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Abstract. In this paper, we consider a family of elliptic curves over Q with 2-torsion part Z2.

We prove that, for every such elliptic curve, a positive proportion of quadratic twists have
Mordell–Weil rank 0.
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1. Introduction

While it still is not known if there are elliptic curves over Q of arbitrarily large rank,

it is generally believed that curves with large ranks comprise a small ‘proportion’ of

all elliptic curves. In particular, Goldfeld [3] conjectured that the average rank of the

quadratic twists of any given elliptic curve over Q is 1=2. A quick consequence of this

is that, for any elliptic curve over Q, asymptotically, there are at least half of the

quadratic twists of this curve which have rank 0. Thus a comparatively weaker con-

jecture states that, for any elliptic curve over Q, the rank 0 quadratic twists comprise

a positive proportion of all quadratic twists of the given curve. In the general case,

this conjecture, though much weaker than the other famous ones related to elliptic

curves, is still open.

Suppose E is an elliptic curve over Q defined by the equation y2 ¼ f ðxÞ where

f ðxÞ 2 Z½x� is a cubic polynomial. As usual, we denote by E(Q) the Mordell–Weil

group of E over Q and by r(E(Q)) (simply as r(E )) the rank of E(Q). For a non-zero

integer D, by ED we denote the Dth quadratic twist given by the equation Dy2 ¼ fðxÞ.

For integer r5 0, and a positive real number X, we define

Mr
EðXÞ :¼ #fD : jDj4X; rðEDÞ ¼ rg:

With this notation, the problem is then saying that, for any fixed elliptic curve E

over Q, we should have M0
EðXÞ 
 X for sufficiently large X.
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There have been numerous papers treating this problem.? Because of the work of

Kolyvagin [10], most of them are focusing on the nonvanishing of the L-functions

(see [1] for a good survey). In light of the work of Shimura [19] and Waldspurger

[23], people have been able to get some partial results. With the knowledge about

the Fourier coefficients of some new forms, James [7], [8] proved that the quadratic

twists for some given curve over Q have rank 0 for a positive proportion of square-

free numbers. James’ method was later extended by other authors to some other

family of elliptic curves (see [9], [21], etc.). For E a general elliptic curve over Q,

the current best unconditional result is due to Ono [15], he proved that M0
EðXÞ 


Xðlog X Þ
c�1 for some c > 0. In [24], Wong proved that there is an infinite family

of non-isomorphic elliptic curves such that for each curve a positive proportion of

the quadratic twists have rank 0.

There is also another approach via the first descent. In a series of two papers, [4]

and [5], Heath-Brown considered the average size of the 2-Selmer groups of con-

gruent number curves ED : y2 ¼ x3 � D2x: As a consequence of the main result of

[4], a positive proportion of the curves ED have rank 0.

For the more general curve E over Q with 2-torsion Z2 � Z2, in [25], we generalized

Heath-Brown’s method and showed that, for such a curve, the average size of the 2-

Selmer groups of the quadratic twists ED with D running over some arithmetic pro-

gressions is 12. Along with Monsky’s result [12] on the parity of the 2-Selmer rank,

this implies that a positive proportion of quadratic twists ED have rank 0.

While it works well for the curves with 2-torsion Z2 � Z2, the idea of bounding the

average size of 2-Selmer groups may not be sufficient to prove that M0
EðXÞ 
 X for a

general elliptic curve over Q. This is because the average size of the 2-Selmer groups

of the quadratic twists may be too large. The method of directly attacking the result-

ing homogeneous spaces, however, still works for some families of elliptic curves

with 2-torsion other than Z2 � Z2. In particular, for some elliptic curves over Q with

2-torsion Z2, we can achieve this by bounding the average size of the Selmer groups

of the quadratic twists corresponding to 2-isogenies.

In this paper, we consider a special family of elliptic curves. Suppose b5 2 is an

integer, not a perfect square and admitting a solution ðu; vÞ 2 Z2 for the equation

u2 � bv2 ¼ �4: ð1:1Þ

(One should note that, if such a solution exists, then there are infinitely many pairs of

ðu; vÞ satisfying (1.1).) For every fixed b and v satisfying (1.1), we consider a curve E

given by the equation

E : y2 ¼ xðx2 þ ax þ bÞ; a ¼ bv: ð1:2Þ

?We remark that the positive proportional problem for rank 1 quadratic twists has also been studied by

some authors. For example, assuming the Riemann Hypothesis, Iwaniec and Sarnak [6] proved that, for

any elliptic curve E over Q and r ¼ 0; 1, Mr
EðXÞ 
 X for sufficiently large X; Unconditionally, Vatsal [22]

proved this for E ¼ X0ð19Þ:
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We note that b and a2 � 4b have the same squarefree kernel. In other words, b and

a2 � 4b differ by a perfect square factor. In this paper, we shall prove the following

result.

THEOREM 1.1. ?For an elliptic curve E satisfying the above conditions with

ða; bÞ 6¼ ð4; 2Þ, there exists a constant X0 > 0, such that for every X > X0, we have

M0
EðXÞ 
 X: ð1:3Þ

The idea to prove Theorem 1:1 is that, for a positive proportion of quadratic twists

of E, we bound the admissible homogeneous spaces resulting from 2-isogenies by

considering the local solvability. In general, it is not very hard (but sometimes a little

complicated!) to get asymptotic formulas for the average size of the Selmer groups of

the quadratic twists corresponding to the 2-isogenies. Just to prove the Theorem suf-

ficiently and avoid the unnecessary complication, however, it is not necessary to pur-

sue an asymptotic formula. Usually, in considering the local solvability of a

homogeneous space, we shall not consider Q2. We remark that, in many cases, the

upper bound we get this way actually gives the main term of the asymptotic formula.

The great save is the heavy labor spent on discussing the solvability in Q2.

2. Rational 2-Isogenies and the Corresponding Selmer Groups

For an elliptic curve E over Q given by the equation E : y2 ¼ xðx2 þ ax þ bÞ with

a; b 2 Z, we know there is a rational 2-isogeny f : E ! bEE ontobEE : y2 ¼ xðx þ âax þ b̂bÞ;

where âa ¼ �2a and b̂b ¼ a2 � 4b. There is also a dual isogeny c: bEE ! E such that

c � f ¼ ½2�E and f � c ¼ ½2�bEE.

The first descent by these 2-isogenies yields the following short exact sequences:

0 ! cðÊEðQÞÞ ! EðQÞ!
a
Q�=Q�2

;

0 ! fðEðQÞÞ ! bEEðQÞ!
b
Q

�=Q�2

; ð2:1Þ

where the map a : EðQÞ ! Q
�=Q�2 is defined as: aðOÞ ¼ 1 �Q

�2, aðð0; 0ÞÞ ¼ b �Q
�2

and aðPÞ ¼ x �Q�2

for all points P ¼ ðx; yÞ 2 EðQÞ different from (0,0) and the iden-

tity O. For simplicity, we denote the image of a (which is isomorphic to

EðQ=cð bEEðQÞÞÞ) by Wð bEE=QÞ. The definition of b: bEEðQÞ ! Q�=Q�2

is similar and,

also, imb :¼ WðE=QÞ.

Tate showed that the Mordell-Weil rank of E (thus bEE also) over Q is given by

2rðEðQÞÞþ2 ¼ #WðbEE=QÞ � #WðE=QÞ: ð2:2Þ

?The same result can be proved for the curve E with ða; bÞ ¼ ð4; 2Þ by a method similar to what we use to

prove Theorem 1.1. It is excluded here for the sake of a uniform proof of Theorem 1.1. One notes that, for

every odd D, rðEDÞ is predicted to be odd!

RANK 0 QUADRATIC TWISTS OF A FAMILY OF ELLIPTIC CURVES 333

https://doi.org/10.1023/A:1022258905572 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022258905572


Thus, to bound r(E(Q)), it suffices to give an upper bound for #Wð bEE=QÞ � #WðE=QÞ.

