumann 1943; Courant & Friedrichs 1948). When a ‘strong’ shock impinges
on a vertical wall with a small incident angle, a three-shock configuration emerges
near the wall; they are the incident and reflected shock fronts, and the continuously
growing ‘Mach stem’ forming perpendicular to the wall. The reflected shock front
branches off from the incident shock away from the wall at the outer edge of the
Mach stem (see the definition sketch in figure 1a). While the governing equations
for compressible fluids are similar to the shallow-water wave equations, Perroud’s
experimental work (1957) – the realization of Mach reflection of solitary waves in the
laboratory environment – is remarkable.

In his experiments, Perroud (1957) observed that the reflection pattern was regular
(no stem formation) when the incident wave angle ψi > 45◦; the Mach reflection
pattern emerged when 20◦ <ψi < 45◦; no reflected wave appeared when ψi < 20◦ but
the stem length grew linearly with a constant stem angle ψw . The measured maximum
amplification at the wall was αw = aw/ai = 2.4 when ψi = 45◦ and ai = a∗

i /h0 = 0.08,
where a∗

i is the incident wave amplitude and h0 is the water depth at the quiescent
state. Although his experiments were thorough, the results were not definitive owing
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to the small-scale laboratory wave tank (6.1 m long, 1.1 m wide, 0.13 m deep with
the water 4.0 and 6.0 cm depth), the imperfect wave generation (displacing a paddle
driven by a weight with a pulley system) and measurement instruments (resistance-
type wave gauges recording with a two-channel analogue oscillograph recorder).
Those were however the best technology available at that time.

Hereinafter, unless stated otherwise, all the amplitude and length parameters are
normalized with the quiescent water depth h0. Wave amplification α is defined as
the ratio of the wave amplitude to that of the incident wave, and the subscript i

represents the incident wave; r represents the reflected wave; w represents the wave
at the wall. The wave at the wall is termed the stem wave, because the Mach-stem-like
feature appears in all the experimental results reported in this paper.

Inspired by Perroud’s experimental findings, Miles (1977b) extended his theory
for obliquely interacting multiple KdV solitons (1977a) to the Mach reflection
problem. His theory considers shallow-but-finite water depth and small-but-finite
wave amplitude to the lowest order (equivalent to the KdV limit). When the wave–
wave interaction is weak, the amplification of two identical solitary waves intersecting
each other at the angle 2ψi can be expressed as

αw = 2 + ai

(
3

2 sin2 ψi

− 3 + 2 sin2 ψi

)
, (1.1)

which holds only for sin2 ψi � ai , and ai = O(ε), where ε � O(1). Equation (1.1)
describes the condition equivalent to the maximum wave amplification αw at a
reflective wall when an incident wave with the amplitude ai impinges on a rigid wall
at an angle ψi . This type of interaction is termed as the ‘non-grazing’ reflection by
Funakoshi (1980), and is similar to the ‘non-glancing’ reflection used for shock waves
by von Neumann (1943).

Miles (1977a) further analysed the strong interaction case for the condition
ψ2

i = O(ε), and ai = O(ε), extending the methodology developed for unidirectional
interaction of two KdV solitons by Whitham (1974). He found that no regular
reflection of a solitary wave is possible when 0 <ψ2

i < 3ai . Assuming resonant triad
interaction among three obliquely propagating KdV solitons as shown in figure 1(b),
Miles (1977b) derived quantitative predictions for Mach reflection in the asymptotic
state – the three waves are the incident, reflected and stem waves. He found that the
stem-wave amplification is given by

αw =

⎧⎪⎨
⎪⎩

4

1 +
√

1 − k−2
, for k � 1,

(1 + k)2, for k < 1,

(1.2)

where k is the interaction parameter:

k =
ψi√
3ai

. (1.3)

Note that the maximum amplification αw =4 occurs at k = 1, and the reflection
pattern is ‘regular’ when k > 1, and becomes that of Mach reflection when k < 1. The
reflected wave amplification αr ( = ar/ai) � 1 is

αr =

⎧⎨
⎩

1, for k � 1,

k2, for k < 1,
(1.4)
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the reflected wave angle is

ψr =

⎧⎨
⎩

ψi, for k � 1,

√
3ai > ψi, for k < 1,

(1.5)

and the stem angle (or growth rate of the stem wave) is

ψw =

⎧⎪⎨
⎪⎩

0, for k � 1,√
ai

3
(1 − k) , for k < 1.

(1.6)

The foregoing theoretical predictions must be interpreted with caution. Miles’s
theory is based on the limit ε ↓ 0 (weak nonlinearity), small oblique angles ψ2 = O(ε)
and the resonant interaction taking place at the equilibrium state.

A few years later, Melville (1980) attempted to validate Miles’s theory using a
larger laboratory wave tank than that of Perroud (1957); Melville’s wave tank was
18.3 m long, 6.2 m wide with the water at 20 and 30 cm depth. Solitary waves were
generated along the 6.2 m long head wall and the waves were obliquely reflected from a
vertical waveguide placed at the angles 10◦–45◦ from the tank sidewall. The parameter
k = ψi/

√
3ai was varied by changing the incident angle ψi but running two values of

ai (0.1 and 0.15). In spite of the use of a large wave tank, propagation distance of
the Mach stem was limited due to the tank’s finite breadth; maximum propagation
distance along the oblique wall was limited to x � 26.7. Melville’s experimental data
showed that the maximum amplification at the wall αw was 2.0 at k =1.43, smaller
than the observation of Perroud (1957) and one half the theoretical prediction of 4.
Melville’s data show that the measured amplification monotonically increases as the
parameter k increases, and all the measured values were substantially lower than
Miles’s prediction (1.2). Melville demonstrated a trend that the growth angle ψw (see
figure 1) approaches nil at the critical condition (k = 1.0) as predicted. He also found
that the reflected amplitudes αr were in fair agreement with the prediction, although
the reflected wave angle ψr could not be identified due to the limited propagation
distance (x � 26.7) – the reflected wave could not develop sufficiently given the short
distance. Perhaps that is why the reflected wave profile was considerably different
from that of a KdV soliton; the measured waveform was narrower than that of the
soliton. Melville (1980) conjectured that the foregoing discrepancies must be related
to the finite crest length of the reflected wave. He argued that while conservation of
mass and energy determines the crest length of the reflected wave, conservation of
momentum is violated near the offshore end of the reflected wave unless acceleration
exists along the crest direction. Melville further pointed out that the critical condition
at k =1.0 means a vanishing stem length; hence, the resonant model based on an
infinite extent breaks down (the model shown in figure 1b): i.e. the no-flux boundary
condition at the wall cannot be modelled with Miles’s three-wave resonant interaction.

Almost at the same time as Melville’s laboratory study, Funakoshi (1980) conducted
numerical experiments to verify Miles’s theoretical predictions. It is not surprising
that Funakoshi’s numerical results are in good agreement with the theory because the
governing equations are the same as Miles’s limits (KdV approximation). For k > 1,
the numerical results agree better with the results for a non-grazing reflection (1.1).
No stationary state could be attained for k ≈ 1.0, which is attributed to the limitation
of numerical work. Consequently, he could not numerically demonstrate the critical
amplification of αw = 4.0 at k = 1.0. Funakoshi presented the results for ai = 0.05 with
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ψi = 2.25◦–30◦, and commented that it takes a very long time to achieve the stationary
Mach-reflection pattern.

Unlike Funakoshi (1980) and others (e.g. Kato, Takagi & Kawahara 1998) whose
numerical models are the same order of approximation as the theory by Miles
(1977a,b), numerical experiments of Tanaka (1993) were based on the higher-order
spectral method. This higher-order model allowed him to study conditions less
restricted in the nonlinearity parameter ai and the incident wave angle ψi. As in
numerical experiments of Funakoshi (1980), Tanaka found that it requires long
propagation to achieve the saturated conditions in stem amplitude (x ∼ 100–300).
However, his model also failed to simulate the fourfold amplification of the stem wave
predicted by (1.2). The simulated maximum stem-wave amplification was αw = 2.897
at k =0.695 in the case of ai =0.3. When k > 0.695, Tanaka’s numerical results are
in better agreement with the prediction for non-grazing reflection (1.1) than the
prediction for strong resonant interaction (1.2). Tanaka (1993) commented that the
Mach-stem amplitude becomes higher (aw = 0.905) than the highest two-dimensional
solitary wave (a = 0.827; cf. Longuet-Higgins & Fenton 1974). A similar numerical
study was conducted by Barakhnin & Khakimzyanov (1999) and it was found that
the values of ψr , ψw and αr are well predicted by Miles’s theory with small amplitude,
ai = 0.05, but not stem amplification, αw .

