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A N O T E O N T H E E Q U A T I O N \*p*p = p

C. ROBINSON EDWARD RAJA

Let G be a Hausdorff topological group and p and A be probability measures on
G. We prove necessary and sufficient conditions for the existence of a probability
measure p such that A * p * p. = p under certain conditions. We prove a similar result
for probability measures on semigroups.

In this note we consider the problem of proving necessary and sufficient conditions
for the existence of a measure p such that the equation

(*) X*p*p = p

holds where A and p. are two given probability measures. This problem originated from
the convergence of concentration functions in the following way: given a probability
measure p. either the concentration functions converge to zero or p.n *//"—>• p (see [1])
and hence p.* p* p — p.

Let G be a Hausdorff topological group. Let u be a probability measure on G. Then
v is said to be adapted if the closed subgroup generated by the support of v is G. When
v is adapted we denote by H(v) the smallest closed normal subgroup of G a coset of
which contains the support of v. We say that u is concenterated if there exist a compact
subset C and a sequence (gn) in G such that i/n(gnC) — 1 for all n. Let vx and v2 be two
adapted probability measures on G. Then H{v\,u2) denotes the smallest closed normal
subgroup such that for some x,y e G, xK{y\,v2) and yh{v\, u2) contains the support of
vx and the support of v2 respectively.

Let A and p be adapted probability measures on G. Let us now consider the following:

(1) the subgroups H{p), 'H(A) and H(X, p) are all compact and the same and
the measures p and A are supported on gW(p) for all g in the support of
p, in particular, A and p are concentrated;

(2) there exist compact sets L\ and L2 and a sequence (gn) in G such that for
some 6 > 0, pn{g~1Li) > 5 and \n{g-xL2) > S for all n;
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(3) there exists a probability measure p such that A * p* p,= p.

In [2], Bartoszek considered adapted probability measures on a countable group and
proved that (1), (2) and (3) are equivalent. In general condition (1) need not be necessary
for the existence of p satisfying (*), that is (3) implies (1) need not be true (see [3]).
We prove the equivalence of (1), (2) and (3) for adapted probability measures under
certain conditions (see Theorem 1.1 and Theorem 1.2). We also prove a similar result for
probability measures on semigroups (see Theorem 2.1). The sufficient condition for the
existence of p satisfying (*) that is, (2) implies (3), is proved in a more general set-up
(see Proposition 1.1 and Proposition 2.2).

1. PROBABILITY MEASURES ON GROUPS

Let AT be a completely regular space. Let P{X) be the space of all compact-regular
Borel probability measures on X endowed with the weak* topology with respect to all
bounded continuous real valued functions on X. We shall call X a Prohorov space if it
satisfies the following: A subset T of V(X) is relatively compact if and only if for any
e > 0 there exists a compact set L of X such that p,(X \ L) ^ e for all p. S T. Complete
separable metric spaces and locally compact spaces are Prohorov spaces (see [10] and [8,
Theorem 1.1.11])

Let G be a topological group and A be a probability measure on G. We define A,
the adjoint of A by \{E) = A({z | x'1 € E}).

The following gives a sufficient condition for the existence of p.

PROPOSITION 1 . 1 . Let G be a Prohorov topological group and S be a closed
convex subsemigroup ofV(G). Let A and p. be in S. Suppose there exist a sequence (gn)
and compact sets Lx and L2 such that for some 8 > 0, p.n(g~lL\) > 5 and \n{g~lL2) > 8
for all n. Then there exists a probability measure p 6 5 such that A * p * p. — p.

P R O O F : It is clear that supA"(x~1L2) -fa 0 and sup/xn(2;~1L1) -fa 0. This implies
x£G x6G

that for any 77 > 5 there exist compact sets Cv and Lv such that sup\n(x~lCTI) > rj
x€G

and supp,n(x~1LT1) > 77 for all n. Thus, there exist sequences (zn>7,) and (?/„,,,) such that

\n{x~^Cri) > V anc* f^iVn^i) > V for all n. This implies that x'^C,, n g~1L2 / 0 and
2/~J,I/n n g^Li 7̂  0 for all n and hence x'^ € g~1L2C^1 and y~^ € g~lLxL~x for all n.
Thus, Xn(g-lL2C-1Cn) > 77 and ^(g^LiL^Lr,) > 77 for all n. Since G is Prohorov,
(<7n/j

n) and (gnX
n) are relatively compact and hence the sequence (An * p,n) is relatively

compact. Then the sequence (l /n)f 5Z(A* * nk)j is also relatively compact. Since S is

convex, we have (1/n) ( J2 (A* * p.k) J 6 5. It is easy to see that

AH) f J ^ ' ' M * J ' • * • *
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k=l
(

(A* *ixk) J. Then X*p*fi — p . Since S is closed, p is in S. This proves the proposition. D

LEMMA 1 . 1 . Let v be an adapted probability measure on a noncompact locally
compact group G. Suppose H(v) is compact. Then %{v) is the largest compact subgroup
ofG.