With an elementary argument (cf. [20] or [11], for instance), one can see that Wð bEE=QÞ

consists of the classes b1 �Q
�2

, where b1 is a squarefree integer (could be negative!)

with b1b2 ¼ b, such that the homogeneous space

TðcÞðb1Þ : N2 ¼ b1M
4 þ aM2e2 þ b2e

4 ð2:3Þ

has a non-trivial primitive solution in integers N, M, e 2 N. (Here the primitive means

that ðN; eÞ ¼ ðM; eÞ ¼ 1.) Similarly, WðE=QÞ consists of the classes b̂b1 �Q
�2

, where b̂b1

is a squarefree integer with b̂b1b̂b2 ¼ a2 � 4b, such that the homogeneous space

TðfÞðb̂b1Þ : X2 ¼ b̂b1Y
4 � 2aY2Z2 þ b̂b2Z

4 ð2:4Þ

has a non-trivial primitive solution in integers X, Y, Z 2 N.

The classes b1 �Q
�2

such that (2.3) is everywhere (including Q1) locally solvable

consist the Selmer group of bEE corresponding to the 2-isogeny c (or say the c-part of

the Selmer group of bEE over Q), usually denoted by SðcÞð bEE=QÞ. Similarly, we have the

f-part of the Selmer groups of E over Q, SðfÞðE=QÞ.

We remark here that, from the classic Kummer exact sequence

0 ! WðE=QÞ ! SðfÞðE=QÞ ! IIIðE=QÞ½f� ! 0; ð2:5Þ

WðE=QÞ is a subgroup of SðfÞðE=QÞ. The factor group IIIðE=QÞ½f� is the f-part of

the Tate-Shafarevich group of E over Q. Similarly, Wð bEE=QÞ is a subgroup of

SðcÞð bEE=QÞ.

We now state a result about the parity of the sum of the 2-ranks of SðfÞðE=QÞ and

SðcÞð bEE=QÞ. This appeared as a conjecture in [11], but turned out to be a corollary of a

result in [12].

LEMMA 2.1. Suppose E=Q permits a rational 2-isogeny. Then

rankðSðfÞðE=QÞÞ þ rankðSðcÞðÊE=QÞÞ � v ðmod 2Þ; ð2:6Þ

where w ¼ ð�1Þv is the root number in the functional equation of the Hasse-Weil

L-function of E.

For an elliptic curve E=Q with conductor NE, we know that the functional equa-

tion for the Hasse–Weil L-function of E is given byffiffiffiffiffiffiffi
NE

p

2p

� �s

GðsÞLðE; sÞ ¼ w
E

ffiffiffiffiffiffiffi
NE

p

2p

� �2�s

Gð2 � sÞLðE; 2 � sÞ; ð2:7Þ

where w
E

is the root number. For an integer D prime to NE, the functional equation

of the L-function of the quadratic twist ED is given by

D
ffiffiffiffiffiffiffi
NE

p

2p

� �s

GðsÞLðED; sÞ ¼ w
ED

D
ffiffiffiffiffiffiffi
NE

p

2p

� �2�s

Gð2 � sÞLðED; 2 � sÞ: ð2:8Þ
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Here the root number wED
is related to wE by

wED
¼ wE �

�D

�NE

� �
; ð2:9Þ

where �D=�ð Þ is the Kronecker character. Thus, for the quadratic twists ED with D

running over a fixed class in ðZ=4NEZÞ
�, the parity of rankðSðfÞðED=QÞÞ þ rankðSðcÞ

ð bEED=QÞÞ is fixed. Henceforth, CE is defined as a fixed positive integer, divisible by

4NE for a given elliptic curve E=Q, h is an integer prime to CE. For a positive real

number X, we define

SðX; hÞ :¼ f0 < D4X : D � h ðmodCEÞ; D squarefreeg: ð2:10Þ

For Theorem 1:1, we shall not compute how large the proportion could be. It

doesn’t harm if we choose a special arithmetic progression h ðmod CEÞ so that we

can simplify the proof a little bit. For this sake, we assume that h satisfies that

�2vh

p

� �
¼ �1 for odd prime pju: ð2:11Þ

We note that there is no any conflict for this restriction since every odd prime divi-

sor of u divides NE but doesn’t divide v. Also we note that, with such an assumption,

we still have room for the restriction on h so that w
ED

for D 2 SðX; hÞ takes a fixed

value, either 1 or �1.

In the next sections, we shall devote to proving the following Theorem 2.2 which,

along with Lemma 2.1, implies Theorem 1.1.

THEOREM 2.2. Suppose E=Q is an elliptic curve given by the Weierstrass

equation

E : y2 ¼ xðx2 þ ax þ bÞ;

where a; b 2 Z and satisfy the conditions ð1:1Þ and ð1:2Þ, and b is squarefree. Then for a

fixed h prime to CE, satisfying ð2:11Þ, and sufficiently large X, we haveX
D2SðX;hÞ

#SðfÞðED=QÞ � #SðcÞðbEED=QÞ4 ð13 þ oð1ÞÞ#SðX; hÞ: ð2:12Þ

Proof of Theorem 1:1. For the curve E in Theorem 1:1, suppose b ¼ ~bbd2, where ~bb

is squarefree, then E is actually in the form

E :y2 ¼ xðx2 þ ~bbd2vx þ ~bbd2
Þ; ð2:13Þ

where v is an integer such that, with some u, (u; v) is a solution of (1:1). We note that

the dth quadratic twist of E is given by the equation

Ed : y2 ¼ xðx2 þ ~bbdvx þ ~bbÞ: ð2:14Þ
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For Ed, the conditions (1.1) and (1.2) are satisfied. We apply Theorem 2.2 to Ed: let

CEd ¼ 4NEd , h is any integer such that (2.11) (for the corresponding new u) is satisfied

and

w
Ed
�

�h

�NEd

� �
¼ 1: ð2:15Þ

This ensures that, for every D 2 SðX; hÞ, rankðSðfÞðEdD=QÞÞ þ rankðSðcÞð bEEdD=QÞÞ be

even. In other words, #ðSðfÞðEdD=QÞÞ � #ðSðcÞð bEEdD=QÞÞ can only take values 22þ2k,

for k ¼ 0; 1; 2; . . . . Hence, Theorem 2.2 implies that, for a positive proportion of

D 2 SðX; hÞ,

#ðSðfÞðEdD=QÞÞ � #ðSðcÞðbEEdD=QÞÞ ¼ 4: ð2:16Þ

Together with (2.2), (2.16) yields that, for a positive portion of D 2 SðX; hÞ, we have

rðEdDðQÞÞ ¼ 0. Note that SðX; hÞ is of positive asymptotic density among integers,

this gives Theorem 1.1 for curve Ed. It is clear that this also implies that

M0
EðXÞ 
 X for sufficiently large X. &

Remark 2:3: For every given curve E satisfying (1.1) and (1.2), while we don’t give

an asymptotic formula in Theorem 2.2 as the upper bound (2.12) is sufficient for

Theorem 1.1, it is not hard to get asymptotic formulas respectively for the average

orders of SðfÞðED=QÞ and SðcÞð bEED=QÞ as D runs over SðX; hÞ. It turns out that the

average orders of SðfÞðED=QÞ and SðcÞð bEED=QÞ are always some constants depending

on E. For instance, without proof, we can state the following results.

EXAMPLE 2.4. Suppose E is the elliptic curve given by the Weierstrass equation

E : y2 ¼ xðx2 þ 4x þ 2Þ:

Then for sufficiently large X, we haveX
D2S1ðXÞ

#SðfÞðED=QÞ ¼ ð6 þ oð1ÞÞ#S1ðXÞ ð2:17Þ

and X
D2S1ðXÞ

#SðcÞðbEED=QÞ ¼ ð3 þ oð1ÞÞ#S1ðXÞ ð2:18Þ

where S1ðXÞ is the set of the odd positive squarefree integers not exceeding X. More-

over, the average orders of SðfÞðED=QÞ and SðcÞð bEED=QÞ with D running over even

squarefree integers are both 4.

We remark that, while the proof for Example 2.4 is much easier than Theorem 2.2,

the results of (2.17) and (2.18), combining with Cauchy’s inequality, don’t imply

Theorem 1.1. This is almost always the case for every curve satisfying conditions

(1.1) and (1.2).