Recently, Kodama, Oikawa & Tsuji (2009) have derived asymptotic solutions for the
Kadomtsev–Petviashvili (KP) equation for symmetric initial waves made of four semi-
infinite line solitons: Chakravarty & Kodama (2009) called the (3142)-type and the
O-type solutions which correspond to the Mach reflection and the regular reflection,
respectively. Their results successfully reproduced Miles’s theoretical predictions (1.2),
which demonstrates that Miles’s resonant interaction is equivalent to the asymptotic
solution to the initial-value problem of the KP equation. Kodama et al. (2009)
demonstrated that their solution recipe is capable of describing the development
stage of the reflection although the reflected wave characteristics far away from the
reflection wall must be given a priori.

2. On incident wave angle ψi

According to the foregoing background review, Miles’s theoretical predictions
(1.2)–(1.6) are generally supported by numerical simulations of the models with
the same limits and assumptions ai = O(ε) (weak nonlinearity) and small oblique
angles ψ2 = O(ε). On the other hand, previous laboratory experiments failed to verify
Miles’s theory, and so did the higher-order numerical simulations by Tanaka (1993)
and Barakhnin & Khakimzyanov (1999); the observed or simulated features and
behaviours do not match the theoretical predictions.

When we compare laboratory and numerical results with the theory, one problem is
the assumption of a small oblique angle of incident wave ψi . Recall that experiments
of Perroud (1957) were performed with ψi = 0.35–0.79 rad (20◦–45◦), those of Melville
(1980) were performed with ψi = 0.17–0.79 rad (10◦–45◦), numerical experiments of
Funakoshi (1980) with ψi =0.04–0.52 rad (2.25◦–30◦) and numerics of Tanaka (1993)
were performed with ψi = 0.17–1.05 rad (10◦–60◦). The condition ψ2 = O(ε) imposed
by Miles (1977b) was clearly violated for a majority of the previous experiments,
which must be a reason why some of the previous experimental data for k > 1.0
(Funakoshi 1980; Tanaka 1993) agree better with the results of non-grazing reflection
(1.1) that is valid for sin2 ψi � ai .
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Recently, Yeh, Li & Kodama (2010) have shown the treatment of the oblique
incident angle ψi in the KP equation. Note that the KP equation is equivalent
to Miles’s theory, assuming shallow-but-finite water depth, small-but-finite wave
amplitude to the lowest order and a small oblique angle. More explicitly, the
assumptions in the KP equation are a0/h0 =O(ε), (h0/λ0)

2 =O(ε) and tan2 ψi =O(ε),
in which h0 is the water-depth scale, a0 and λ0 are the scales of wave amplitude
and length, respectively, and ε � O(1). It is important to point out, however, subtle
difference in the KP theory from Miles’s theory. The form of the small-but-finite angle,
tan2 ψi =O(ε), arises systematically in the derivation process of the KP equation from
the Euler formulation, whereas Miles (1977b) assumed ψ2 = O(ε) – but not tan2ψi –
from the outset of his analysis.

The KP equation in terms of the water-surface elevation η from the equilibrium
state can be written in the dimensional form:(

ηt + c0ηx +
3c0

2h0

ηηx +
c0h

2
0

6
ηxxx

)
x

+
c0

2
ηyy = 0, (2.1)

where c0 =
√

g h0, the x-direction represents the primary wave propagation, and the
weak transverse perturbation is in the y-direction. An exact solution to (2.1) is

η = a0 sech2

[√
3 a0

4 h3
0

{
x + y tan ψ − c0

(
1 +

1

2

a0

h0

+
1

2
tan2 ψ

)
t

}]
. (2.2)

While (2.2) resembles the form of a solitary wave, it does not represent the KdV
soliton unless ψ = 0. The solution is not invariant to coordinate orientation: a line
soliton in the x-direction cannot maintain its identity by rotating the coordinate
system. Consider a single and isolated KdV soliton. At a given location (x, y),
the temporal profile of (2.2) becomes narrower as |ψ | increases, which is evidently
physically unrealistic and is a shortcoming of the ‘exact’ solution (2.2). It is emphasized
that the incident wave in the present problem is in the form of a KdV soliton, but
not the distorted waveform of (2.2). To remedy this problem, (2.2) is arranged to

η = a0 sech2

[√
3 a0

4 h3
0 cos2 ψ

{
x cos ψ + y sinψ − c0 cos ψ

(
1 +

1

2

a0

h0

+
1

2
tan2 ψ

)
t

}]
.

(2.3)

Taking the propagation direction of a line soliton to be ξ = x cos ψ + y sinψ , and
expanding cos ψ in the last term by cosψ =1 − 1

2
tan2 ψ + O(ε2), yield

η = a0 sech2

[√
3 a0

4 h3
0 cos2 ψ

{
ξ − c0

(
1 +

1

2

a0

h0

)
t + O(ε2)

}]
. (2.4)

Defining the amplitude â0 = a0/ cos2 ψ = a0(1 + tan2 ψ) = a0(1 + O(ε)), we have the
KdV soliton in the ξ -direction:

η̂ = â0 sech2

[√
3 â0

4 h3
0

{
ξ − c0

(
1 +

1

2

â0

h0

)
t

}]
+ O(ε). (2.5)

This procedure results in the higher-order correction to the small angle approximation.
The amplitude â0 now represents the physical wave amplitude realized in the
laboratory. While (2.5) is no longer the exact solution to the KP equation (2.1),
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it still remains valid within the KP limit: error caused by (2.5) would be the higher
order for (2.1).

Kodama et al. (2009) studied symmetric V-shape initial waves that are formed by
two identical semi-infinite line solitons – note that this condition is equivalent to the
Mach reflection problem in the half-plane. They considered the KP equation in the
following form:

(4uT + 6uuX + uXXX)X + 3uYY = 0. (2.6)

This equation can be obtained by scaling (2.1) with

u =
3

2

η

h0

, X =
x

h0

− c0

h0

t, Y =
y

h0

, T =
2

3

c0

h0

t. (2.7)

The exact solution of the line soliton is found to be

u = A0 sech2

[√
A0

2
(X + Y tan ψ − C T )

]
, (2.8)

where C = 1
2
A0 + 3

4
tan2 ψ . Kodama et al. (2009) derived for the asymptotic stem-

wave amplification that turned out identical to (1.2), and they identified the critical
condition at tan ψ =

√
2 A0, which appears similar to k = 1.0 in (1.3). Because the

amplitude A0 can be expressed with the physical wave amplitude â0 by

A0 =
3

2

a0

h0

=
3

2

â0 cos2 ψ

h0

, (2.9)

the interaction parameter of the KP theory can be expressed as

κ =
tan ψi√

3 ai cos ψi

. (2.10)

It is important to recognize that, instead of the interaction parameter k =ψi/
√

3ai ,
the parameter κ of (2.10), which has more proper form of the small incident wave
angle ψi , should be used in (1.2) and (1.4)–(1.6), when the theory is compared with
the experiments involving small-but-finite values of the incident wave angle ψi .

With the corrected parameter (2.10), figure 2 demonstrates substantial improvement
when comparing numerical results of Tanaka (1993) with the theoretical prediction
of (1.2). Tanaka’s model is based on higher-order approximation, and the simulations
were made for finite amplitude waves with ai = 0.3. In his paper, Tanaka drew a
conclusion that the transition from Mach reflection to regular reflection happens at
k = 0.695 < 1 with the maximum amplification αw = 2.897, and that the data with
k > 0.695 are in better agreement with Miles’s theory for non-grazing reflection (1.1)
than the resonant interaction model (1.2). Such original conclusions are no longer true
when the modified interaction parameter (2.10) is used instead of the original (1.3).
The maximum amplification of his numerical experiments is now at κ = 1.03, and
his results are in good agreement with the theory except for the cases near κ ∼ 1.0,
where the theoretical four fold amplification could not be achieved by the numerical
simulation. His results remain in better agreement with (1.1) only when the value of
κ is very large as anticipated.

3. Laboratory experiments
Laboratory experiments were performed in a wave tank designed and constructed

for long-wave research (see figure 3). The wave tank (7.3 m long, 3.6 m wide and
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2.5

2.0

1.5

1.0
0 0.5 1.0 1.5 2.0

k, κ

αw

2.5 3.0 3.5 4.0

4.0

Figure 2. Comparison of numerical data of Tanaka (1993) with prediction of Miles (1977b).
The numerical data are marked � with the original interaction parameter k = ψi/

√
3ai , and �

with the modified parameter κ = tanψi/(cosψi

√
3ai); ——, (1.2); - - - - - -, (1.1).

0.30 m deep) is elevated 1.2 m above the laboratory floor; the bottom and sidewalls
are made of 12.7 mm thick glass plates. Prior to assemblage, the top surface of the
entire 3.6 m × 7.3 m aluminium frame was planed in one piece to achieve a smooth
flat surface, which, together with the height-adjustable base columns, enables us to
place glass plates directly on the frame precisely in a horizontal plane.