PROOF: Suppose H(u) is compact. Then GfH(u) is discrete and isomorphic to Z
(see [4, Proposition 1.6]). This implies that any compact subgroup K of G is contained
in H(u) and hence %(v) is the largest compact subgroup of G. D

We now prove the following:

THEOREM 1 . 1 . Let G be a noncompact locally compact group. Let S be a closed
convex commutative subsemigroup ofV(G). Let fi and A be in 5. Suppose p, and A are
adapted probability measures on G. Then the following are equivalent:

(1) the subgroups H{p), 'H(X) and 7i(X, p,) are all compact and the same and
the measures p, and A are supported on g~H(p.) for all g in the support of
p., in particular, A and p. are concentrated;

(2) there exist compact sets L\ and Li and a sequence (gn) in G such that for
some 8>0, pJl{g-lLl) > S and Xn(g-lL2) > 8 for all n;

(3) there exists p £ S such that A * p * p. — p .

PROOF: That (1) implies (2) is obvious because p.n{gnU(p)) = 1 and Xn(gn'H(iJ.)) =
1. That (2) implies (3) follows from Proposition 1.1.

Now assume (3). Then since 5 is commutative, we have that p,*X*p — X*fi*p — p.
Let I(p) = {g€G\gp = p = pg}. Then A * \i = fj. * A.is supported on I(p) and I(p) is a

compact group (see [13]) and hence A is supported on g~lI(p) and I{p)g~l for any g in
the support of /x and p. is supported on x~1I(p) and I(p)x~1 for any x in the support of A.
This implies that p. is supported on gl{p) and I(p)g for any g in the support of //. Thus,
for each n, /x" * fin and p,n * /j,n are supported on I(p) and hence H(M) C I(p) (see [1]).
Similarly we can prove that H(X) C I(p). Thus, by Lemma 1.1, both 'H(A) and %(M) are
largest compact subgroups of G and hence H{n) = H{X). Thus, U{p) = H(X) = H(X, /i)
and A and n are supported on the coset g%(n) for any g in the support of p.. D

REMARK 1.1. Let G be a connected real reductive Lie group and K be a maximal
compact subgroup of G. Then the semigroup S of all if-biinvariant probability measures
on G is a closed convex commutative semigroup and hence Theorem 1.1 holds. In this
case condition (1) may be replaced by the following: there exists a g S G such that
A — gu)K and p, = g~xu)K-

We say that a locally compact group G is a group of Deriennic and Lin type or G

is in QDL if it satisfies the following: For an adapted probability measure v in V(G),
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either the concentration function supun(xC) -»• 0 for all compact subsets C of G or v is

supported on a coset of a compact normal subgroup of G. This class was introduced by
Bartoszek in [1]. This class contains all nilpotent and Tortrat groups: a locally compact
group G is called a Tortrat group if a sequence of the form {xn\x~x) where A s V(G) and
(xn) is a sequence in G has an idempotent limit point only if A is an idempotent (see [5]
and [7] for more details on Tortrat groups). We now prove the following:

THEOREM 1 . 2 . Let G be a noncompact locally compact group G. Let X,p. be
adapted probability measures in V{G). Suppose G is in QDL or A and p. are normal (that
is, A * A = A * A and p,* p, •=• p.* p,). Then the following are equivalent.

(1) the subgroups Win), 'H(A) and "H(X, p) are all compact and the same and
the measures p and A are supported on gH{p) for all g in the support of
p., in particular, A and p are concentrated;

(2) there exist compact sets L\ and Li and a sequence (gn) in G such that for
some 6 > 0, pn{g~1Li) > 6 and Xn(g~lL2) > 6 for all n;

(3) there exists a probability measure p G V(G) such that A * p* p = p.