336 GANG YU

https://doi.org/10.1023/A:1022258905572 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022258905572


3. An Upper Bound of #S ðuÞ
ðED=QÞ#S ðwÞ

ð bEED=QÞ

The curve E in this section satisfies the conditions in Theorem 2.2. First of all, we

note from (2.3) that, corresponding to Wð bEEDðQÞÞ, we have homogeneous spaces

TðcÞðb1Þ
? given by

TðcÞðb1Þ : N2 ¼ b1M
4 þ aDM2e2 þ

bD2

b1
e4; ð3:1Þ

where jb1j is a divisor of bD2. For D 2 SðX; hÞ, we have ðD; bÞ ¼ 1. Thus, we suppose

that b1 ¼ ~BB0
~DD0, where j ~BB0j is a squarefree divisor of b and ~DD0 > 0 is a divisor of D.

Write D ¼ ~DD0
~DD1, b ¼ ~BB0

~BB1, then (3.1) becomes

TðcÞð ~BB0
~DD0Þ : N2 ¼ ~BB0

~DD0M
4 þ ~BB0

~BB1v ~DD0
~DD1M

2e2 þ ~BB1
~DD0

~DD1
2
e4: ð3:2Þ

Note that ~DD0 is squarefree, thus (3.2) is essentially

TðcÞð ~BB0
~DD0Þ : ~DD0N

2 ¼ ~BB0M
4 þ ~BB0

~BB1v ~DD1M
2e2 þ ~BB1

~DD1
2
e4: ð3:3Þ

Thus, we have

SðcÞðbEED=QÞ ¼ f ~BB0
~DD0Q

�2
: (3.3) is everywhere locally solvableg: ð3:4Þ

To give a description for SðfÞðED=QÞ, we suppose first that a2 � 4b ¼ bu2, where

a ¼ bv as before, u is a positive integer. From (1.1), we know ðb; u2Þ ¼ 1 or 2. With

this notation, we similarly have homogeneous spaces TðfÞð �BB0u0
�DD0Þ contained in

WðE=QÞ:

TðfÞð �BB0u0
�DD0Þ : �DD0X

2 ¼ �BB0u0Y
4 � 2 �BB0

�BB1v �DD1Y
2Z2 þ �BB1u0u1

2 �DD1
2
Z4; ð3:5Þ

where D ¼ �DD0
�DD1, b ¼ �BB0

�BB1 and u ¼ u0u1. In case ðb; uÞ ¼ 2, to avoid repetition, we

may set either �BB0 or u0 always be odd. (Note here u0 is squarefree and �BB0 could be

negative.) With this convention, we note that, because of (2.11), TðfÞð �BB0u0
�DD0Þ doesn’t

have a nontrivial solution in Qp for every odd p j u0. Hence, for a everywhere locally

solvable homogeneous space given by (3.5), the odd part of u0 must be 1. In other

words, in considering SðfÞðED=QÞ, we only need consider the everywhere locally sol-

vable homogeneous spaces

TðfÞð �BB0
�DD0Þ : �DD0X

2 ¼ 2k �BB0Y
4 � 2 �BB0

�BB1v �DD1Y
2Z2 þ 2�k �BB1u

2 �DD1
2
Z4; ð3:6Þ

where k takes possible values 0 and 1 only if b is odd and u is even, otherwise k is

always 0. We thus conclude that

SðfÞðED=QÞ ¼ f2k �BB0
�DD0Q

�2
: ð3:6Þ is everywhere locally solvableg: ð3:7Þ

To measure #SðfÞðED=QÞ#SðcÞð bEED=QÞ, we shall count the numbers of homogeneous

spaces given by (3.3) and (3.5) respectively that have a nontrivial solution in every Qp,

includingQ1 ¼ R.We suppose in (3.3) and (3.5) that ð ~DD0; �DD0Þ ¼ D0 and ð ~BB0; �BB0Þ ¼ B0.

?Without any confusion, we abuse the 2-isogeny notation. For instance, the map c here is the 2-isogeny

from bEED to ED.
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We write ~DD0 ¼ D0D1, �DD0 ¼ D0D2, D ¼ D0D1D2D3, ~BB0 ¼ B0B1, �BB0 ¼ B0B2, b ¼

B0B1B2B3. Here all Dj’s are positive integers. B0 is positive, but B1, B2 and B3 could

be negative. With this reformulation, (3.3) and (3.6) then respectively become

D0D1N
2 ¼ B0B1M

4 þ B0B1B2B3vD2D3M
2e2 þ B2B3ðD2D3Þ

2e4 ð3:8Þ

and

D0D2X
2 ¼ 2kB0B2Y

4 � 2B0B1B2B3vD1D3Y
2Z2 þ 2�kB1B3u

2ðD1D3Þ
2Z4: ð3:9Þ

Hence we have

#SðfÞðED=QÞ#SðcÞðbEED=QÞ

¼ #
b ¼ B0B1B2B3;D ¼ D0D1D2D3; k ¼ 0; 1 :

ð3:8Þ and ð3:9Þ are everywhere locally solvable

( )
:

ð3:10Þ

Note f1 �Q�2
; b �Q�2

g is a subgroup of both SðfÞðED=QÞ and SðcÞð bEED=QÞ, thus, in

case b is even, half of the elements b1 �Q
�2

of SðfÞðED=QÞ (also of SðcÞð bEED=QÞ) are

with b1 even. Therefore, by only considering these b1 �Q
�2

in both SðfÞðED=QÞ

and SðcÞð bEED=QÞ, we have, if b is even,

#SðfÞðED=QÞ#SðcÞðbEED=QÞ

¼ 4 � #

b ¼ B0B1B2B3;D ¼ D0D1D2D3; 2 j B0 :

ð3:8Þ and ð3:9Þwith k ¼ 0 are everywhere

locally solvable

8>><>>:
9>>=>>;:

ð3:100Þ

We now discuss the necessary conditions for (3.8) and (3.9) to have solutions in

every local field. Without loss of generality, we can assume that v is positive. (In case

v is negative, the discussion is similar and comes up with a same result.) In the fol-

lowing, p always stands for an odd prime. For an integer, by n0 we denote the odd

part of n, i.e., the largest (positive) odd integer that divides n.

I. p j B0. From (3.8) and (3.9), we note that p has to satisfy

B2B3D0D1

p

� �
¼

2kB1B3D0D2

p

� �
¼ 1: ð3:11Þ

Therefore, for (3.8) and (3.9) to both be solvable in every Qp for p j B0, we need

Y
pjB0

1

4
1 þ

B2B3D0D1

p

� �� �
1 þ

2kB1B3D0D2

p

� �� �
¼ 1; ð3:12Þ

which is equivalent to

4�oðB0
0Þ

X
B0

0¼B0;1B0;2B0;3B0;4

B2B3D0D1

B0;2

� �
2kB1B3D0D2

B0;3

� �
2kB1B2D1D2

B0;4

� �
¼ 1; ð3:13Þ
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where oðnÞ, as usual, denotes the number of distince prime divisors of n.

We remark that the above sum takes value 0 or 1, thus serves as a character func-

tion for those B0 satisfying condition (3.11).

II. p j B1. Similarly, from (3.8) and (3.9), we deduce that

B2B3D0D1

p

� �
¼

2kB0B2D0D2

p

� �
¼ 1; ð3:14Þ

thus we need

Y
pjB1

0

1

4
1 þ

B2B3D0D1

p

� �� �
1 þ

2kB0B2D0D2

p

� �� �
¼ 1; ð3:15Þ

or, equivalently,

4�oðB1
0Þ

X
B1

0¼B1;1B1;2B1;3B1;4

B2B3D0D1

B1;2

� �
2kB0B2D0D2

B1;3

� �
2kB0B3D1D2

B1;4

� �
¼1: ð3:16Þ

III. p j B2. (3.8) and (3.9) respectively imply that

B0B1D0D1

p

� �
¼ 1 and

2kB1B3D0D2

p

� �
¼ 1: ð3:17Þ

Thus, we require the condition attached to B2

Y
pjB2

1

4
1 þ

B0B1D0D1

p

� �� �
1 þ

2kB1B3D0D2

p

� �� �
¼ 1; ð3:18Þ

or, equivalently,

4�oðB2
0Þ

X
B2

0¼B2;1B2;2B2;3B2;4

B0B1D0D1

B2;2

� �
2kB1B3D0D2

B2;3

� �
2kB0B3D1D2

B2;4

� �
¼ 1: ð3:19Þ

IV. p j B3. Similarly, by checking the solvablity in Qp of (3.8) and (3.9) for every

p j B3, we require the condition attached to B3

4�oðB3
0Þ

X
B3

0¼B3;1B3;2B3;3B3;4

B0B1D0D1

B3;2

� �
2kB0B2D0D2

B3;3

� �
2kB1B2D1D2

B3;4

� �
¼ 1: ð3:20Þ

V. p j D0. First we note that (3.8) needs to have a solution modulo p. In other words,
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B0B1M
2 þ