The wave basin is equipped with a 16-axis directional wavemaker system along
the 3.6 m long headwall, capable of generating arbitrarily shaped, multi-directional
waves. Each wave paddle is pushed through hinge connections by two adjacent
linear-motor motion devices. Compared with traditional rotary motors, linear motors
are inherently more accurate for producing linear positioning. A push rod at one
edge of a paddle is connected directly to the carriage of the unit. The paddles are
made of PVDF (polyvinylidene fluoride) plates that are driven horizontally in piston-
like motions. Each paddle has a maximum horizontal stoke of 55 cm – more than
adequate to generate very long waves with a water depth of 6.0 cm in our experiments.
This precision wavemaker system, together with the precise wave tank, is needed to
investigate nonlinear dynamics of long-wave motion.

While the wavemaker system is capable of generating arbitrarily shaped, multi-
directional waves, we chose to generate a solitary wave in the normal direction
(along the sidewalls). An obliquely incident solitary wave was created by placing a
2.54 cm thick Plexiglas vertical wall at a prescribed azimuth angle from the tank’s
sidewall (see figure 3); this is the same set-up as both Perroud (1957) and Melville
(1980) adopted in their laboratory experiments. Because the wave paddles are driven
synchronously along the sidewalls, any ambiguity associated with potential deviation
caused by the paddle deformation is eliminated. Solitary waves are generated using
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Wave paddles

(a)

(b)
Wave paddles

7.3 m

Ψi

0.3 m

1.2 m

7.3 m

3.
6 

m

Wave g
uide

Figure 3. Schematic drawings of the laboratory apparatus: (a) a plan view showing the
waveguide that creates an oblique wave reflection and the tank frame that can be seen through
the bed that is made of glass plates; (b) an elevation view.

the algorithm developed by Goring (1979), which is based on KdV solitons. Slightly
more stable solitons could be generated using the higher-order solutions (Guizien &
Barthélemy 2002). The KdV soliton is used so that our laboratory measurements are
consistent with the KdV and KP theories. Identifying deviations resulting from the
mathematical assumptions and approximations is one of our objectives. Note that
the generated waves are precisely replicable with the maximum error being less than
0.06 mm (or 0.1 % of the depth) for a solitary wave with the amplitude a∗

i = 1.73 cm
in h0 = 6.0 cm. (Hereinafter, dimensional quantities are denoted by an asterisk.) The
imperfect trailing portion of the generated solitary waves shown in figure 4 is due to
the approximation of the KdV soliton.

The size of the wave basin used by Melville (1980) was 18.3 m × 6.2 m, which is
physically larger than the present apparatus. Melville stated in his paper, however:
‘the large scale of the basin made it difficult to prevent draughts in the laboratory from
generating surface waves’. On the other hand, our laboratory condition was carefully
controlled, which allowed us to perform the experiments in the depth h0 = 6.0 cm,
which is shallower than Melville’s h0 = 20.0 and 30.0 cm. As a result, the present
apparatus is considered to be effectively larger in terms of the non-dimensionalized
domain than Melville’s wave basin.
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Figure 4. Typical profile of the generated KdV soliton (solid line) at x∗ = 543 cm with the
water depth of h0 = 6.0 cm, and the dashed line represents the profile of the KdV soliton.
The slightly wider profile and the formation of a small trailing dispersive wavetrain are due
to the KdV approximation used in the generation algorithm.

To examine temporal and spatial variations of water-surface profiles, we used the
laser-induced fluorescent (LIF) method. The LIF method has been used to record
water-surface variations as early as 1980s (Yeh & Ghazali 1986; Ramsden 1993;
Duncan et al. 1994), and has significantly improved accuracy due to recent advances
in optical devices (e.g. Duncan et al. 1999; Gardarsson & Yeh 2007; Diorio, Liu &
Duncan 2009). Figure 5 shows a set-up of the LIF method used in this study. A laser
beam (a 5 W diode-pumped solid-state laser mounted on the traversable carriage)
is converted to a thin laser sheet using a cylindrical lens. Two front-surface mirrors
direct the laser sheet to illuminate the vertical plane perpendicular to the wall. With
the aid of fluorescein dye dissolved in water, the vertical laser-sheet illumination from
above induces the dyed water to fluoresce and identifies the water-surface directly
and non-intrusively.

The bright horizontal strip shown in figure 5 is the illuminated water dyed with
fluorescein. The bright vertical line in the figure is the reflection of the laser sheet
from the Plexiglas vertical waveguide. As the wave passes through the light sheet
the illuminated profiles are recorded by a high-speed high-resolution video camera
(1280 × 1024 pixels and 30–500 frames per second) that is set 120 cm away from
the plane of the illuminated laser light sheet. Prior to each set of experiments, the
illuminated plane was calibrated with a target image. The captured images are rectified
and processed with the calibrated image so that the resulting images can be analysed
quantitatively. It is emphasized that the transparent glass bed of the tank minimizes
the reflection of laser illumination that could have caused contamination in the image
analysis for the wave profiles. To identify the air–water interface, we traced image
pixels in the vertical direction from top to bottom; the interface was determined where
the gradient of the light intensity reaches a maximum. A similar procedure was used
by Liu & Duncan (2006) for their laboratory experiments on wave-breaking processes.
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Figure 5. Set-up of the LIF method, composed of the 5 W laser, the cylindrical lens and two
front-surface mirrors. The water dyed with fluorescein fluoresces when excited by the laser
sheet.

One of the difficulties associated with the LIF method for measuring long
waves is the limitation in resolution. Unlike the experiments for capillary waves
or breaking waves, long waves have an inherently small vertical-to-horizontal length-
scale ratio. This causes insufficient resolution in the vertical direction even when
the 1280H × 1024V pixel camera is used. Our laboratory experiments of Mach
reflection require measurements of small wave amplitudes (a few centimetres) in
a large horizontal span (more than 75 cm). To circumvent this difficulty, we repeat
LIF water-surface profiles on approximately 27 cm segments, and make a montage
of the three-segment profiles to cover the 80 cm long transect perpendicular to the
wall. This procedure is only possible with a laboratory apparatus that is capable
of precise replication. A typical example of the resulting wave profiles is shown in
figure 6. Because the LIF method permits measuring water-surface elevations non-
intrusively, any uncertainty caused by meniscus contamination in the measurement
often associated with wave gauges can be avoided. In fact, the LIF method is capable
of capturing the meniscus effect on the wall as shown in figure 6: see the small
curvature of the profile at the wall (y = 0). The concave curvature of meniscus at the
wall is present prior to the run-up on the vertical waveguide. The meniscus flips to its
convex form during the run-up. The capillary rise on the Plexiglas wall varies from
approximately 1 to 1.5 mm, depending on contamination of the water and the wall
surface. In spite of a large variation in capillary rise, the meniscus effect is limited close
to the wall, y∗ < 1 cm, and does not affect the rest of the profiles. Hence, hereinafter,
the data will be presented without showing the meniscus, plotting the profile from
y∗ = 1.27 cm (or y = 0.21). A careful observation of figure 6 reveals negligibly minute
mismatches in the profiles near y∗ = 25 and 50 cm; these mismatches are due to an
imperfect montage process.

To identify energy decay of the solitary wave, the e-folding distance of amplitude
attenuation was measured at four different transverse locations without installing the
oblique reflective wall for ai = 0.076–0.55 with the water depth h0 = 6.0 cm. It was
found that the amplitude decays slowly – the average e-folding distance being 55.5 m
(or the exponential decay rate 0.018 m−1). Hence, it appears that viscous effect in
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Figure 6. Temporal variation of the water surface profile along the transect perpendicular to
the oblique wall at x∗ = 427 cm with the incident wave angle ψi = 30◦ and the water depth
of h0 = 6.0 cm. The profiles were constructed by making a montage of three LIF images. The
time interval of each profile is 1/100 s. Note the meniscus effect at the wall.

the present experiments is not negligible, but sufficiently small to examine the Mach
reflection phenomenon.

One of the shortcomings of the laboratory experiments is the limitation of wave-
propagation distance: physical size of the apparatus prevents the observations of
a long-distance wave evolution. To circumvent this, we extend the experiment by
generating the waveform measured at the furthest location observed in the previous
run. In other words, the effectively larger wave tank is achieved by patching the
two experimental runs: the original ‘parent’ experimental run and the subsequent
‘extended’ run. Unlike the parent experimental run, in which only an incident solitary
wave was generated, the two-dimensional (2D) waveform including the reflected and
stem waves needs to be generated for the extended run. This practice is made possible
because the present wavemaker system is capable of replication of the 2D waveform.

