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Abstract

Let A be a subset of a Banach space £ . A mapping r : A—A is called asymptotically semicon-
tractive if there exists a mapping s-.Ay.A->A and a sequence (kn) in [i,<x>) such that Tx=s{x,x)
for all xeA while for each fixed XZA, S(.,X) is asymptotically nonexpansive with sequence (*„)
and S(x,.) is strongly compact. Among other things, it is proved that each asymptotically semi-
contractive self-mapping r of a closed bounded and convex subset A of a uniformly convex
Banach space E which satisfies Opial's condition has a fixed point in A , provided s has a
certain asymptotic regularity property.
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0. Introduction

A self-mapping T of a nonempty subset A of a Banach space E is called
semicontractive {weakly semicontractive) if there exists a mapping S : E x
E -* A such that Tx = S{x, x) for all x e A while for each fixed x e
E, S{., x) is nonexpansive and S{x, .) is strongly compact (compact). It
is shown in [3] that each semicontractive self-mapping T of a nonempty
closed bounded and convex subset A of a reflexive Banach space E which
possesses a weakly sequentially continuous duality mapping has a fixed point
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26 Jurgen Schu [2]

in A . This result in particular applies to lp , p G (1 , oo), but not to Lp ,

p e ( l , o o ) \ { 2 } .
In Section 1, we show among other things that this result remains valid if

we replace the assumption "S(., x) is nonexpansive for each x € E" with the
weaker one "S(., x) is asymptotically nonexpansive with sequence (kn) for
each x e A and some fixed sequence (kn) e [1 , oo)N ", provided S satisfies
a certain asymptotic regularity condition and E is additionally supposed
to be uniformly convex (see Theorem 1.12). The class of asymptotically
nonexpansive mappings was introduced by K. Goebel and W.A. Kirk [5] in
1972, and since then has been studied in various papers (see, for example,
[1 ,7 ,9 , 11,14, 15]).

In Section 2, we consider a uniformly smooth Banach space and prove a
fixed point theorem for weakly semicontractive mappings satisfying a
strengthened compactness condition. This result, which applies both to the
/ and the L spaces (p € (1 , oo)), was motivated by the main result of
Browder [3] concerning weakly semicontractive mappings. Browder's result,
however, does not apply to L (p e (I, oo) \{2}) because the underlying
space is supposed to possess a weakly sequentially continuous duality map-
ping there.

Preliminaries

Anormedspace (E, \\-\\) is called uniformly convex if for each e > 0 there
exists a 8 > 0 such that if x, y e E with | |x| | , ||y|| < 1 and ||x -y\\>e
it follows that [|JC + y\\ < 2(1 - S). We call (E, || • ||) (uniformly) smooth if
the norm of E is (uniformly) Gateaux-differentiable on the boundary of the
unit ball in E. Furthermore, {E, \\ • ||) is said to satisfy Opial's condition
if for each sequence (xn) e EN which converges weakly to some x e E, it
follows that liminf ||xw - x|| < liminf ||jcn - y\\ for all y € E \ {x} .

For a given gauge function fi, this means for a mapping fi : R+ -> R+

which is continuous and strictly increasing with n(0) = 0 and lim^^^ fi(x)

= oo , the related set-valued duality mapping j£ : E —• 2E is given by

/ £ ( * ) = { u e E*\u(x) = \\u\\\\x\\ and | M | = n(\\x\\)}
for all x 6 E. A mapping J : E —> E* is called a duality mapping with
respect to n if J(x) € J£(x) for all x e E. Such a mapping J is said
to be weakly sequentially continuous if for all (xn) € E and all x e E it
follows from (xn)^x that (J(xn))± J(x) (as usual —- and - stand for
weak and weak * convergence, respectively, while strong convergence of a
sequence (zn) to a point z is indicated by lim(zn) = z) . It is well-known
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[3] Mappings of semicontractive type 27

that j£ is single-valued if and only if {E, \\-\\) is smooth (see, for example,
[4, page 22]). In this case we regard j£ as a mapping from E to E*.

In all our proofs we assume, without loss of generality, that fi — id (the
identity mapping). For abbreviation we set JE = j£. Furthermore, in the
sequel E is always assumed to be a linear space over the real field.