aD2D3e
2

2

� �2

�
ðaD2D3Þ

2e4

4
þ bðD2D3Þ

2e4 � 0 ðmod pÞ ð3:21Þ

is solvable. Thus, a2 � 4b is a quadratic residue modulo p, which is equivalent to say-

ing that

b

p

� �
¼ 1 ð3:22Þ

since a2 � 4b and b differ by a perfect square factor. Suppose
ffiffiffi
b

p
stands for any

square root of b modulo p, then the left-hand side of (3.21) becomes

B0B1M
2 þ

ða þ
ffiffiffi
b

p
uÞD2D3e

2

2

 !
B0B1M

2 þ
ða �

ffiffiffi
b

p
uÞD2D3e

2

2

 !
: ð3:23Þ

We note that, under the condition (3.22),

2B0B1D2D3ð�a þ
ffiffiffi
b

p
uÞ

p

 !
2B0B1D2D3ð�a �

ffiffiffi
b

p
uÞ

p

 !
¼ 1; ð3:24Þ

thus, no matter how we choose the square root
ffiffiffi
b

p
of b modulo p, in addition to

(3.22), we also need

�2B0B1D2D3ða þ
ffiffiffi
b

p
uÞ

p

 !
¼ 1: ð3:25Þ

Now, by considering (3.9) modulo p, we see that

ð2kB0B2Y
2 � aD1D3Z

2Þ
2
� 4bðD1D3Þ

2Z4 � 0 ðmod pÞ ð3:26Þ

should be solvable in ðY;ZÞ 2 ðZ=pZÞ�2
. With p satisfying (3.22), the left-hand side

of (3.26) splits into the product of two factors 2kB0B2Y
2 � ða � 2

ffiffiffi
b

p
ÞD1D3Z

2. Thus,

either one of the factors is reducible modulo p. Still, note that

2kB0B2D1D3ða þ 2
ffiffiffi
b

p
Þ

p

 !
2kB0B2D1D3ða � 2

ffiffiffi
b

p
Þ

p

 !

¼
a2 � 4b

p

� �
¼

bu2

p

� �
¼ 1; ð3:27Þ

thus, no matter how we choose the square root of b modulo p, for (3.9) to have a

nontrivial solution in Zp, we need

2kða þ 2
ffiffiffi
b

p
ÞB0B2D1D3

p

 !
¼ 1: ð3:28Þ

In conclusion, for every prime divisor p of D0, p should satisfy (3.22), (3.25) and

(3.28). We simply translate this as

D0 completely splits in Qð
ffiffiffi
b

p
Þ and for C :¼ a þ

ffiffiffi
b

p
u, O :¼ a þ 2

ffiffiffi
b

p
, the sum
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4�oðD0Þ
X

D0¼D0;1D0;2D0;3D0;4

�2CB0B1D2D3

D0;2

� �
2kOB0B2D1D3

D0;3

� �
�

�
�21þkCOB1B2D1D2

D0;4

� �
is equal to 1: ð3:29Þ

VI. p j D1. Similar to the discussion for p j D0, from the solvability of (3.8) modulo p,

we need

b

p

� �
¼

�2ða þ
ffiffiffi
b

p
uÞB0B1D2D3

p

 !
¼ 1; ð3:30Þ

where the choice of
ffiffiffi
b

p
is still not important. For (3.9) to have a solution modulo p,

it is simple to see that we need

2kB0B2D0D2

p

� �
¼ 1 or

2kB1B3D0D2

p

� �
¼ 1: ð3:31Þ

Note under the condition b=pð Þ ¼ 1, the two Jacobi symbols in (3.31) always take the

same value, thus we summerize the restriction on D1 as

D1 completely splits in Qð
ffiffiffi
b

p
Þ and for C :¼ a þ

ffiffiffi
b

p
u; the sum

4�oðD1Þ
X

D1¼D1;1D1;2D1;3D1;4

�2CB0B1D2D3

D1;2

� �
2kB0B2D0D2

D1;3

� �
�

�
�21þkCB1B2D0D3

D1;4

� �
is equal to 1: ð3:32Þ

VII. p j D2. Discussing the solvability of (3.9) modulo p, we have

b

p

� �
¼

2kða þ 2
ffiffiffi
b

p
ÞB0B2D1D3

p

 !
¼ 1; ð3:33Þ

where the choice of
ffiffiffi
b

p
is not important. Under the condition that b=pð Þ ¼ 1, (3:8) is

nontrivially solvable modulo p if and only if

B0B1D0D1

p

� �
¼ 1: ð3:34Þ

Similar to that for D0 and D1, the restrictions on D2 would be that D1 completely

splits in Qð
ffiffiffi
b

p
Þ and for O :¼ a þ 2

ffiffiffi
b

p
, the sum

4�oðD2Þ
X

D2¼D2;1D2;2D2;3D2;4

B0B1D0D1

D2;2

� �
2kOB0B2D1D3

D2;3

� �
�

�
2kOB1B2D0D3

D2;4

� �
is equal to 1. ð3:35Þ

VIII. p j D3. For a prime divisor p of D3, for (3:8) to have a solution modulo p, one

needs
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B0B1D0D1

p

� �
¼ 1 or

B2B3D0D1

p

� �
¼ 1: ð3:36Þ

Similarly, for (3.9) to have a solution modulo p, one needs

2kB0B2D0D2

p

� �
¼ 1 or

2kB1B3D0D2

p

� �
¼ 1: ð3:37Þ

We note that the product of the two Jacobi symbols in (3.36) is equal to b=pð Þ. Thus,

if b=pð Þ ¼ �1, then (3.36) is automatically satisfied since the two Jacobi symbols take

opposite signs; if b=pð Þ ¼ 1, then we simplify (3.36) as B0B1D0D1=pð Þ ¼ 1. We also

have exactly the same situation in (3.37). Thus, the restrictions on every prime divi-

sor p of D3 are

b

p

� �
¼

B0B1D0D1

p

� �
¼

2kB0B2D0D2

p

� �
¼ 1 or

b

p

� �
¼ �1: ð3:38Þ

In other words, this is equivalent to

1

2
1 �

b

p

� �� �
þ

1

8
1 þ

b

p

� �� �
1 þ

B0B1D0D1

p

� �� �
�

� 1 þ
2kB0B2D0D2

p

� �� �
¼ 1: ð3:39Þ

Thus the restriction attached to D3 is that the product of the left-hand side of (3.39)

over all prime divisors of D3 be 1. If multiplied out, the product turns out to be the

sum

8�oðD3Þ
X

D3¼D3;1D3;2���D3;8

5oðD3;1Þð�3ÞoðD3;2Þ
b

D3;2

� �
B0B1D0D1

D3;3

� �
2kB0B2D0D2

D3;4

� �
�

�
2kB1B2D1D2

D3;5

� �
B2B3D0D1

D3;6

� �
2kB1B3D0D2

D3;7

� �
2kB0B3D1D2

D3;8

� �
: ð3:40Þ

Corresponding to any integer that completely splits over Qð
ffiffiffi
b

p
Þ, we formally

define C :¼ a þ
ffiffiffi
b

p
u and O :¼ a þ 2

ffiffiffi
b

p
. With the above discussions on the local sol-

vability, we have

LEMMA 3.1. Suppose all the conditions given in Theorem 2:2, then we haveX
D2SðX;hÞ