When the incident wave is generated to propagate parallel to tank’s sidewall (in the
normal direction), the reflected wave has a large propagation angle, see figure 1(a).
For example, when the incident wave angle is ψi = 30◦, the reflected wave angle
would be approximately ψr = 40◦. Therefore, for the extended experimental run, the
reflected wave must be re-created with the angle of 70◦ relative to the wave paddles.
Waves with such a large oblique angle would be difficult to generate even with
our wavemaker system. Consequently, for the extended run, the incident wave is
generated with the oblique angle to form the stem wave along the sidewall, instead
of the obliquely placed waveguide. In other words, the incident wave is generated
along the waveguide (see figure 3a). In this manner, when the incident wave angle
is ψi = 30◦, the reflected wave can be comfortably generated with the prescribed
oblique angle of, say, 40◦, but not 70◦. It is cautioned that this patching procedure to
effectively extend the laboratory tank induces some error because it is not possible
to perfectly reproduce the wave measured in the parent experimental run with the
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16-axis wavemaker system. Nonetheless, the data that will be discussed in the next
section reasonably demonstrate continuous transition from the parent experimental
run to the corresponding extended run.

4. Results
For all results presented in this paper, the origin of coordinates is taken at the edge

of the oblique vertical wall as shown in figure 1; the x-direction points horizontally
along the wall, y-direction points perpendicularly away from the wall and z-direction
points upwards. As we stated earlier, the wave along the wall is termed the stem
wave, because the Mach-stem-like feature is present in all of the experiments reported
herein. Unless otherwise stated, all the parameters are normalized with the quiescent
water depth h0, and the time scale

√
h0/g, where g is the gravitational acceleration.

The amplification of the stem wave αw is defined as the ratio of wave amplitude at
the wall (or more precisely at y =0.21 to avoid the meniscus effect) to the incident
wave amplitude measured offshore at the same longitudinal (x) location: αw = aw/ai .
The reflected-wave amplification is presented in the same manner, αr = ar/ai . The
subscripts i, w, and r denote the quantity for the incident, stem and reflected waves,
respectively. The incident wave amplitude ai measured at x = 10.2 and the values of
the interaction parameter κ are used to identify the experimental run. Note that due
to viscous attenuation, both ai and κ vary in the propagation.

Primary references used in this study are theoretical predictions of Miles (1977b),
laboratory data of Melville (1980) and numerical experiments of Tanaka (1993). In
addition, our laboratory results are compared with our numerical calculation based
on the KP equation (2.1). As discussed earlier, when the laboratory results are
compared with the theory, the modified interaction parameter κ presented in (2.10)
should be used, instead of k in (1.3). The present experiments focus on the conditions
of the quiescent water depth h0 = 6.0 cm and the incident wave angles ψi =20◦,
30◦ and 40◦. Our objectives are to realize the Mach reflection phenomenon in the
laboratory environment, to provide an accurate anatomy of Mach reflection formation
and to analyse the results with the previous laboratory observations (cf. Melville
1980), numerical predictions (cf. Tanaka 1993) and the theoretical predictions (Miles
1977a,b), as well as our numerical simulations based on the KP equation.

4.1. Water-surface profiles

Compiling three LIF segments of the water-surface profiles in the y-direction yields a
montage of water-surface maps in the y–t plane with adequate coverage, 0 < y < 13.0,
as shown in figure 7. The figure shows the wave profile at x =71.1 for the case
ai = 0.188 with the oblique wall (or equivalently the incident wave angle) ψi =30◦.
The interaction parameter at x = 71.1 is κ = 0.918 < 1; hence, the condition should
form a Mach reflection according to (1.2)–(1.6). (Note that κ = 0.888 at x =10.2;
the slight increase in κ at x = 71.1 is due to the amplitude attenuation.) The plot in
figure 7 is made from 150 slices of spatial profiles – 100 slices per second – with
approximately 3000 pixel resolution in the y-direction. As expected, the formation
of Mach stem is realized, in which the apices of the incident and reflected waves
separate away from the wall by the third wave that perpendicularly intersects the
wall. Figure 7 shows that the reflected wave amplitude is smaller than that of the
incident wave as anticipated for the Mach reflection. Small wavelets emanating from
the wall (generated near the cessation of the rundown process) and trailing the Mach
stem are gravity–capillary waves (ripples) with a wave period of approximately 0.2 s.
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Figure 7. Two views of the temporal variation of the water-surface profile in the y-direction
(perpendicular to the wall) at x = 71.1: the wall is located at y = 0, the water depth h0 = 6.0 cm,
the incident wave amplitude ai = 0.188 and the angle ψi = 30◦ (κ = 0.888). The data were
obtained by the LIF method with the vertical laser sheet along the y-direction. See the stem
formation along the wall (y = 0) and the difference in angle and amplitude in the y–t plane
between the incident and reflected waves.

The air–water–wall contact line must have created a gravity–capillary disturbance due
to the motion of the surface curvature with small radii. Note that the water surface
in our laboratory is likely to be contaminated by soluble surfactants typically found
in the bulk water and ambient airborne dust; hence, the surface tension is probably
lower than 74 dyn cm−1 (surface tension was not measured).

Taking advantage of the LIF method of directly capturing the water-surface profile,
the reflected wave angle and the stem length are measured unambiguously. The loci
of the maximum water elevation (i.e. wave crest) of the incident wave, the stem and
reflected wave are shown in figure 8 for the same waves as presented in figure 7.
Using the (measured) phase speed, the reflected wave angle ψr is calculated and
found to be ψr = 41.6◦. Evidently, ψi ( = 30◦) < ψr , one of the characteristics of Mach
reflection. Near the offshore end y > 10, the wave reflection at the wall does not
affect the incident wave that forms a straight crest line with uniform amplitude; the
crest line of the reflected wave also becomes straight with uniform amplitude but
only where x is sufficiently large, say x � 30.5. The stem crest length is determined at
the intersection of the linear extension of the incident-wave crest line from offshore
(see figure 8): we matched the crest-line slope in the y–t plane with the measured
incident wave speed. Unlike the theoretical model (figure 1), our laboratory data
found that the extension of the reflected-wave crest line intersects slightly offshore
with the stem-wave crest line. Such a direct and detailed measurement of Mach stem
length was not possible in the previous laboratory experiments that used wave-gauge
measurements. Melville (1980) estimated the stem length by computing the wave-phase
deviation based on the correlation function between wave-gauges aligned normal to
the wall. His procedure was necessary because of noise present in his laboratory and
the difficulty in identifying the wave phase from the wave-gauge data at discrete
locations.
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Figure 8. Loci of the maximum water-surface elevations, i.e. wave crests, identified from the
wave profile shown in figure 7. The intersection of the linearly extended crest of the incident
wave to the Mach stem determines the stem length.

Figure 9 presents temporal variations of the stem-wave profile at the wall (y =0.21)
and the offshore water-surface profile (at y = 12.5) for the same wave as shown in
figures 7 and 8. Also plotted are the KdV-soliton profiles fitted to the measured
wave amplitudes. The incident and reflected waves are sufficiently but not completely
separated from each other at y = 12.5. The wave amplitude of the reflected wave is
evidently smaller than that of the incident wave: the amplification is αr =0.634. Both
incident and reflected waveforms exhibit the form of the KdV soliton. However, the
lee portion of the reflected wave profile sags down faster than the soliton profile and
it does not approach the quiescent water level but further dips to the negative water
level. Melville (1980) pointed out that the observed reflected wave was narrower than
that of the solitary wave; the deviation he observed was greater than that shown
in figure 9. The larger discrepancy in Melville’s data can be attributed to the short
distance of his measurements (at x = 16.7), where the reflective wave was still under
development and losing its energy along the crest via diffraction. On the other hand,
the profile in figure 9 was taken further downstream at x = 71.1, although it is still at
the development stage, which will be discussed later.

The stem wave at the wall shown in figure 9(a) does not form the profile of a KdV
soliton. While the wave profile is symmetric, the wave breadth is broader than that
of the soliton. This characteristic is consistent for all the experiments we performed
as well as consistent with the measurements made by Perroud (1957) and Melville
(1980). A trailing depression is apparent in figure 9(a); the depression formation
behind the stem wave was also pointed out in the previous laboratory studies by
Perroud (1957) and Melville (1980). Examination of the numerical results by Tanaka
(1993, figure 15) shows a similar depression formation in the early stage of the
simulation. In his numerical calculations, Funakoshi (1980) numerically observed
the trough depth increasing and subsequently decreasing slowly until vanishing
at t → ∞.
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Figure 9. Temporal water surface profiles of (a) the stem wave at y = 0.21 and (b) the incident
and reflected waves offshore at y = 12.5, measured at x = 71.1 for the wave shown in figure 7.
The dashed and dotted lines represent the profiles of KdV solitons.