1. Fixed points of asymptotically semicontractive
and weakly asymptotically semicontractive mappings

DEFINITION 1.1. Let (E, \\ • ||) be a normed space, 0 ^ A c E and
T:A->A.

(a) T is called Lipschitzian with constant L > 0 if \\Tx - Ty\\ <
L\\x-y\\ for all x,yeA.

(b) T is called nonexpansive (a Banach-contraction) if T is Lipschitzian
with constant L = 1 (L < 1).

(c) T is called compact if r is continuous and maps bounded sets onto
relatively compact ones.

(d) T is called strongly compact (or completely continuous) if T is con-
tinuous from the weak topology of E to the strong topology of E.

(e) T is called asymptotically nonexpansive with sequence (kn) e
[1, oo)N if lim(fcB) = 1 and \\Tn(x) - T"(y)\\ < kn\\x - y\\ for all n e N
and all x, y e A.

Our next definition follows the corresponding one of [3]. Note, however,
that, contrary to F. E. Browder, we do not demand that S is defined on the
whole of E x E.

DEFINITION 1.2. Let (E, || • ||) be a normed space, 0 / A c E and
T-.A^A.

(a) T is called asymptotically semicontractive if there exists a mapping
S : A x A -* A and a sequence (kn) e [1, oo)N such that Tx — S(x, x) for
all x € A while for each fixed x e A, S(., x) is asymptotically nonexpansive
with sequence (kn) and 5(x , .) is strongly compact.

(b) T is called weakly asymptotically semicontractive if there exists a map-
ping S : A x A -+ A and a sequence (kn) e [1, oo)N such that Tx = 5(x , x)
for all x e ,4 while for fixed x e A, S(.,x) is asymptotically nonexpansive
with sequence (kn) and, for fixed x e A and fixed « e N, the mapping
y -> 5(., y)"(x) is compact on A .

REMARK. Clearly every semicontractive mapping is asymptotically semi-
contractive too. The example below in particular shows that the converse is
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not true. Following Goebel and Kirk [5] we define / : l2 —> l2 as follows:

f(x) = (0,x2,a2x2,a3x3,...)

where (an) £ (0 , 1)N is such that Y[™=2 an = \ . Furthermore we define
g,g:l2-^>l2 according to

g{x) = {xx, 0 , 0 , 0 , . . . ) and g(x) = (\\x\\, 0 , 0 , 0, ...).

Finally let T,T:12->12 be defined by

T = f+g and f = f+g.

Then
(i) T is asymptotically semicontractive.
(ii) T is weakly asymptotically semicontractive.
Additionally it can be shown that T is neither semicontractive nor asymp-

totically nonexpansive nor strongly compact. Furthermore f is neither
asymptotically semicontractive nor weakly semicontractive nor asymptoti-
cally nonexpansive nor compact.

In order to prove (i) and (ii) we define mappings S, S : E x E —> E
according to S(x, y) — f(x) + g(y) and S(x, y) = f(x) + g(y) and denote
the standard basis of l2 by { en \ n e N } . Then T(x) = S(x, x) and f(x) =
S(x, x) for all x £ E, and

,+ y z. , f IT a.
i+l ^ L^i i+l-nV 1 1 J

i=n+l j=i+l—n

for all n £ N and all z £ E. Now, define
n - l / i

bn(a)=ael+a e2 + a 22(Ilaj
i=2 \=2

for all n £ N and all a £ R. Then, for each fixed x e E, all n e N and all
Z£E,

and thus, for all n e N and all z, w € E,

S(-, x)n(z) - S(-, x)n(w) = f(z) -

From [5] we know that / is asymptotically nonexpansive with sequence
(kn) € [1 , oo)N . Thus it follows from the equation above that for each fixed
x € E the mapping S(-, x) is asymptotically nonexpansive with the same
sequence (kn). Furthermore, g is clearly strongly compact, which in turn
implies that for each fixed x e E the mapping S(x, •): z —> f(x) + g(z) is
strongly compact too. This finishes the proof of (i).

https://doi.org/10.1017/S1446788700035369 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700035369


[5] Mappings of semicontractive type 29

To prove (ii) first observe that for each fixed x € E the mapping S(-, x)
is asymptotically nonexpansive with sequence (kn). This follows by an argu-
ment completely analogous to the one used in case of S ( j u s t replace x, with
||.x||). Fix x & E and n e N now, and denote the mapping z —> S(-, z)"(x)
by F. Then, for all z e £ , F(z) = bn(\\z\\) + f"(x), from which it follows
that F maps bounded sets onto bounded sets. This, together with the fact
that

dim (I{F(z) - / > ) | z € E}) = dim (Z{Z>n(||z||) | z e E))<n< oo

shows that F maps bounded sets onto relatively compact ones. Thus F is
compact, which completes the proof of (ii).