#SðfÞðED=QÞ � #SðcÞðbEED=QÞ4ShðXÞ: ð3:41Þ

Here ShðXÞ is defined as

ShðXÞ :¼
X
k; ~bb

f ðk; ~bbÞ
X

D2SðX;hÞ

D¼ ~DD

gðk; ~bb; ~DDÞhð ~DDÞ; ð3:42Þ

342 GANG YU

https://doi.org/10.1023/A:1022258905572 Published online by Cambridge University Press

https://doi.org/10.1023/A:1022258905572


where, in the sum, k takes value 0 or 1 if b is odd and u is even and is always equal to 0

otherwise, where the notation ~bb stands for the factorizations

b ¼ B0B1B2B3; B0 > 0 and Bi
0 ¼

Y4
j¼1

Bi;j for i ¼ 0; 1; 2; 3;

and ~DD represents the factorizations D ¼ D0D1D2D3 where D0D1D2 completely splits

over Qð
ffiffiffi
b

p
Þ and

Di ¼
Y4
j¼1

Di;j for i ¼ 0; 1; 2 and D3 ¼
Y8
j¼1

D3; j;

and where

fðk; ~bbÞ ¼
1

4

� �oðb0ÞY3
i¼0

2k

Bi;3Bi;4

� � Y3
j¼1

fs;tg¼f1;2;3gnf jg

BsBt

B0;jþ1Bj;jþ1

� �8><>: B0Bj

Bs;jþ1Bt;jþ1

� �9>=>;; ð3:43Þ

where

gðk; ~bb; ~DDÞ ¼
Y3
i¼0

D0

Bi;2Bi;3

� �
D1

Bi;2Bi;4

� �
D2

Bi;3Bi;4

� �( )
�2C

D0;2D0;4D1;2D1;4

� �
�

�
Y2
i¼0

2k

Di;3Di;4

� �( )
2k

D3;4D3;5D3;7D3;8

� �
b

D3;2

� �
�

�
O

D0;3D0;4D2;3D2;4

� �
B0B1

D0;2D1;2D2;2D3;3

� �
B0B2

D0;3D1;3D2;3D3;4

� �
�

�
B1B2

D0;4D1;4D2;4D3;5

� �
B2B3

D3;6

� �
B1B3

D3;7

� �
B0B3

D3;8

� �
; ð3:44Þ

and where

hð ~DDÞ ¼
1

4

� �oðD0D1D2Þ 1

8

� �oðD3Þ

5oðD3;1Þð�3ÞoðD3;2Þ
D0D1

D2;2D3;3D3;6

� �
D2D3

D0;2D1;2

� �
�

�
D0D2

D1;3D3;4D3;7

� �
D1D3

D0;3D2;3

� �
D1D2

D0;4D3;5D3;8

� �
D0D3

D1;4D2;4

� �
: ð3:45Þ

Moreover, if b is even, ð3:100Þ combining with ð3:41Þ–ð3:45Þ implies

X
D2SðX;hÞ

#SðfÞðED=QÞ � #SðcÞðbEED=QÞ4eSShðXÞ: ð3:46Þ

Here eSShðXÞ is defined as
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eSShðXÞ :¼ 4
X
~bb

fðk; ~bbÞ
X

D2SðX;hÞ

D¼ ~DD

gðk; ~bb; ~DDÞhð ~DDÞ; ð3:42Þ

where the functions f, g and h are given by ð3:43Þ, ð3:44Þ and ð3:45Þ with k ¼ 0 and, in

the sum, where the notation ~bb stands for the factorizations

b ¼ B0B1B2B3; B0 > 0; 2 j B0 and Bi
0 ¼

Y4
j¼1

Bi;j for i ¼ 0; 1; 2; 3:

4. Two Lemmas on Character Sum Estimates

In this section we prove two lemmas about character sum estimates that will be

frequently referred to in the next sections.

LEMMA 4.1. Suppose E > 0 is any fixed number, X, M and N are sufficiently large

real numbers, and famg and fbng are two complex sequences, supported on odd integers,

satisfying jamj; jbnj4 1. Fix positive integers h, q satisfying ðh; qÞ ¼ 1 and

q4 fminðM;NÞgE=3. Let

S :¼
X
m;n

ambn
m

n

� �
;

where the summation is subject to

M < m4 2M; N < n4 2N; mn4X and mn � h ðmod qÞ:

Then we have

S � MN
15
16 þ E

þ M
15
16 þ EN; ð4:1Þ

where the constant involved in the � symbol depends on E only.

Proof. This is essentially Lemma 4 of [4], proved based on the work of Burgess

[2]. To sketch a proof, we first write S as

S ¼
X

i;j ðmod qÞ
ij�h ðmod qÞ

X
m�i ðmod qÞ

X
n�j ðmod qÞ

ambn
m

n

� �
:

Then it is clear that we only need to prove (4.1) with E replaced by 2E=3 and S

replaced by a similar sum with the restriction mn � h ðmod qÞ discarded. (One can

set am ¼ 0 if m 6� i ðmod qÞ, similarly for bn.) Note m and n are symmetric because

of the quadratic reciprocity law, we thus can assume M5N, without loss of general-

ity. By Cauchy’s inequality, we have

jSj2 � M
X

m4M

X
n1 4N

X
n2 4N

bn1
bn2

m

n1n2

� �
: ð4:2Þ

We now recall a special case (r ¼ 2) of the Theorem 2 of Burgess [2], which states

that, if w is a nonprincipal character modulo k, then for any integer N and positive

integer H, then for any Z > 0
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XNþH

n¼Nþ1

wðnÞ � H1=2k3=16þZ; ð4:3Þ

where the constant involved in the �-symbol depends on Z only.

Note the terms in (4.2) with n1n2 being a perfect square contribute OðM2N1þEÞ. For

the other terms, note then ð�=n1n2Þ gives a non-principal character modulo n1n2, so by

replacing Z in (4.3) by 2E=3, we have an upper bound

� M
X
n1

X
n2

M
1
2ðn1n2Þ

3
16 þ

2E
3 � M

3
2N

19
8 þ 4E

3 � M2N
15
8 þ 4E

3 ;

which, together with the contribution from the diagonal terms and (4.2), gives the

desired result. &

LEMMA 4.2. Suppose s is a fixed rational number. Let N be sufficiently large. Then

for arbitrary positive integers q, r and any nonprincipal character wðmod qÞ, we haveX
n4 x;ðn;rÞ¼1

m2ðnÞsoðnÞwðnÞ � xtðrÞ expð�Z
ffiffiffiffiffiffiffiffiffiffi
log x

p
Þ ð4:4Þ

with a positive constant Z ¼ Zs;N, uniformly for q4 logN x and where tð�Þ ¼ t2ð�Þ is the

usual divisor function, with tkðnÞ being the number of representations of n as the pro-

duct of k ordered positive integers.

Proof. Without loss of generality, we suppose s 6¼ 0 and write

jsj ¼
t

d
with t; d 2 N and ðt; dÞ ¼ 1: ð4:5Þ

For z on the half plane ReðzÞ > 1, let

f ðzÞ :¼
X1
n¼1

ðn;rÞ¼1

m2ðnÞsoðnÞwðnÞ
nz

: ð4:6Þ

For fðzÞ, we have the Euler product expansion

fðzÞ ¼
Y
pjr

1 þ
swðpÞ
pz

� �
;

thus

ð f ðzÞÞd ¼
Y
pjr

1 þ
swðpÞ
pz

� ��dY
p

1 þ
dswðpÞ

pz
þ

dðd � 1Þs2w2ðpÞ

2p2z
þ � � �

� �

¼
Y
pjr

1 þ
swðpÞ
pz

� ��d

ðLðz; wÞÞdsGðz; wÞ; ð4:7Þ

where Gðz; wÞ, depending on s, is analytic, nonvanishing and absolutely convergent

on the half-plane ReðzÞ > 3
4. On the right of ReðzÞ ¼ 3

4, in a zero-free region of

Lðz; wÞ, we have a proper analytic branch of ðLðz; wÞÞsðGðz; wÞÞ
1
d. Hence, in this region,

we simply note fðzÞ as, from (4.7),
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fðzÞ ¼
Y
pjr

1 þ
wðpÞ
spz

� ��1

G0ðz; wÞLðz; wÞ
s; ð4:8Þ

where G0ðz; wÞ is analytic and absolutely convergent on ReðzÞ > 3
4. By Perron’s for-

mula, letting b ¼ 1 þ ðlog xÞ�1 and T ¼ expð
ffiffiffiffiffiffiffiffiffiffiffi
log x

p
Þ, we get

X
n4 x;ðn;rÞ¼1

m2ðnÞs�oðnÞwðnÞ ¼
1

2ip

ZbþiT

b�iT

fðzÞ
xz

z
dz þ O x expð�0:9

ffiffiffiffiffiffiffiffiffiffiffi
log x

p
Þ

� �
: ð4:9Þ

From Siegel’s Theorem, we know that for any E > 0, there is a constant cðEÞ > 0

such that the possible Siegel zero b of Lðz; wÞ satisfies

b > 1 � cðEÞq�E: ð4:10Þ

On the other hand, there is a constant c > 0 such that Lðz; wÞ has no imaginary root

in the domain

ReðzÞ >
c

log T
and jImðzÞj4T: ð4:11Þ

If letting E in (4.10) be 1=3N, then we see that, for sufficiently large x, there is no root

for Lðz; wÞ in the region (4.11). We shall consider the rectangular contour with ver-

tices b � iT, 1 � cðlog T Þ
�1

� iT, where c is the coefficient in (4.11). Since fðzÞ is ana-

lytic in the rectangle, we can bound the integral in (4.9) via bounding the integrals on

the other three sides.