To examine the depression behind the Mach stem closely, figure 10 shows the
evolution of water-surface profiles at the locations x = 10.2, 30.5, 50.8 and 71.1.
The figures in the left column show the profiles in the y–t plane, and the middle
and right columns are the temporal profiles at the wall (y = 0.21) and offshore
(y = 12.5), respectively. Where x is small (x = 10.2, figure 10a), there is a compact
dip in the trailing portion of the stem wave that is almost negligible in the offshore
profile behind the reflected wave. The small dip could have been generated by the
wavemaker motion based on the KdV soliton approximation as discussed in figure 4.
However, the depression behind the stem wave is significantly more prominent (2.4 mm
(�η ≈ 0.04)) than the dispersive trailing dip shown in figure 4 (0.24 mm (�η ≈ 0.004)).
Furthermore, such a small and short wave disturbance should have dispersed behind
the primary wave and become less apparent downstream, contrary to the results
shown in figure 10. A careful examination of figure 10 reveals that the depression
becomes elongated as the wave propagates downstream. The depressed water level
does not return to the still water level behind the stem, but sustains its set-down of
approximately 2 mm (�η ≈ 0.033). The evolution of the depression in fact appears
like a wake formation when an object commences in motion. As discussed later in
figure 11, the stem and reflected wave amplitudes grow continuously even at x = 71.1.
This wake-like formation of the depression behind the stem wave must be related to
the transient process associated with stem-wave development.

Consider a control volume, bounded by control surfaces sufficiently ahead of and
behind the stem wave, moving along the wall with the constant speed c∗ = ci secψi ,
where ci is the phase speed of the incident wave. The net momentum within the
control volume increases with time owing to the growth of stem and reflected waves
(see figure 11). Hence, the momentum flux through the control surface ahead of the
stem wave must be greater than that through the trailing control surface. Since the flow
velocities across both control surfaces are the same – the speed c∗ in the moving
coordinate system – the flow depth must be smaller across the trailing control surface
than across the surface ahead of the stem wave. (Note that, in the offshore region
where only the incident soliton is present and the reflected wave has not yet been
developed, the control surface can be chosen conveniently by aligning the surface
tangential to the velocity vectors of the incident line soliton, which results in nil
momentum flux across this offshore control surface.) Consequently, the depression
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Figure 10. Water-surface profiles behind the Mach reflection for the incident wave amplitude
ai = 0.188 and the angle ψi = 30◦ (κ = 0.888): (a) x = 10.2; (b) x = 30.5; (c) x = 50.8; (d)
x = 71.1. Left: the profiles in the y–t plane; middle and right: the temporal profiles at the wall
(y = 0.21) and offshore (y =12.5), respectively. Note that the large disturbance that appears
near the end of (d ), t > 120, was caused by the exit reflection when the wave was released from
the confined domain of the present experimental set-up (see figure 3a).

behind the stem wave is formed by this transient behaviour associated with the
momentum growth within the control volume due to the development of the Mach
stem. Growing amplitude means that the stem wave is not a KdV soliton throughout
the extent of the experiment. We found that the observed stem wave propagates
(6 %–14 %) faster than the KdV soliton with the same amplitude; hence, the observed
stem wave is a forced wave.

Another feature seen in figure 10 is the disturbance created when the Mach stem
exits from the experimental domain, as seen in figure 10(d ) for x =71.1. When the
wave escapes from the linearly contracted domain (see our laboratory set-up in

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

60
14

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010006014


On the Mach reflection of a solitary wave: revisited 343

3.0

2.5

2.0

1.5

1.0

0.5

0 10 20 30 40
x

50 60 70 80

α

αr

αw

Figure 11. Amplification growth of the stem wave αw and the reflected wave αr for ψi = 30◦,
h0 = 6 cm, and - -× - -, ai = 0.076 (κ = 1.395); - - � - -, ai =0.096 (κ = 1.242); - - � - -, ai = 0.143
(κ =1.020); - - � - -, ai = 0.188 (κ = 0.888); - - � - -, ai = 0.277 (κ = 0.731); - - � - -, ai = 0.367
(κ =0.636).

figure 3a), a sudden expansion occurs to the wave at the narrow exit. This creates
a disturbance – resembling a partial wave reflection – propagating back to the
experimental domain.

Figure 10 also shows the immature reflected wave at x = 10.2, having an
asymmetrical waveform, decreasing wave amplitude in the offshore direction even
at y =12.5, and separating father away from the incident wave. Recall that data of
Melville (1980) were taken at a similar location, x = 16.7. A smaller wave is shedding
out from the reflected wave in the profile at x = 30.5 (figure 10b). When x is small
(say, x < 30), the reflected wave must be in the transient process of its creation and
also contaminated by the disturbance that might be generated at x = 0 and y = 0,
where the boundary angle is discontinuous (see figures 1a and 3a).

4.2. Wave evolution

Growing stem-wave amplifications αw ( = aw/ai) induced by incident waves with
amplitudes 0.076 � ai � 0.367 and ψi = 30◦ are presented in figure 11. Also shown
is the growth of reflected waves. The stem amplification continues to grow in the
cases of larger-amplitude waves. On the other hand, the amplitude tends to approach
its equilibrium value for smaller amplitude cases. The reflected wave amplitude also
grows. Contrary to the behaviour of stem waves, the larger the incident waves are, the
slower the growth of the reflected waves. The amplitude ratio of the reflected wave
to the incident wave tends to approach unity (αr → 1) for the smaller incident waves.
Nevertheless, the limited physical dimension of the laboratory apparatus prevents
the stem formation from reaching its fully developed asymptotic state. Note that in
figure 11, no complete data are presented for the case of ai = 0.367 because of wave
breaking after x = 50.8.

Recall that Miles’s predictions (1.1)–(1.6) are for the equilibrium state (see figure 1b),
whereas the wave reflection observed in the laboratory is in the development process
(see figure 1a). Hence, it is difficult to directly compare our laboratory results with
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the theory. To remedy this, the evolution is numerically calculated based on the KP
equation (2.1), details of the numerical algorithm are presented in the Appendix. Note
that the asymptotic solution to the KP equation is equivalent to the theory by Miles
(1977b), as demonstrated in the Appendix (also by Kodama et al. 2009) because the
limits and assumptions involved are the same.

The growth process of the stem-wave amplification is presented in figure 12 for
cases with amplitudes 0.076 � ai � 0.367 and ψi = 30◦. As discussed earlier, in order
to observe stem-wave amplification at locations farther than the distance available
in the wave tank, the extended experimental run was performed by reproducing the
waveform measured at x = 71.1 with the wavemaker system. By patching the data,
this procedure allows us to study wave evolution in an effectively longer wave tank.
The data in figure 12 include the amplification at the extended locations x = 96.6
and 121.1. (There is no extended data for the case ai = 0.367, because the stem
wave breaks after x =50.8 as mentioned earlier.) Also plotted are the numerical
predictions from the KP theory as well as the asymptotic values obtained from (1.2).
The KP predictions were calculated with the incident wave amplitude ai measured
at x = 10.2.

Slight discrepancies that appear in the figure could be attributed to wave attenuation
in the laboratory due to viscous effect. For a given incident wave angle ψi (in the
present cases ψi = 30◦), the interaction parameter κ gradually increases as the incident
wave attenuates. This implies that the predicted amplification decreases if κ > 1.0, and
increases if κ < 1.0 according to (1.2). Although the theoretical prediction (1.2) is for
the asymptotic state, the results for κ > 1.0 shown in figure 12 reflect this trend; the
amplification growth is slower than the KP prediction. Contrary to what we expect
however, the observed growth rates for κ < 1.0 are also slower than the prediction
except in the case with the smallest κ (or ai = 0.367); figure 12(f) shows that the
measured growth matches very well with the KP prediction.

It is emphasized that reproducing the 2D wave condition measured at x = 71.1 for
the extended experiment is not trivial, and we anticipate some error associated with
this procedure. In spite of the patchwork of data, the amplifications at the extended
locations result in good agreement with the numerical predictions of the KP theory,
although they are slightly deviated from the extrapolated trajectory from the parent
experiments (up to x = 71.1). Figure 12 shows that the growth in amplification from
x = 96.1 to 121.1 (at the extended locations) is minute for all cases. For the cases of
figure 12(a, b, e) (ai = 0.076, 0.096 and 0.277), the amplifications reach close to their
asymptotic states at x = 121.1; for the case of ai =0.367 (figure 12f), it has already
reached close to the asymptote at x =50.8 prior to wave breaking. As shown in
table 1, the measured stem-wave amplifications are more than 90 % of the asymptotic
values. That is not the case for figures 12(c) and 12(d) (ai =0.143 and 0.188); they are
approximately 75 % of the asymptotic values. These two cases are close to the critical
condition κ ∼ 1.0, and our numerical computation indicates that the distance to reach
its equilibrium is much longer than other cases (see table 1). On the other hand, the
laboratory data in figures 12(c) and 12(d) show no growth in amplification between
x = 96.1 and 121.1. The growth pattern in the parent experimental run (the data up
to x = 71, 1) also indicates reduction of the amplification growth. It appears that the
amplification process in the laboratory must be saturated for the cases of figures
12(c) and 12(d), while further continuous growth was predicted by the numerical
prediction.