LEMMA 1.3. Let (E,\\-\\) be a Banach space, 0 / A c E closed and
X e [0, 1). Suppose S : A x A -* A is such that \\S(yl, x) - S(y2, x)\\ <
Ally, -y 2 l l Mall x,ylty2eA. Then

(a) there is exactly one mapping R: A —• A such that S(Rx, x) = Rx for
all x £ A,

(b) \ \ R z - R w \ \ < ( J I J J P C R U ; , z ) - S ( R w , w)\\ for all z , w e A .

PROOF. For each x e A the mapping S(., x) : A —• A is a Banach-
contraction and thus has a unique fixed point Rx in A by the Banach fixed
point theorem. This establishes (a). To show (b), fix z , w e A . Then

||i?z - Rw\\ < \\S(Rz, z) - S{Rw, z)|| + \\S(Rw, z) - S(Uu;, w)\\

< X\\Rz - Rw\\ + \\S(Rw, z) - S(Rw, w)\\.
Since X e [0, 1), this leads to the desired inequality.

The following lemma is an improvement of a result contained in [3, Lemma
4]. In this lemma F. E. Browder assumes that S is defined on E x E and that
for each fixed x 6 E, S(x,.) is compact on A and S(., x) is a Banach-
contraction on the whole of E. We emphasize that there is no need for us
to assume that S1 is defined outside of A x A.

LEMMA 1.4. Let (E, || • ||) be a reflexive Banach space possessing a weakly
sequentially continuous duality mapping J : E —• E* and 0 ^ A c E closed
bounded and convex. Suppose S : A x A -* A is such that

(i) \\S{yl, x) - S(y2, x) | | < X\\yl - y2\\ for all x,yx,y2e A and some
fixed Xe[0, I),

(ii) S(x, .) is compact for each x e A . Then there exists an x e A such
that S(x,x) = x.

PROOF. Let R : A —> A be the mapping given by part (a) of Lemma 1.3.
Since S(x, .) is continuous for each x e A by (ii), it follows from part (b)
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of Lemma 1.3 that R is continuous too. Thus, it remains to show that R(A)
is relatively compact, because then it follows from the Schauder fixed point
theorem that there exists an x e A such that Rx = x, which in turn implies
that S(x, x) — x, taking into account that S(Rx, x) = Rx.

Therefore, fix (xn) e AN and set yn - R(xn) for all n € N. Since
E is reflexive, A is weakly compact and thus (yn) possesses some subse-
quence (}> ) which converges weakly to a point y e A. Additionally, by
(ii), there exists a subsequence (x ) of (x ) and a point z e E such that
lim S(y, x ) = z . For abbreviation we denote q> o y/ by fi. Since J is
weakly sequentially continuous, we have (J(y.. - y))-^ /(0) and thus

(1) lim/(v -y)(S(y,x ) -y) = J(0)(z -y) = 0.

Additionally, since yn = S(yn, xn),

= J(yn - y)(S(y, xn) -y) + J(yn - y)(S(yn, xn) - S(y, xn)

< J(yn-y)(S(y,xn)-y)+X\\yn-y\\2,

for all n e N . Since A 6 [0, 1), this implies that, for all n e N,

,2
(2) \\yn-y\f<lT—\j{yn-y)(S(y,Xn)-y)

It follows from (1) and (2) that l im | | ^ - y | | = 0. Thus R(A) is relatively
compact.

REMARK. It is not difficult to see that, as a consequence of Lemma 1.4,
in [3, Theorem 1 and 2], as well as in all the results of [13], it is possible to
restrict the domain of definition of the mappings corresponding to S above
to A x A.