We note that in the rectangle, the classic estimates for Lðz; wÞ give us

jLðz; wÞj�1 < c0 log T ð4:12Þ

for some constant c0 > 0 which depends only on N. It is easy to see that, from (4.12),

the integrals on ½1 � cðlog T Þ
�1

þ iT; b þ iT� and ½1 � cðlog T Þ
�1

� iT; b � iT � contri-

bute an error admissible for (4.4). Again, from (4.12), the integral on the line

½1 � cðlog T Þ
�1

� iT; 1 � cðlog T Þ
�1

þ iT� is bounded by

x1�cðlog xÞ
�1

2
ðlog xÞ

jsj
2
Y
pjr

1 þ
jsj

p1�cðlog xÞ�1=2

� � ZT
�T

1

jtj þ cðlog T Þ
�1

dt

� x1�0:9cðlog xÞ�
1
2tðrÞ; ð4:13Þ

which also satisfies (4.4). &

5. Some Error Terms

With the expression in lemma 3.1, we are ready to get an asymptotic formula for

ShðXÞ (and also ~SShðXÞ). Instead of summing over D, we sum over the 20 new vari-

ables Di;j, subject to the conditions that each Dij is squarefree, that they are pairwise

coprime and that their product D satisfies
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D4X; D � h ðmod CEÞ; ð5:1Þ

and Y2
i¼0

Y4
j¼1

Di;j completely splits over Qð
ffiffiffi
b

p
Þ: ð5:2Þ

To make it more convenient in treating the error terms, we divide the range of

each Di;j into dyadic intervals ðAi;j; 2Ai;j� with Ai;j running over powers of 2 and

1 �
Q

Ai;j � X. This gives us Oðlog20 XÞ nonempty subsums, each written as

Shð ~AAÞ, ~AA referring to the 20-tuple of numbers Ai;j. Further, we shall with a brief nota-

tion Shðk; ~bb; ~AAÞ define the sum of gðk; ~bb; ~DDÞhð ~DDÞ with k, ~bb fixed and the Di;j’s running

over the Ai;j’s.

We borrow the terminology from [4], two variables m and n are called ‘linked’ if

exactly one of the Jacobi symbols ðm=nÞ and ðn=mÞ occurs in fðk; ~bbÞgðk; ~bb; ~DDÞhð ~DDÞ,

‘joined’ if both of the Jacobi symbols occur in the summand. Furthermore, we call

m and n ‘independent’ if neither of the Jacobi symbols occurs.

As we expect that the main term of the asymptotic formula for ShðXÞ (and ~SShðXÞ)

is of magnitude X, we treat every subsum of ShðXÞ (and ~SShðXÞ) of order

OðXðlog XÞ
�c
Þ for any c > 0 as an error term. If for some linked pair Di;j and Ds;t

we have Ai;j, As;t both greater than ðlog XÞ
610, say, then by Lemma 4.1, the corre-

sponding Shð ~AAÞ is trivially bounded byX
~DD0¼ ~DDnfDi;j;Ds;tg

D0�X=ðAi;jAs;tÞ

Ai;jAs;tðlog XÞ
�38

� Ai;jAs;tðlog XÞ
�38

X
D0�X=ðAi;jAs;tÞ

t18ðD
0Þ

� Xðlog XÞ
�21; ð5:3Þ

which, summed over ~AA, gives a negligible contribution to ShðXÞ.

We henceforth set

M :¼ ðlog XÞ
610 and T :¼ expððlog XÞ

0:001
Þ: ð5:4Þ

Now we suppose that, in some Shðk; ~bb; ~AAÞ, Ai;j > T, and fDs;tgðs;tÞ2=ði;j Þ are all the

D-variables linked to Di;j. From the estimate (5.3), we know that the subsums

Shðk; ~bb; ~AAÞ with any As;t > M give rise to an error term for ShðXÞ (and ~SShðXÞ). More-

over, from the fact that for comprime odd integers m and n,

m

n

� � n

m

� �
¼

1

2
ð1 þ w4ðmÞ þ w4ðnÞ � w4ðmnÞÞ ð5:5Þ

where w4ð�Þ is the nontrivial character modulo 4, the relationship between a pair of

joined variables is reduced to being independent. Thus, if assuming all the variables

Ds;t linked to Di;j be less than M, fixing all the variables other than Di;j and summing

over Di;j first, we see that the summands for Di;j are characters with moduli being

Oððlog XÞ
A
Þ for some A > 0. If the character is nontrivial, then from Lemma 4.2,

the contribution of the corresponding subsum is negligible for ShðXÞ (and ~SShðXÞ).
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We note that the characters w4ðDi;jÞ, the Jacobi symbols formed by Di;j and Ds;t, and

the Jocobi symbols related to 2k and the factors of b don’t annihilate each other,

thus, for those Shðk; ~bb; ~AAÞ with Ai;j > T which finally give a major contribution to

ShðXÞ, we must have Ds;t ¼ 1 for all ðs; tÞ 2 =ði; jÞ, and all the factors of b linked

to Di;j must be 1.

We conclude the above discussion as the following lemma.

LEMMA 5.1. There exists a constant c > 0, such thatX
k; ~bb

X
~AA

Shðk; ~bb; ~AAÞ � Xðlog XÞ
�c; ð5:6Þ

where the sum over k, ~bb, ~AA is for all sets in which there are linked variables Di;j and Ds;t

with Ai;j 5T, and Ds;t > 1 or there is another nontrivial integer – either 2k or a factor

of b linked with Di;j.

Before excluding other error terms, we note that those Shðk; ~bb; ~AAÞ with A3;2 > T

are negligible. This is because D3;2 is linked with b. Thus, in the next, we always sup-

pose that A3;2 4T.

We divide the sums Shðk; ~bb; ~AAÞ into two categories: those with A3;1 > T and those

with A3;1 4T.

Case 1. A3;1 4T. We first note that, in this case, the total contribution of all the

sums Shðk; ~bb; ~AAÞ with at most 7 numbers Ai;j > T is admissible for the error term of

ShðXÞ. To see this, suppose we have precisely m variables Di;j > T with i ¼ 0; 1; 2, n

variables D3;j > T, and m þ n4 7, all the other variables being 4T. For con-

venience, a brief notation t=Qð
ffiffiffi
b

p
Þ will be used to stand for the condition that integer

t completely splits in Qð
ffiffiffi
b

p
Þ. Then we haveX

k; ~bb

X
~AA

Shðk; ~bb; ~AAÞ

�b

X
s4T20

t20ðsÞ
X

t1 ���tmtmþ1 ���tmþn 4X=s

t1 ���tm=Qð
ffiffi
b

p
Þ

1

4

� �oðt1���tmÞ 1

8

� �oðtmþ1���tmþnÞ

�
X

s4T20

t20ðsÞ
X

wz4X=s

w=Qð
ffiffi
b

p
Þ

m

4

� �oðwÞ n

8

� �oðzÞ

¼
X

s4T20

t20ðsÞ
X

w1w2z4X=s

m

8

� �oðw1w2Þ b

w2

� �
�

n

8

� �oðzÞ
; ð5:7Þ

where the summation over k, ~bb and ~AA is subject to the conditions described above. In

the sums we also have discarded the congruence restriction but keep the squarefree

restriction on the variables. From Lemma 4.2, the subsum of the last formula in (5.7)

with w2 > T is bounded by
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X
s4T20