Measured stem-wave amplifications are plotted in figure 13 with Miles’s asymptotic
solution (1.2) and Tanaka’s numerical results (1993). Note that Tanaka’s model is
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Figure 12. Growth of the stem-wave amplification for the cases with ψi = 30◦ and h0 = 6 cm.
(a) ai = 0.076, κ = 1.395; (b) ai = 0.096, κ = 1.242; (c) ai = 0.143, κ = 1.020; (d) ai = 0.188,
κ = 0.888; (e) ai = 0.277, κ = 0.731; (f) ai = 0.367, κ = 0.636. Lines and symbols: ——, numerical
prediction of the KP theory; - - - -, asymptote of the amplification (1.2); �, laboratory data; �,
extended laboratory data.

based on the higher-order approximation in nonlinear effects, and the simulations
were made for waves with ai = 0.3 and a range of incident wave angles ψi = 10◦–60◦.
According to Tanaka, his results are asymptotically stable at x = 150, except the data
point at κ = 0.90 (ψi = 35◦), in which the convergence to the asymptotic state is very
slow – the same behaviour as our KP simulations as shown in table 1 and figure 12.
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Cases (1.2) αw αr κ x to reach 95%
ai(x = 10.2) (x → ∞) αx = 71.1 → αx = 121.1 αx = 71.1 → αx =121.1 κx=10.2 → κx=121.1 of αw (x → ∞)

(αw/(1.2)) (KP)

0.076 2.357 2.101 → 2.287 (0.970) 0.801 → 1.016 1.395 → 1.506 85.5
0.096 2.511 2.133 → 2.346 (0.934) 0.755 → 0.972 1.242 → 1.358 104.1
0.143 3.348 2.242 → 2.551 (0.761) 0.688 → 0.892 1.020 → 1.138 502.0
0.188 3.565 2.332 → 2.700 (0.758) 0.634 → 0.856 0.888 → 1.004 299.9
0.277 2.996 2.516 → 2.922 (0.975) 0.561 → 0.663 0.731 → 0.834 103.8
0.367 2.676 2.481∗ (0.927) 0.446∗ 0.636 → 0.649∗ 61.7

Table 1. Amplification of the stem (αw) and reflected (αr ) waves at x =71.1 and 121.1 and the
range of the interaction parameter κ . Also shown are the asymptotic stem-wave amplification
by (1.2) and the distance to travel to attain 95 % of the asymptotic amplification estimated by
the numerical calculations of the KP theory. There is no extended data for the case ai =0.367,
because the stem wave breaks after x = 50.8 as indicated by the asterisk.
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Figure 13. Comparison of the stem-wave amplification αw with the prediction of Miles (1977b)
(1.2)(——) and the numerical results of the higher-order model given by Tanaka (1993) (×).
The present data are at x = 71.1 for ai = 0.076–0.367 and the incident wave angle ψi = 40◦

(�), ψi = 30◦ (�) and ψi =20◦ (�). The data taken in the extended experimental runs are at
x = 121.1 with ψi = 30◦ (�) and ψi = 20◦ (�).

The laboratory results presented in figure 13 include the stem-wave amplification at
x = 71.1 (our farthest measuring location of the parent experiment) with ψi = 20◦ and
30◦, and at x = 61.0 with ψi =40◦; in the case of ψi = 40◦, the data at x = 71.1 were
contaminated due to flow contraction owing to the limited breadth of the wave tank
(see figure 3a). The data obtained at x = 121.1 by the extended experimental runs are
also presented in the figure; however, no data were taken for the case with ψi =40◦,
because it is difficult for the wavemaker system to reproduce the reflected wave with
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the large oblique angle. We consider, however, that the data at x = 61.0 for ψi = 40◦

have already reached close to their asymptotic state.
According to figure 13, stem-wave amplifications at x = 71.1 show good agreement

with the asymptote (1.2) for the case with the incident wave angle ψi = 40◦. However,
as the incident wave angle decreases (ψi = 30◦ and 20◦), the measured amplification
at x = 71.1 (shown by open symbols) deviates from the theoretical prediction. The
smaller the incident wave amplitude (or the larger the interaction parameter κ), the
smaller the amplification αw , and for κ < 1.0 the farther the deviation from (1.2);
see the case with ψi = 20◦ shown by the open triangular symbols in figure 13. At
the extended location x = 121.1 (shown by the filled symbols), the amplification
continuously approaches the theoretical prediction of (1.2). In fact, the results with
ψi = 30◦ are in excellent agreement with Tanaka’s numerical predictions. The results
with ψi =20◦ start to converge the theoretical trend of the Mach reflection for κ < 1.0,
i.e. the amplification increases as κ increases towards its critical value.

As discussed earlier in figure 12, there is little amplification growth between x = 96.1
and 121.1 for the case of ψi = 30◦, which means that the wave reflection process
became stable. The present laboratory data are in excellent agreement with Tanaka’s
numerical predictions for, say, κ > 0.8. The discrepancy in the case of ψi = 20◦ remains
due to the limitation in propagation distance in the laboratory; however, the data
clearly exhibit approaching the asymptotic state. With a small incidence angle, the
stem wave of the Mach reflection continuously grows. We found that the crest length
of the stem formation at distant locations becomes too long to reproduce in the
limited breadth of our laboratory tank by the wavemaker, which disallows us to
perform additional extended experiments beyond x = 121.1.

In short, our laboratory results tend to approach numerical results of Tanaka (1993).
Furthermore, when κ is away from unity, the present laboratory results support the
theoretical prediction (1.2). Note that Tanaka provided his data for the cases with
only one incident-wave amplitude ai = 0.3, while our laboratory results are based on
a variety of wave amplitudes ai as well as the three incident wave angles. Good
agreement with Tanaka’s results implies that smaller amplification than (1.2) for the
data near κ =1.0 (for example, the results shown in figures 12c and 12d) is probably
attributable to the higher-order nonlinearity effects.

Figure 14 shows the wave profiles taken with the LIF method at x = 71.1, 96.1
and 121.1 with ψi = 30◦ for three cases: (a) ai = 0.076, (b) 0.188 and (c) 0.277. Note
that the first panel of figure 14(b) is identical to figure 7. The profiles at x = 71.1
are obtained from the parent experiments by generating the prescribed incident line
soliton, while the profiles at x = 96.1 and 121.1 are obtained by the foregoing extended
experiments by reproducing the waveform (including the stem and reflected waves)
observed at x = 71.1. Some noises (horizontal strips) that appear in the profiles are
related to the overlapping LIF images in the montage process. Visual observations
provide a justification for our patching procedure to create the effectively longer
propagation distance; the waveforms in figure 14 are essentially consistent. The three
cases (figure 14a–c) exhibit different evolution patterns in the profiles. The Y-shaped
profile of case (a) (ai = 0.076) shows little change as it propagates from x = 71.1
to 121.1, whereas the stem length is clearly growing for case (c) (ai = 0.277). This
behaviour is consistent with the theoretical prediction; continuous growth of the stem
angle ψw when κ < 1 (for case (c), κ = 0.834 at x = 121.1, κ = 0.731 at x = 10.2), and
no growth for regular reflection when κ > 1. The stem length shown in figure 14(a)
(κ = 1.506 at x = 121.1, κ = 1.395 at x = 10.2) maintains its forms with constant
length. For this case, the amplification of the reflected wave is αr =1.016 at x =121.1
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Figure 14. Evolution of the water-surface profiles at x = 71.1 (left), 96.1 (centre) and 121.1
(right) for the incident waves: (a) ai = 0.076 (κ = 1.395), (b) ai =0.188 (κ = 0.888) and (c)
ai = 0.277 (κ = 0.731). The wall is located at y = 0, the water depth h0 = 6.0 cm, and the
incident wave angle ψi = 30◦. The data were obtained by the LIF method with the vertical
laser sheet along the y-direction.

as indicated in table 1, and the measured reflected wave angle is ψr = 32.6◦, very close
to the incident wave angle – these are the characteristics of regular reflection. This
stem wave formation of regular reflection does not seem to disappear for further
propagation, considering the conditions of αr = 1.0 and ψi = ψr that should maintain
the existing waveform.

Evolution processes of the stem-wave elongation are shown in figure 15 for the
cases with 0.076 � ai � 0.367 and ψi = 30◦. Figure 15(a) shows growth of the stem
length, indicating that the larger the amplitude the faster the growth. Figure 15(b)
shows the stem-length growth rate ψw assuming the linear growth as depicted in
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Figure 15. The stem length Ls determined by the method depicted in figure 8. (a) Growth of
the length in x with ψi = 30◦: - -× - -, ai = 0.076 (κ = 1.395); - - � - -, ai = 0.096 (κ = 1.242); - -
� - -, ai = 0.143 (κ = 1.020); - - � - -, ai = 0.188 (κ = 0.888); - - � - -, ai = 0.277 (κ = 0.731); - -
� - -, ai = 0.367 (κ = 0.636); and (b) the stem wave growth angle ψw (in degrees) up to x = 71.1
(�); the angle ψw between x = 96.1 and 121.1 (�); prediction (1.6) (——).

figure 1. The stem lengths are determined by the method presented in figure 8. As
seen in figure 15(a), cases of ai = 0.076 and 0.096 almost cease the stem-length growth
at x > 71.1, whereas those of ai = 0.188 and 0.277 appear to grow continuously at
linear rates. According to figure 13, cases ai = 0.076 and 0.096 (the rightmost filled
circular symbols in figure 13) reach their asymptotic state of regular reflection. While
the stem-length growth has ceased, the length remains finite after the stem is formed
during the development of the reflection. For cases ai = 0.188 and 0.277 (the leftmost
filled circular symbol in figure 13), the stem length is still continuously growing in
accordance with the behaviour of the Mach reflection for κ < 1.0. As shown in table 1,
κ � 1.004 and �0.834 for cases ai = 0.188 and 0.277, respectively – note that the value
of κ increases as the wave propagates due to slow attenuation of the incident wave.