THEOREM 1.5. Let (E, || • ||) be a reflexive Banach space possessing a
weakly sequentially continuous duality mapping and 0 ^ A c E closed
bounded and convex. Suppose T : A —> A is weakly asymptotically semi-
contractive with data (S, (kn)) and satisfies the following condition:

(R) for each e > 0 there exists an nQ e N such that for all n> n0 and all
zeA,

\\S(.,z)"+l(z)-S(.,z)n(z)\\<e.

Then
(a) mf{\\x-Tx\\ \xeA} = 0,
(b) if ( id-T)(^) is closed, it follows that Fix(T) / 0 .
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(Fix(T) denotes the fixed point set of T.)

PROOF. Without loss of generality we may assume that 0 e A. Define
kn = 1 - 1/M for all n € N. Then, since A is convex, the mapping Sn given
by Sn(x, y) = {AJkn)S(., y)"(x) maps Ax A into A for each fixed « e N.
Additionally, for fixed x € A , Sn(x,.) is compact and Sn(., x) is a Banach-
contraction with Lipschitz constant Xn . This follows immediately from the
weak asymptotic semicontractivity of T. Thus, by Lemma 1.4, for each n e
N there exists a n ^ e ^ l such that xn = Sn{xn , xn) = (XH/kH)S(., *„ )"(*„) •
Hence \\xn-S(., xn)"(xn)\\ < |1 - {kjkn)\ diam(^) for all n e N, and so

(3) "

Additionally, by (R),

(4) Km ||S(., xn)"(xn) -S(., xn)"-\xn)\\ = 0.

Furthermore, for all n e N,

\\xn - Txn\\ < \\xn - S{., xn)"(xn)\\ + \\S(., xn)\xn) - S(., xn)(xn

<\\xH-S(.,xn)
n(xn)\\

+ ki(\\S(.,xn)"-l(xn)-S(.,xn)
n(xn)\\

This, together with (3) and (4), implies that lim||xn - Txn\\ = 0, which
establishes (a). Claim (b) is a direct consequence of (a).

REMARK. The assumption (R) is a certain uniform asymptotic regularity
condition for the mapping S. This condition, with / instead of S(., z),
has been used by P. Vijayaraju in [15] in order to establish the existence of
a fixed point of an asymptotically nonexpansive mapping / with the help
of almost fixed points zn = finf"(zn), as well as in [14] in connection with
the iterative approximation of fixed points of asymptotically nonexpansive
mappings.

Clearly each strongly compact mapping T : A —> E on a weakly com-
pact subset A of a normed space E is also compact. This, together with
the lemma below, shows that the class of all asymptotically semicontractive
mappings on a weakly compact subset A of a normed space E is a subclass
of the class of all weakly asymptotically semicontractive mappings on A .

LEMMA 1.6. Let {E, \\-\\) be a normed space, 0 ^ A c E and S : AxA —>
A such that

(i) S(., x) is Lipschitzian with constant L for all x e A and some fixed
L>0,
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(ii) S(x,.) is strongly compact for each x e A. Then, for fixed x e A
and fixed n e N, the mapping y —> S(., y)"{x) is strongly compact on A.

PROOF. Fix x e A and define gn(y) - S(.,y)"(x) for all y 6 A and all
« e N . Then, for all n > 2 and all y, z € A,

(5)
\\gn(y)-gn(z)\\<\\S(S(.,y)n \x),y)-S(S(.,z)" \x),y)\\

+ \\S(S(., z)n-\x), y) - S(S(., z)"-\x), z)\\

<L\\S{.,y)n-\x)-S{.,z)n-\x)\\

+ \\S(S(.,z)n-\x),y)-S(S(.,z)n-\x),z)\\

<L\\gn_xiy) - gn_x{z)\\ + \\S{gn_x{z),y) -S(gn_x(z),z)\\.

It follows from (5) by an easy induction that gn is strongly compact for
each n e N. Indeed, gx = S(x, .) is strongly compact by (ii), and if gn

is strongly compact for some n e N, then, for each sequence (z ) e A**
weakly converging to some z e A, it follows that Iim7_(oog;i(z;) = gn(z).
Additionally, by (ii), lim;._>oo5(^(z), Zj) = S{gn{z), z). Hence it follows
from (5) that lim;_<oogn+,(z;.) = gn+l(z). Consequently gn+l is strongly
compact.