t20ðsÞ
X

w1z4X=ðsTÞ

m

8

� �oðw1Þ n

8

� �oðzÞ X

sw1z
expð�Z

ffiffiffiffiffiffiffiffiffiffiffi
log T

p
Þ

� X expð�Z
ffiffiffiffiffiffiffiffiffiffiffi
log T

p
Þ
X

s4T20

t20ðsÞ

s

X
g4X=ðsTÞ

1

g

m þ n

8

� �oðgÞ
� X expð�Z

ffiffiffiffiffiffiffiffiffiffiffi
log T

p
Þðlog T Þ

20: ð5:8Þ

Thus from (5.7) and (5.8), we haveX
k; ~bb; ~AA

Shðk; ~bb; ~AAÞ

�
X

s4T21

t21ðsÞ
X

w1z4X=s

m

8

� �oðw1Þ n

8

� �oðzÞ
þX expð�Z

ffiffiffiffiffiffiffiffiffiffiffi
log T

p
Þðlog T Þ

20

�
X

s4T21

t21ðsÞ
X

g4X=s

m þ n

8

� �oðgÞ
þX expð�Z

ffiffiffiffiffiffiffiffiffiffiffi
log T

p
Þðlog T Þ

20

�
X

s4T21

t21ðsÞ �
X

s
ðlog XÞ

mþn
8 �1

þ X expð�Z
ffiffiffiffiffiffiffiffiffiffiffi
log T

p
Þðlog T Þ

20

� Xðlog XÞ
�1

8ðlog T Þ
21

� Xðlog XÞ
� 1

10; ð5:9Þ

which is an error term for ShðXÞ.

Now, it is a little tedious but technically easy to examine that for any choice of 8

variables Di;j, there are at least a pair of them linked to each other. Thus, from

Lemma 5.1, the case that 8 variables Di;j are simultaneously greater than T is also

excluded. Combining this with (5.9), we conclude the following lemma.

LEMMA 5.2. For the constant c in Lemma 5:1, we haveX
~AA

Shð ~AAÞ � Xðlog XÞ
�c; ð5:10Þ

where the sum over ~AA is for all sets in which A3;1 4T.

Case 2: A3;1 > T. In view of Lemma 5.1, the whole contribution from those

Shðk; ~bb; ~AAÞ with D0;2D1;2D0;3D2;3D1;4D2;4 6¼ 1 is OðXðlog XÞ
�c
Þ since D3;1 is linked

with D0;2D1;2D0;3D2;3D1;4D2;4. Excluding these error terms, we shall suppose in the

following that

D0;2D1;2D0;3D2;3D1;4D2;4 ¼ 1: ð5:11Þ

We note that an argument similar to (5.7)–(5.9) shows that the total contribution

of all the sums Shð ~AAÞ with at most 3 numbers Ai;j > T is bounded by OðXðlog XÞ
�c
Þ

for some constant c > 0, which yields an error term for ShðXÞ. We can also check

that, for any choice of 5 variables Di;j, with D3;1 included and those variables appear-

ing in (5.11) excluded, there must be two of them linked to each other, or there is at

least one variable Di;j linked to a nontrivial divisor of b. With this criterion and by
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checking the ‘linked relationship’ between the variables, we can exclude all the cases

except those listed in the following lemma.

LEMMA 5.3. There exists a constant c > 0, such thatX
~AA

A3;1>T

Shð ~AAÞ � Xðlog XÞ
�c; ð5:12Þ

where the sum over ~AA is for all sets except for those in which there are precisely 4 num-

bers Ai; j > T, where the index ði; jÞ runs over the four pairs given in each of the follow-

ing seven cases:

(1) (0,1), (1,1), (2,1), (3,1);

(2) (1,1), (1,3), (3,1), (3,4);

(3) (2,1), (2,2), (3,1), (3,3);

(4) (3,1), (3,3), (3,4), (3,5);

(5) (3,1), (3,4), (3,6), (3,8);

(6) (3,1), (3,5), (3,6), (3,7);

(7) (3,1), (3,3), (3,7), (3,8).

6. Proof of Theorem 2.2 for Odd b

Since b is odd, we have b0 ¼ b throughout the section. From Lemmas 5.2 and 5.3, the

main term of ShðXÞ comes up from seven subsums, each corresponding to one of the

seven cases listed in Lemma 5.3. We write the subsums Sj
hðXÞ, j ¼ 1; . . . ; 7, with

S
ðjÞ
h ðXÞ being the subsum that has precisely four large variables with indices described

in case ð jÞ in Lemma 5.3. Note the seven subsums don’t overlap, we thus have

ShðXÞ ¼
X7

j¼1

S
ðjÞ
h ðXÞ þ OðXðlog XÞ

�c
Þ: ð6:1Þ

Estimate of S
ð1Þ
h ðXÞ. In this case we have Di;1 > T, i ¼ 0; 1; 2; 3. By checking the

‘linked relationship’ between variables, we see that, apart from an error term

OðXðlog XÞ
�c
Þ by Lemma 5.1, S

ð1Þ
h ðXÞ is equal to the subsum of ShðXÞ with

Di;1 > T, i ¼ 0; 1; 2; 3, D3;2 4T, all the other D-variables being 1, and Bi;j ¼ 1 for

j ¼ 2; 3; 4. Thus, from Lemma 3.1, we have

S
ð1Þ
h ðXÞ ¼ C1

X
D0D1D2D3;1D3;22SðX;hÞ

Di>T;i¼0;1;2;3
D3;2 4T

D0D1D2=Qð
ffiffi
b

p
Þ

1

4

� �oðD0D1D2Þ 5

8

� �oðD3;1Þ �3

8

� �oðD3;2Þ

�

�
b

D3;2

� �
þ OðXðlog XÞ

�c
Þ; ð6:2Þ

where
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C1 :¼ 4�oðb0Þ
X�

k
b¼B0B1B2B3

1; ð6:3Þ

where the asterisk indicates that B0 > 0, and Bj; j ¼ 1; 2; 3 take appropriate sign

such that (3.8) and (3.9) are also solvable in R.

By eliminating the condition D0D1D2=Qð
ffiffiffi
b

p
Þ, we see that the sum in (6.2) is equal

to

X
~DDD3;1D3;22SðX;hÞ

D3;1 ;
~DD>T;

D3;2 4T

~DD=Qð
ffiffi
b

p
Þ

3

4

� �oð ~DDÞ
5

8

� �oðD3;1Þ �3

8

� �oðD3;2Þ b

D3;2

� �

¼
X

~DD1
~DD2D3;1D3;22SðX;hÞ

D3;1;
~DD1

~DD2>T;

D3;2 4T

3

8

� �oð ~DD1
~DD2Þ b

~DD2

� �
�

5

8

� �oðD3;1Þ �3

8

� �oðD3;2Þ b

D3;2

� �
: ð6:4Þ

By Lemma 4.2, we can relax the restriction on the sizes of the variables, the result-

ing error for S
ð1Þ
h ðXÞ being OðX expð�Z

ffiffiffiffiffiffiffiffiffiffiffi
log T

p
Þ. With this and from (6.2) and (6.4),

we have, apart from an error OðXðlog XÞ
�c
Þ,

S
ð1Þ
h ðXÞ ¼ C1

X
~DD1

~DD2D3;1D3;22SðX;hÞ

3

8

� �oð ~DD1
~DD2Þ b

~DD2

� �
�

5

8

� �oðD3;1Þ �3

8

� �oðD3;2Þ b

D3;2

� �

¼ C1

X
~DD1D3;1

�DD2SðX;hÞ

3

8

� �oð ~DD1Þ 5

8

� �oðD3;1Þ b

�DD

� � X
�DD¼ ~DD2D3;2

�3

8

� �oðD3;2Þ 3

8

� �oð ~DD2Þ

:

ð6:5Þ

Since the inner sum in (6.5) about �DD is equal to 1 if �DD ¼ 1 and 0 otherwise, we thus

have

S
ð1Þ
h ðXÞ ¼C1

X
~DD1D3;12SðX;hÞ

3

8

� �oð ~DD1Þ 5

8

� �oðD3;1Þ

þOðXðlog XÞ
�c
Þ

¼C1 � #SðX; hÞ þ OðXðlog XÞ
�c
Þ: ð6:6Þ

Estimate of S
ð2Þ
h ðXÞ. For this subsum with D1;1, D1;3, D3;1, D3;4 > T, by using Lemma