Using linear regression on the measured data in figure 15(a), the growth rates are
determined and plotted with Miles’s prediction (1.6) in figure 15(b). In the figure, the
open symbols represent the linear growth rates based on the data up to x = 71.1, i.e.
the parent experimental runs, while the solid symbols show the rates between x = 96.1
and 121.1 of the extended experimental runs. Despite the potential error associated
with our patching procedure, the results in figure 15(b) show that the two sets of data
are consistent, demonstrating the validity of our patching procedure to obtain data
equivalent to an effectively long wave tank. Although the trend of the data shown
in figure 15(b) is similar to (1.6), no sharp transition at κ = 1.0 is observed in the
laboratory data.

Figure 16 shows the characteristics of the reflected waves; the amplitudes and
the angles are presented in figures 16(a) and 16(b), respectively. The laboratory
data at x = 121.1 are in good agreement with Miles’s predictions (1.4) and (1.5) as
well as Tanaka’s numerical prediction. Note that the reflected wave amplitudes at
x = 71.1 (the farthest measurement location for the parent experimental runs) still
show their developing stages. It is emphasized that Tanaka’s numerical results were for
a single incident wave amplitude, ai = 0.30 with a range of the incident wave angle
ψi = 10◦–60◦, whereas the present laboratory results shown in figure 16 are based on
the single incident wave angle ψi = 30◦ with a range of incident wave amplitudes
ai =0.076–0.277. Considering the different experimental parameters, the agreement in
the reflected waves in figure 16 is remarkable. It must be pointed out that Tanaka’s
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Figure 16. Evolution of reflected waves: (a) reflected-wave amplification αr and (b) reflected
wave angle ψr at x = 71.1 (�); x = 121.1 (�); Tanaka’s (1993) numerical data, ×. The solid
line in (a) is Miles’s theoretical prediction (1.4), and the solid line in (b) is (1.5).

numerical results of the reflected wave angles now appear to be in near-perfect
agreement with (1.5) as shown in figure 16(b), which evidently resulted from correct
use of the interpreted interaction parameter κ presented in (2.10), instead of the
original parameter k in (1.3).

4.3. Wave breaking

Recall that no data were presented beyond x =50.8 for the case of ai = 0.367 in fig-
ures 11 and 12 because of the occurrence of wave breaking. Figure 17 shows the
temporal variation of breaking waves along the wall at x = 61.0 and the incident
wave angle ψi = 30◦. The wave profile was captured every 0.01 s using the LIF
method of aligning the laser sheet parallel to the wall. Three panels in the figure were
made from data at the same location but slightly different in the incident wave
amplitude (ai = 0.351, 0.359, 0.367 at x = 10.2). Gradual but continuous growth in
wave amplitude can be seen prior to the incipience of wave breaking in figure 17(a).
The maximum wave height aw at the wall reaches 0.910, just at the incipience of
the breaking. This wave height is higher than the maximum solitary wave height of
0.827 (Longuet-Higgins & Fenton 1974). Numerical simulation of Tanaka (1993) also
achieved a maximum amplitude higher than 0.827; he found aw =0.905 at x =150
when ai = 0.3 and ψi = 20◦. Our experimental results in figure 17 confirm that the
Mach stem height can become higher than the highest plain solitary wave. Figures
17(b) and 17(c) show the evolution of the wave breaking. The vertical-step-like
appearance on the wavefront is the portion of overturning wave; our LIF cannot
capture the detailed features of the overturning motion because of blockage of the
laser light by the overturning tongue of water. Very short spatial oscillations in front
of the overturning water are capillary waves running down the steep front slope.
While the overturning portion increases, the wave amplitude gradually decreases, as
seen in figures 17(b) and 17(c).

Figure 18 shows the breaking wave profiles at x =61.0 and 71.1 for the case
ai = 0.367 (the same wave as shown in figure 17c). Several features that appear in the
figure are worth noting. First, breaking starts near the wall and broadens towards
offshore. While the wave amplitude decreases near the wall due to energy dissipation,
the amplitude continues to grow in the area away from the wall. The maximum
wave amplitude at x = 71.1 is a = 0.856 at y = 3.17. At the same offshore location
(y =3.17) but at x =61.0, the amplitude is a =0.758; that is 13 % growth from
x = 61.0 to 71.1. This growth rate is substantially faster than the growth rate of the
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Figure 17. Temporal variation of the stem-wave profile at the incipient breaking along
the wall at x = 61.0 with ψi =30◦, h0 = 6 cm and �t = 0.01 s: (a) ai =0.351, (b) ai = 0.359,
(c) ai = 0.367.

Mach stem prior to wave breaking. Prior to wave breaking, figure 11 shows a 6.9 %
increase in amplitude from x = 40.2 to 50.8 at the wall. Perhaps more important, the
water-surface slope facing the y-direction is substantially steeper at x =71.1 than at
x = 61.0. This amplitude growth cannot be explained with the growth of the stem
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Figure 18. Wave-breaking profiles of the Mach stem for the case of ai = 0.367 with ψi = 30◦

and h0 = 6 cm: (a) at x = 61.0 and (b) x = 71.1. The elevation views from the horizontal
x-direction (left) and plan views from the top (right).

length alone. One explanation for the faster increase in amplitude offshore is the
increase in momentum in the y-direction near the wall due to turbulence induced by
wave breaking.

Figure 18(b) shows how the wave breaking deforms its wave crest forward and
results in the bow-like wave formation near the wall. The wave crest at x =71.1 is
broader than that at x = 61.0. The crest shape at x = 61.0 is still peaked, even just
after the incipience of wave breaking, but it transforms to a bore-like (broken wave)
state at x = 71.1. Also observed is the substantial trailing disturbance caused by wave
breaking, resulting in a much rougher water surface behind the stem wave.

5. Summary and conclusions
Laboratory experiments were performed to examine reflection of a solitary wave at

a vertically placed wall with an oblique incident-wave angle. Measurements of water-
surface variations in sub-millimetre precision were achieved using the LIF method.
Results are analysed with previous theoretical prediction of Miles (1977b), a laboratory
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study of Melville (1980) and numerical results by Tanaka (1993). Miles’s model is
based on resonant triad interaction of three KdV solitons that yield the asymptotic
conditions of the wave reflection; his theory is for the lowest-order nonlinear and
dispersive shallow-water waves with the assumption of quasi-two-dimensionality, i.e.
very small oblique angle. Tanaka’s numerical simulations are based on a spectral
model for higher-order nonlinear and dispersive shallow-water waves.

When the theory is validated with either numerical or laboratory experiments, we
found that the interaction parameter κ of the form of (2.10) must be used instead of
the original form of (1.3), k. This is because an oblique angle of the incident wave
is not infinitesimal, but finite in real-world experiments. With the use of (2.10), the
previous numerical results given by Tanaka (1993) are in much better agreement with
Miles’s theoretical predictions than what Tanaka reported in his paper.

We experimentally verified the Mach reflection formation characterized by (i) the Y-
shape formation of the incident, reflected and stem waves; (ii) the reflected wave angle
being larger than the incident wave angle, ψr >ψi; (iii) the amplitude of the reflected
wave being smaller than the incident wave, ar < ai , and the stem-wave amplitude
being larger than the incident wave, aw >ai; and (iv) the crest of the stem wave
being continuously elongated as it propagates along the wall, ψw > 0. Contrary to
the assumption of the theory by Miles (1977b), our observations indicate that during
the development stage the stem wave is not a KdV soliton; the measured profile is
broader and propagation speed is faster. The stem wave appears to be a forced wave
instead of a free soliton. Evidently, Miles’s assumption is only valid for the asymptotic
state, but not during its development process observed in the laboratory. Furthermore,
substantial depression (or setdown) in water level is formed behind the stem wave.
This depression is initially a compact dip formation; then it becomes broadened as the
wave propagates along the wall. Its magnitude and evolution behaviour differ from
the dispersive-wave noise that arises from the wave generation that is programmed
for the solitary waves. The transient process of stem-wave development must be
responsible for the trailing depression formation. A growing stem wave increases the
momentum; hence, the momentum flux ahead of the stem wave must be greater than
behind it. Consequently, the water depth has to be lower behind the stem wave. No
such depression formation is predicted by Miles’s theory because the theory assumes
the equilibrium state.