If T is asymptotically semicontractive, then, in Theorem 1.5, we are al-
lowed to drop the assumption that E possesses a weakly sequentially con-
tinuous duality mapping as we shall show in Theorem 1.8.

LEMMA 1.7. Let (E, \\ • ||) be a reflexive Banach space and 0 ^ A c E
closed bounded and convex. Suppose S : Ax A —• A is such that

(i) \\S{yl, x) - S(y2, x)\\ < ^\\yi - y2\\ for all x,yi,y2e A and some
fixed A G [ 0 , 1),

(ii) S(x, .) is strongly compact for each x e A. Then there exists an
x £ A such that S(x, x) = x.

PROOF. Let R: A —• A be the mapping determined by part (a) of Lemma
1.3. It follows immediately from (ii), together with part (b) of Lemma 1.3,
that R is strongly compact and thus compact. Hence R has a fixed point
x e A by the Schauder fixed point theorem which is the desired result because
S(Rx, x) = Rx.

THEOREM 1.8. Let (E, || • ||) be a reflexive Banach space and 0 ^ Ac E
closed bounded and convex. Suppose T : A —> A is asymptotically semicon-
tractive with data (S, (kn)) and fulfills the asymptotic regularity condition
(R) of Theorem 1.5. Then
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(a) mf{\\x-Tx\\\x€A} = 0,
(b) if (id-T)(A) is closed, it follows that Fix(T) / 0 .

PROOF. It follows from Lemma 1.6 that for fixed n e N and fixed x e
A the mapping y —* S(., y)"(x) is strongly compact. Thus, the proof of
Theorem 1.8 is completely analogous to the proof of Theorem 1.5, except
the fact that we have to use Lemma 1.7 instead of Lemma 1.4 in order to get
a sequence (xn) e AN such that xn = (An/kn)S(., *„)"(*„) for all n e N.

Next, we shall extend a demiclosedness result for asymptotically nonex-
pansive mappings which is due to J. Gornicki [7, Lemma 4] to the wider class
of asymptotically semicontractive mappings. But first we have to recall some
definitions and to give two further lemmas.

Let (E, || • ||) be a normed space, 0 / A c E and (xn) € EN bounded.
For each y e E set r((xn), y) = l imsup \\xn -y\\. The asymptotic radius of
(xn) with respect to A is defined by

),A) = mfr((xn),y),

and the asymptotic center of (xn) with respect to A is given by

AC{{xn), A) = {y e A I r((xn), y) = R((xH), A)}.

LEMMA 1.9. Let (£",1111) be a Banach space satisfying Opial's condition,
0jtAcE, (xn) tE

N and x € A such that {xn)^x. Then AC({xn), A) =
{x}.

PROOF. Just observe that it follows from [8, Lemma 3] that, for all y e
E\{x}, limsup\\xn -x\\ < limsup\\xn -y\\.

LEMMA 1.10 [2]. Let (E, \\ • \\) be a uniformly convex Banach space,
0 # A c E closed and convex, (xn) € AN bounded and z e A with
AC({xn), A) = {z} . Suppose (yn) e AN is such that

Urn /•((*,.),.€N, yn) = i?((x,.),.€N, A).

Then lim(yn) = z.

THEOREM 1.11. Let (E, | | | | ) be a uniformly convex Banach space satisfy-
ing OpiaTs condition and 0 # A c E closed and convex. Suppose T : A —> A
is asymptotically semicontractive with data (S,(kn)). Then id-T is demi-
closed with respect to 0 (this means that for each sequence (xn) € AN and
each point x € A such that {xn)^x and lim \\xn - Txn\\ = 0 it follows that
Tx = x).
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PROOF. Let (xn) e ^N and x e A be such that (xn)-*x and
lim ||JCW - Txn\\ = 0. For all n, m e N we have

\\xn-S(.,x)m(x)\\

)"{< \\xn - S(., xn)(xn)\\ + £ \\S(., xnrl(xn) - S(., xH)"{xH

)m{\\S{.,xn)
m{xn)-S{.,x)m{x)

\\S(., xn)
m{xn) - S(., xn)

m(x)\\ + ||5(., xnf(x) - S(., x)m(xf(x) S(x)m(

[ )
+ \\S(.,xn)

m(x)-S(.,x)m(x)\\.