5.1 to exclude the negligible subsums with a total contribution OðXðlog XÞ
�c
Þ, we

conclude that the major term of S
ð2Þ
h ðXÞ comes up with all the D-variables except

D1;1, D1;3, D3;1, D3;2, D3;4 and D3;7 being trivial, and

2k ¼ B0 ¼ B2 ¼ B1;2 ¼ B1;4 ¼ B3;2 ¼ B3;4 ¼ 1: ð6:7Þ
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We remark that, under the condition (6.7), 2kB1B3 ¼ b. Furthermore, by relaxing the

restriction on the sizes of the D-variables, we simply get that

S
ð2Þ
h ðXÞ ¼ C2

X
D1;1D1;3D3;1D3;2D3;4D3;72SðX;hÞ

D1;1D1;3=Qð
ffiffi
b

p
Þ

1

4

� �oðD1;1D1;3Þ 5

8

� �oðD3;1Þ

�

�
1

8

� �oðD3;4D3;7Þ �3

8

� �oðD3;2Þ b

D3;2D3;7

� �
þ OðXðlog XÞ

�c
Þ; ð6:8Þ

where

C2 :¼ 4�oðb0Þ
X�

b¼B1B3 ;B1 ;B32Z

B1
0¼B1;1B1;3 ;B3

0¼B3;1B3;3

1 ð6:9Þ

with the asterisk in the summation indicating that B1 takes appropriate sign such that

(3.8) is solvable in R. With exactly the same method we used in (6.4)–(6.6), we have

S
ð2Þ
h ðXÞ ¼ C2 � #SðX; hÞ þ OðXðlog XÞ

�c
Þ: ð6:10Þ

Estimate of S
ð3Þ
h ðXÞ. We use Lemma 5.1 to exclude error terms, and the major term

of S
ð3Þ
h ðXÞ arises from the subsum with all the D-variables except D2;1, D2;2, D3;1,

D3;2, D3;3 and D3;6 being 1, and

B0 ¼ B1 ¼ B2;3 ¼ B2;4 ¼ B3;3 ¼ B3;4 ¼ 1: ð6:11Þ

Note then b ¼ B2B3, B2;B3 2 Z and B0
2 ¼ B2;1B2;2, B0

3 ¼ B3;1B3;2. With a discussion

similar to that applied to S
ð1Þ
h ðXÞ, we have

S
ð3Þ
h ðXÞ ¼ C3 � #SðX; hÞ þ OðXðlog XÞ

�c
Þ; ð6:12Þ

where

C3 :¼
X

k

4�oðb0Þ
X�

b¼B2B3
B2 ;B32Z

B0
2
¼B2;1B2;2

B0
3
¼B3;1B3;2

1: ð6:13Þ

Again, the asterisk in (6.13) indicates that the summation is also subject to that (3.9)

be solvable in R.

Estimate of S
ðjÞ
h ðXÞ, j ¼ 4; 5; 6; 7. The four subsums S

ðjÞ
h ðXÞ, j ¼ 4; 5; 6; 7 are in the

same shape. By a transform of variables, they are exactly equal to each other.

Because of this, we can only estimate S
ð4Þ
h ðXÞ. Again, by using Lemma 5.1 to exclude

an error of OðXðlog XÞ
�c
Þ, we see that the main term of S

ð4Þ
h ðXÞ arises from the sub-

sum with all the D-variables except D3;j, j ¼ 1; . . . ; 8 being 1 and

2k ¼ B0 ¼ B1 ¼ B2 ¼ 1: ð6:14Þ
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Under the condition (6.14), we see that b ¼ B3, thus we have

S
ð4Þ
h ðXÞ ¼ 4�oðb0Þ

X
b0¼
Q4

j¼1
B3;j

1

8><>:
9>=>; �

XQ8

j¼1
D3;j2SðX;hÞ

�
5

8

�oðD3;1Þ
�
�3

8

�oðD3;2Þ

�

�

�
1

8

�oðD3;2���D3;8Þ
�

b

D3;2D3;6D3;7D3;8

�
þ OðXðlog XÞ

�c
Þ

¼ #SðX; hÞ þ OðXðlog XÞ
�c
Þ: ð6:15Þ

Hence, for j ¼ 4; 5; 6; 7, we have

S
ðjÞ
h ðXÞ ¼ #SðX; hÞ þ OðXðlog XÞ

�c
Þ: ð6:16Þ

Collecting the asymptotic formulas (6.6), (6.10), (6.12) and (6.16) together and

noticing (6.1), we thus have

ShðXÞ ¼ ðC1 þ C2 þ C3 þ 4Þ � #SðX; hÞ þ OðXðlog XÞ
�c
Þ: ð6:17Þ

From (6.3), we see that

C1 ¼
2; if v is odd;
4; if v is even:

�
ð6:18Þ

And (6.9) implies that

C2 ¼
2; if v is positive;
1; if v is negative:

�
ð6:19Þ

Also from (6.13) we have

C3 ¼

1; if v is odd and positive;
2; if v is odd and negative;
2; if v is even and positive;
4; if v is even and negative:

8><>: ð6:20Þ

From (6.17)–(6.20), we conclude that, in case b is odd,

ShðXÞ4 ð13 þ oð1ÞÞ#SðX; hÞ; ð6:21Þ

which proves Theorem 2.2 for odd b.

7. Proof of Theorem 2.2 for Even b

We shall simply sketch a proof for the case that b is even. We start from (3.46). First

we note that all the estimates about the error terms in Section 5 are also valid for
eSShðXÞ. Thus the leading terms of eSShðXÞ come up from the cases listed in Lemma

5.3. Moreover, in the summation for eSShðXÞ, B0 is always nontrivial (since it is divi-

sible by 2). Thus, for a major contribution, a subsum must have all the D-variables

linked with B0 running over small intervals. For this reason, we see that, among

all the seven cases listed in Lemma 5:3, all but cases (1) and (6) actually make a
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contribution at most OðXðlog XÞ
�c
Þ for eSShðXÞ. Therefore, with a discussion similar to

that for S
ð1Þ
h ðXÞ and S

ð6Þ
h ðXÞ in section 6, we have

eSShðXÞ ¼ 4 � ðeCC1 þ 1Þ � #SðX; hÞ þ OðXðlog XÞ
�c
Þ; ð7:1Þ

where

eCC1 :¼ 4�oðb0Þ
X�

b¼B0B1B2B3
B0>0; 2jB0

1; ð7:2Þ

with the asterisk indicating that the factorization also guarantees the solvability of

(3.8) and (3.9) in R. It is easy to see that eCC1 ¼ 2, thus we have

eSShðXÞ ¼ 12 � #SðX; hÞ þ OðXðlog XÞ
�c
Þ; ð7:3Þ

which proves Theorem 2.2 for even b.

8. Some Further Remarks

We note that the conditions (1.1) and (1.2) have restricted the curves in considera-

tion to a very small family. One may expect that the method works for a larger

family of elliptic curves with a rational 2-torsion point. Based on our discussion

(3.30)–(3.40) concerning the solvability in Qp for p j D, however, we can see that

such a restriction is crucial and, for a curve E (with a rational 2-torsion point)

other than those given in Theorem 2.2, the average size of #SðfÞðED=QÞ � #

SðcÞð bEED=QÞ would be too large – it is unbounded. Actually, we can prove that,

for such a curve E, the average size of #SðfÞðED=QÞ � #SðcÞð bEED=QÞ with jDj4X

would have order of magnitude ðlog XÞ
1
16. Without an actual proof, one can see

that with the following heuristic: with the condition b � a2 � 4bðmod Q�
Þ
2

(that

is only used in (3.27)) being removed, the probability for (3.8) and (3.9) to have

a nontrivial solution in Qp for p j D0 changes from 1
8 to 3

16, which results in the

change of the factor that brings up the major term of sum (2.12) from 1oðDÞ to

ð17
16Þ

oðDÞ. Therefore, to prove ð1:3Þ for such a curve, one has to take the (negative)

contribution of the Tate–Shafarevich groups into consideration, and this would be

another work for further study.

We also remark that Theorem 2.2 yields the following conditional result.

THEOREM 8.1. Suppose E is an elliptic curve satisfying the conditions ð1:1Þ and

ð1:2Þ. Assuming the parity conjecture for the Mordell–Weil ranks, we have M1
EðXÞ 
 X

for sufficiently large X.
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