P R O O F : It is enough to prove (3) =>• (1). Suppose A * p * p. = p. Then there exist
sequences (xn) and (yn) in G such that (A"xn) as well as (yn(J>n) is relatively compact.
We now claim that H(A) and *H{p) are compact and the same. Suppose G G QDL-
Since (Anxn) is relatively compact, the concentration function supAn(xC) •/* 0 for some

compact subset C of G and hence H(\) is compact. Suppose A is normal. Since (Anxn)
is relatively compact (An * A") is relatively compact and hence by [6, Theorem 2.2] there
exists a compact subgroup H of G such that A is supported on H and xH = Ex for
all x in the support of A. Since A is adapted, H is normal and hence H(X) is compact.
Similarly we can prove that 'H(^) is compact. By Lemma 1.1, H(X) = 'H{p) = K, say,
and hence A and p, are supported on gK for any g in the support of p.. D

2. PROBABILITY MEASURES ON SEMIGROUPS

Let G be a Hausdorff topological semigroup. Let A and B be subsets of G. Then
A~lB and BA~X denote the set of all x € G such that ax G B and xo, € B for some
a S A respectively. A Hausdorff semigroup G is said to satisfy the compactness condition
if CL~l and L~lC are compact whenever L and C are compact.

REMARK 2.1. We observe that the semigroup V{G) of regular Borel probability mea-
sures on a Prohorov topological group G is a Prohorov semigroup satisfying the compact-
ness condition, which may be seen as follows: By [14, Theorem 1], V{G) is a Prohorov
space and V(G) satisfies the compactness conditions follows from the fact that if two
nets (Aj)je/ and (Mi)te/ axe relatively compact and there exists a net (i^)i6/ such that
Hi * Vi = X{, then (^) i e / is relatively compact (see [11]).
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PROPOSITION 2 . 1 . Let G be a Hausdorff semigroup satisfying .the compact-
ness condition. Let p be a probability measure in V(G). Then J(p) = {g € G \ gp = p)
and I(p) = {g 6 G \ gxp = xp for all x in the support of p) are compact.

PROOF: This proposition may be proved by arguing along the lines of [8, Theorem
1.2.4]. D

The following gives a sufficient condition for the existence of p.

PROPOSITION 2 . 2 . LetG be a HausdorfF topological semigroup satisfying the
compactness condition such that G has the Prohorov property. Let S be a closed convex
subsemigroup ofV(G). Let X and \i be in S. Suppose there exist compact sets C\ and
Ci such that for some 6 > 0, M"(CI) > <5 and A"(C2) > S for all n. Then there exists a
measure p € S such that A * p* /i — p.

PROOF: Suppose there exist compact sets C\ and C2 such that for some 6 > 0,

A"(C2) > 6 and ^"(Ci) > <* for all n. Then s u p / i ^ x ^ d ) -fr 0 and s u p A ^ a r 1 ^ ) -fr 0

and hence for r] > 6, there exists compact sets Cv and L,, and sequences (xnir)) and (yn,v)
elements of G such that nn(x~^Cv) > r] and Xn(y~^Ln) > rj for all n. This implies that
x'^Cr, n Ci ^ 0 and y'^L,, n C 2 ^ 0 for all n and hence £„,„ € C,Cf' and »/„,„ € L^C^
for all n. Thus, nn({C^Crl)-lCv) > t] and An((LnC2"1)-1L,) > 77 for all n. This implies
that (nn) and (An) are relatively compact. As in [9, Theorem 2.13], we can prove that

n n
(1/n) J2 Vk -* Pi € S and (1/n) 52 Afc -> p2 G 5 and p, * px = pi = P\ * n and

/t=i *=i
A * p2 = Pi — P2 * A- This implies that fi* pi* P2* X — pi* P2 and X * P2 * pi * fj. — P2 * Pi-
This proves the proposition. D

The following may be viewed as an analogue of Theorem 1.1 for measures on com-
mutative semigroups.

THEOREM 2 . 1 . Let G be a locally compact Hausdorff second countable topolog-
ical semigroup or an Abelian Hausdorff topological semigroup satisfying the compactness
condition. Let S be a closed convex commutative semigroup of probability measures on
G. Let p. and A be in S. Consider the following:

(1) there exists a compact subsemigroup C of G such that \i is supported on
Cx~l for any x in the support of X and A is supported on y~lC for any y
in the support of n;

(2) there exist compact sets C\ and C2 in G such that for some 5 > 0, ^"(Ci) >
S and Xn{C2) > 6 for all n;

(3) there exists a probability measure p € S such that n* p* X — p.

Then (2) => (3) => (1) holds.

PROOF: That (2) implies (3) follows from Proposition 2.2. When G is Abelian that
(3) implies (1) follows from [12, Proposition 2.1] and when G is a locally compact second
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countable semigroup that (3) implies (1) follows from Proposition 2.1 and [9, Theorem

2.5]. D
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