It follows from Lemma 1.6 that y - » 5 ( . , y)m{x) is strongly compact which
in turn implies that l i m ^ ^ S{., xn)

m{x) = S(., x)m(x), taking into account
that (xn)-^x. Thus, it follows from the inequality above that, for all m e N,

lim sup \\xn - S{., x)m(x)\\ < km lim sup \\xn -x\\,
n—»oo n—>oo

hence
r((xn),S(.,x)m(x))<kmr((xn),x).

Since AC((xn), A) = {x} by Lemma 1.9, this leads to

R((xn), A) < /•((*„), S(., x)m(x)) < kmR((xn), A),

where l im^^fcj = 1. Thus

Jirn^ r((xn), S(., x)m(x)) = R((xn), A),

from which it follows by Lemma 1.10 that limm_>oo5(., x)m(x) = x. Since
S{., x) is continuous, this in turn implies that S{x, x) — x, hence Tx = x.

Now we are in the position to prove our main result concerning the exis-
tence of fixed points of asymptotically semicontractive mappings.

THEOREM 1.12. Let {E, \\ • ||) be a uniformly convex Banach space satis-
fying Opiafs condition and 0 ^ A c E closed bounded and convex. Suppose
T : A —> A is asymptotically semicontractive and fulfills the asymptotic reg-
ularity condition (R) of Theorem 1.5. Then there exists an x e A such that
Tx = x.
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PROOF. Since every uniformly convex Banach space is reflexive (see, for
example, [4, page 37]), it follows from Theorem 1.8 that there exists a se-
quence (xn) € /iN such that lim||xn - Txn\\ = 0 . Furthermore, as a conse-
quence of the weak compactness of A , there exists some subsequence (xa )

r n

of (xn) which converges weakly to a point x e A. Since id-T is demi-
closed with respect to 0 by Theorem 1.11, it follows that x is a fixed point
of T.

REMARK. With regard to [3, Theorem 1], we remark that the class of all
Banach spaces possessing a weakly sequentially continuous duality mapping is
properly included in the class of all Banach spaces satisfying Opial's condition
(see [8]).

2. A fixed point theorem for a special class
of weakly semicontractive mappings

In Lemma 1.4 above, as well as in [3, Theorem 2] (the analogue to Theorem
1.5 for weakly semicontractive mappings without any assumption concerning
asymptotic regularity), it is assumed that E possesses a weakly sequentially
continuous duality mapping. This is the case, for example, if E = lp , p e
(1, oo), but not if E = Lp[0, 2n], p e (1 , oo) \ {2} (see [10]). Thus, it
is desirable to obtain analogous results for a class of spaces which includes
both the lp and the Lp spaces (p e (1, oo)). Indeed, by strengthening the
compactness assumption on T, we shall be able to establish corresponding
results in Banach spaces which are uniformly smooth, a property which is
shared by both / and Lp, p € (1, oo) (see, for example, [4, page 57]).
Essential use is made of ideas from a proof of [12, Corollary 1] given in
[6, pages 45-47]. The following lemma has been shown in the course of this
proof.

Recall that a Banach limit LIM is a bounded linear functional on lx

such that 11 LIM 11 = 1, and liminf(jcn) < UM(xn) < limsup(xn) and
UM(xn) = UM(xn+l) for all (*„) e /„ .

LEMMA 2.1 [6]. Let (E, \\ • ||) be a uniformly smooth Banach space, 0 /
A c E convex, (xn) e EN bounded and LIM a Banach limit. Define a
mapping f : A —> K+ by f(z) = LIM \\xn - z\\2 for all z e A, and suppose
that y eA is such that f{y) = inf{/(i/;)|u; e A}. Then

UM{JE(xn-y)(z-y))<0

for all z eA.
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LEMMA 2.2. Let (E, || • ||) be a uniformly smooth Banach space and 0 ^
A c E closed bounded and convex. Suppose S : A x A —* A is such that

(i) \\S{yl, x) - S{y2, x)\\ < X\\yx - y2\\ for all x,yl,y2e A and some
fixed A e [ O , 1 ) ,

(ii) S(x, .) is continuous for each x e A, and
(C) for each sequence (xn) e A** there exists a subsequence (x? ) of (xn)

such that for each y eA the strong limit zy - limn_oo S(y, x9 ) exists in A.
Then there exists an x e A such that S(x, x) = x.