Because Miles’s theory is limited to the asymptotic state, the evolution process of
the stem-wave development is numerically calculated based on the KP equation. To
examine the evolution in an effectively longer distance than the limited size of the
laboratory apparatus, we use a technique linking two separate experiments and patch
the data. This can be achieved by generating the waveform measured at the farthest
location, and observing the subsequent evolution of the generated waveform.

It was found that the stem-wave amplification is in good agreement with the
numerical KP prediction. The laboratory results are also in good agreement with the
asymptotic state of Miles’s theory (1.2) when the value of the interaction parameter
κ is not close to the critical value of unity. When κ ≈ 1, the KP theory predicts
slow but continuous growth of the amplification, while the laboratory data indicate
cessation of growth. While the measured maximum amplification is smaller than
Miles’s theoretical prediction in the neighbourhood of κ ≈ 1, it was found to be in
excellent agreement with the numerical results of Tanaka (1993). The critical fourfold
amplification predicted by (1.2) was not realized in the real-fluid environment or in
the finite-amplitude numerical simulations. Note that the derivative of (1.2) becomes
singular as κ decreases towards unity, although the derivative is finite (= 4) as κ
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increases towards unity. Evidently, when κ ≈ 1.0+, a small change in κ causes a
substantial change in amplification. It appears that the fourfold amplification at the
critical condition of κ = 1.0 is extremely sensitive. It is conjectured based on the present
results (e.g. figures 13, 15 and 16) that the transition between the Mach reflection and
the regular reflection be gradual, instead of the abrupt change at κ = 1.0, and the
maximum amplification must be lower αw < 4 due to the higher-order nonlinearity
effect.

The measured wave profiles show the distinctive differences of Mach reflection
from regular reflection as predicted by Miles’s theory (1977b), although the transition
between those two reflection patterns is not abrupt, but gradual in the laboratory. For
example, the experimental cases with κ < 1.0 show continuous growth in the stem-
wave elongation (ψw > 0), smaller reflected wave amplitude than that of the incident
wave (αr < 1), and greater reflected wave angle than the incident angle (ψr >ψi). On
the other hand, the cases with κ > 1.0 show ψw → 0, αr → 1 and ψr → ψi; those are
the behaviours of regular reflection.

We examined the maximum wave height of the Mach stem prior to its wave
breaking and found that the maximum wave height aw = 0.910 exceeds the maximum
height aw = 0.827 of the plain solitary wave (Longuet-Higgins & Fenton 1974). This
result is in accordance with Tanaka’s numerical result (i.e. aw = 0.905). After incipient
breaking near the wall, the breaking broadens offshore, shifting the location of
the maximum water-surface elevation offshore. The water-surface elevation offshore
grows faster. This behaviour must be caused by an enhancement in momentum in
the offshore direction near the wall, which must be resulted from turbulence induced
by wave breaking.

Lastly, it is emphasized that Tanaka’s numerical results are limited to the
conditions of ai = 0.3 and 10◦ � ψi � 60◦, computed up to x =150. Melville’s
laboratory experiments were performed with the conditions of ai =0.1 and 0.15,
and 10◦ � ψi � 45◦, measured up to x � 26.7. Both studies concluded that substantial
discrepancies existed between their results and the theory by Miles (1977b). The
present laboratory experiments are based on incident wave amplitudes in the range
of 0.076 � ai � 0.367 with the incident wave angles 20◦ � ψi � 40◦. Our farthest
measurement location is at x =71.1 in the parent experimental runs and further
extended to x =121.1 in the extended experimental runs. The present laboratory
experiments are the first to present results supporting Miles’s theoretical predictions
(1977b), as well as in excellent agreement with Tanaka’s numerical results (1993). This
success is partly attributed to a physically viable interpretation for the interaction
parameter and the use of the modified form κ of (2.10), instead of the original k (1.3).

This work was supported by Oregon Sea Grant Program (NA06OAR4170010-
NB154L and NA10OAR4170059-NA223L) and the Oregon State University Edwards
Endowment. Y.K. is partially supported by NSF grant DMS-0806219. The laboratory
apparatus used in this study was designed by the late Professor Joe Hammack.

Appendix. Numerical calculations
The laboratory experiments are numerically simulated based on the KP equation.

From the outset, we consider the condition such that η and all its derivatives vanish
as |x| → ∞ for any time t. Then, integrating the KP equation (2.1) with respect to x
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yields

ηt +

(
c0η +

3c0

4h0

η2

)
x

+
c0h0

2

6
ηxxx =

∫ x

−∞

−c0

2
ηyy dx. (A 1)

The numerical calculations are performed in the dimensional form of (A 1). The
computational domain is larger than the laboratory wave tank: Lx = 60 m long in the
x-direction and Ly = 4 m wide in the y-direction for the simulations with ψi = 30◦ and
40◦, while Ly = 6 m is used for ψi = 20◦ in order to accommodate its longer stem-wave
elongation. Just as our laboratory experiments, the water depth at the quiescent state
is h0 = 6 cm.

The fractional step method is applied by splitting (A 1) into three sub-steps:

(A) ηt = −c0h
2
0

6
ηxxx, (B) ηt = −

(
c0η +

3c0

4h0

η2

)
x

, (C) ηt =

∫ x

−∞

−c0

2
ηyy dx. (A 2)

In order to obtain the second-order accuracy in time, the modified Strang splitting
method is applied (Strang 1968). We compute the sequence of A → B → C in one
time step, and then for the subsequent time step, reverse the sequence to C → B →
A, and continue this alternating sequence. With the use of Taylor series expansion, it
can be shown that this procedure guarantees second-order accuracy in time (LeVeque
2002).

The Crank–Nicolson method is used to solve step (A) with centred finite difference.
Step (B) is a typical 1D Riemann problem, which is computed by the Godunov method
with the second-order accuracy utilizing the software CLAWPACK (LeVeque 2002),
which solves time-dependent nonlinear hyperbolic systems of conservation laws. The
computation of step (C) needs some explanations. Considering the imposed condition
such that η and all its derivatives vanish |x| → ∞ for any time t , we can set η =0
and ηt = 0 at the rightmost boundary x = Lx that is chosen far enough so that the
simulated wave does not reach the boundary during the simulation. This condition
yields conveniently ∫ Lx

−∞

−c0

2
ηyy dx = 0. (A 3)

Hence,

ηt =

∫ x

−∞

−c0

2
ηyy dx =

∫ x

−∞

−c0

2
ηyy dx −

∫ Lx

−∞

−c0

2
ηyy dx =

∫ Lx

x

c0

2
ηyy dx. (A 4)

Equation (A 4) is also computed by the Crank–Nicolson method with centred finite
difference.

The grid size for the central finite-difference scheme is �x = 1 cm, �y = �x cot ψr

in which the reflected wave angle ψr is determined by (1.5), and �t = 0.005 s. With
these choices, the Courant–Friedrichs–Lewy number is 0.46–0.52, depending on the
wave amplitudes we simulated.

The boundary condition at x = 0 is

η = a0 sech2

√
3a0

4h3
0

[
y tan ψ − c0

(
1 +

1

2

a0

h0

+
1

2
tan2 ψ

)
(t − t0)

]
, (A 5)

where we use t0 = 5
√

4h2
0/3a0g to ensure to yield sufficiently long time, so that

η → 0 at x = y = 0 when t = 0. At y = Ly , the line soliton is maintained by specifying
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Figure 19. The calculated stem-wave amplification at the asymptotic state with the prediction
of Miles (1977b) based on the three-wave resonant interaction (1.2), ——; the numerical results
are for the wave conditions shown in figure 13, i.e. ai = 0.076–0.367 and the incident wave
angle ψi = 40◦ (�), ψi =30◦ (�), ψi = 20◦ (�).

η
(
y = Ly

)
= ηKP

(
x, Ly, t

)
and η

(
y = Ly − �y

)
= ηKP

(
x, Ly − �y, t

)
, where

ηKP (x, y, t) = a0 sech2

√
3a0

4h3
0

[
x + y tan ψ − c0

(
1 +

1

2

a0

h0

+
1

2
tan2 ψ

)
(t − t0)

]
.

(A 6)
Furthermore, we also specify the reflected wave angle ψr at y =Ly with the
aforementioned choice of the grid, �y = �x cot ψr .

It must be emphasized that as discussed in (2.2)–(2.5), the physical wave amplitude
and water-surface elevation need to be retrieved by â0 = a0/ cos2 ψi and η̂ = η/ cos2 ψi ,
respectively.

On the basis of the foregoing procedures, the laboratory conditions (0.076 � ai �
0.367 with h0 = 6 cm and ψi = 20◦, 30◦ and 40◦) are calculated numerically and the
results are presented with the theory of Miles (1977b) in figure 19. The results are in
accordance with the theory as anticipated.
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