PROOF. It is a consequence of (ii) and part (b) of Lemma 1.3 that the
mapping R : A —> A determined by part (a) of Lemma 1.3 is continuous.
Thus, in view of the Schauder fixed point theorem, we are done as soon as we
have shown that R(A) is relatively compact (cf. the proof of Lemma 1.4).

So let (xn) e AN and define yn — R(xn) for all n e N. Take a subsequence
(Xy ) of (xn) according to (C), and denote Iim5(y, x^ ) by zy for all y e

A . Furthermore, fix any Banach limit LIM and define a mapping / : A —> K+

by
2

for all z e A. Then / is convex and continuous, and, taking into account
that every uniformly smooth Banach space is reflexive (see, for example, [4,
page 38]), it follows that / attains its infimum over A at at least one point
y e A (see, for example, [16, Proposition 9.13]). Thus, by Lemma 2.1, for
all z e A,

(6) UM(JE(yK-y)(z-y))<0.

Furthermore, we have already shown in the proof of Lemma 1.4 that

\\yn-y\\2<

for all n e N. Thus, for all n e N and all z &A,

\\yn-y\\2<

and consequently, for all n € N,

l l^ n -y | | 2 <
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Since limSXy, x , ) = z it follows from (6) and (7) that LIM ||v -y\\2 <
0, which implies that liminf ||v -y\\ = 0 . Thus (y ) possesses a subse-
quence (v ) which converges strongly to y. Consequently R(A) is rela-
tively compact.

THEOREM 2.3. Lef ( £ , || • ||) fee a uniformly smooth Banach space and
0 ^ A c E closed bounded and convex. Suppose S : A x A—> A is such that

(i) S(., x) is nonexpansive for each x e A,
(ii) S(x, .) is continuous for each x e A,
(iii) condition (C) of Lemma 2.2 is fulfilled.

Then, for the mapping T : A -* A given by Tx = S(x, x),
(1) i n f { | | x - r x | | | x e . 4 } = 0,
(2) if (id-T)(A) is closed, it follows that Fix(T) ^ 0 .

PROOF. Assume, without loss of generality, that 0 e ^ and define Xn —
1 - 1/H for all n e N. Then one easily verifies that for fixed n e N,
Sn : A x A -> A given by Sn{x, y) — AnS(x, y) satisfies all the assumptions
of Lemma 2.2. Thus, for each n € N, there exists an xn e A such that
xn = Sn(xn,xn) = XJxn. Since | | ^ - Txn\\ < |1 - 1 /AJd iam^) , the
result follows.

REMARK. (1) It is not difficult to see that for a mapping S : A x A —* A ,
defined on a weakly compact subset A of a normed space E, each of the
following two conditions is sufficient to assure that supposition (C) is fulfilled:

(a) S(x, .) is strongly compact for each x e A ;
(b) the mapping fi : A —> B(A, E) := {g : A -> E | g is bounded}

according to fi(x) — S(., x) is compact with respect to the norm topology
on A and the topology of pointwise convergence on B(A, E).

Furthermore, if S : A x A —> A satisfies condition (C) and is such that
S(x, .) is continuous for each x e A, then S(x, .) is clearly compact for
each x e A. Thus, if we neglect that in F.E. Browder's definition (see
introduction) S has to be defined on the whole of E x E, then the class of
all mappings T : A -> A for which there exists a mapping S corresponding
to T and satisfying the conditions (i), (ii) and (iii) of Theorem 2.3 is settled
between the class of all semicontractive and that of all weakly semicontractive
mappings.

(2) From [3, Theorem 5] we know that, in Theorem 2.3 above, there is no
need to assume that E is uniformly smooth, if supposition (iii) is replaced
with the stronger assumption that the mapping n : A —• B(A, E) according
to fi(x) = S(., x) is compact with respect to the norm topology on A and
the topology of uniform convergence on B(A, E).
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