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Parallel Folds

We start with parallel folds, the simplest and easiest pop-up technique to
understand. Despite the simplicity of parallel folds, one can reach beautiful
and intricate designs with just this one construction technique, repeated. But
we’ll keep it simple, making our goal pop-up letters, perhaps the most common
pop-up card design.

The mathematics behind parallel folds is also simple, which will provide an
opportunity to set conventions and notation that will be used throughout. We
will aim toward describing the 3D motion of card opening by tracking various
key points on the card front and back traveling along circles in space.

1.1 Card Notation

Here we establish the basic notation used throughout the book, which is impor-
tant because the rigor of mathematics relies on clear definitions and symbolic
notation.’

A card is composed of two identical rectangles, the back B and the front F',
joined and hinged along the card centerline L. (The centerline is also called the
gutter or the spine.) The front and back are both rigid, usually made of stiff
cardstock. We view the back as fixed to a tabletop; only the front moves. See
Fig. 1.1. In general we will use uppercase letters for “big” things and lowercase
letters for “small” things, for example, edges or specific points. And we will
follow the mathematics tradition of using (lowercase) Greek letters for angles:
a, 3,0, etc. In particular, we will reserve 6 (theta) to represent the card angle,
the angle along the centerline between the front and the back. At 6§ = 0° the
card is closed, at # = 90° it is half-open, and at 6 = 180° the card is fully
opened flat. Often, the card is intended to only open to 90°, when F' becomes
a backdrop to the popped-up structure. This will be the case for most of the
constructions in this chapter.

LSymbols are gathered in a table on p. 121.
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2 1. Parallel Folds
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Figure 1.1 Basic card notation.

In geometry, the angle in 3D between two planes, such as 6 just described,
is known as a dihedral angle; see Box 1.1, which relies on vectors, described in
Box 1.2.

Our overall goal is to describe the geometry of the motions of the pop-up
structures as the card is opened or closed. Often we reach the geometry through
algebraic equations. The equations will employ variables representing points in
a 3D Cartesian coordinate system, called Cartesian because it was introduced
by René Descartes. We will consistently use  and y to represent placement in
the zy-plane of the card back B, and use z as the third coordinate representing
the perpendicular height above B. We place the origin of the coordinate system
somewhere along the centerline L, either at the bottom end or the midpoint of
L, with x increasing horizontally along the width of the back and y increasing
vertically along the centerline.

Box 1.1 Dihedral Angle

In geometry, the angle in 3D between two planes is known as a dihedral
angle, from the Greek di- (two) and hedra (faces). A face is a region of
a plane. Ultimately angles are measured in two dimensions, not three,
between what are known as vectors: see Box 1.2.

In Fig. 1.2, F; and F5 are faces sharing an edge e. The dihedral
angle § at e can be measured by a protractor perpendicular to edge e; so

Figure 1.2 The dihedral angle § between faces F; and F5.
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1.2. Rhombus Card 3

the protractor lies in a plane P orthogonal to e. (The term orthogonal
is a synonym for “perpendicular.”) The vectors v; and vq lie along the
intersection of plane P with the planes containing the faces F} and Fy,
respectively. The angle 6 measures how much v, needs to be rotated
about e to align with v;. In this chapter, e is the card centerline L and
0 is the card angle 6.

Box 1.2 Vectors

Informally, a vector can be viewed as a directed line segment. Thus it
has both a length and a direction. The two endpoints are called the tail
and the head, with the head marked by an arrowhead. A vector differs
from a directed line segment in that its tail is not fixed to one point of
the plane or space. Rather it should be imagined to be placed anywhere,
as in Fig. 1.3.

Figure 1.3 Vectors vy, v, vg are the same vector a — b.

Often it is convenient to view a point p, which has specific coordinates
with respect to an origin, as a vector with its tail at the origin and
its head at p. Given any two points a and b, the difference in their
coordinates, a — b, is a vector, placed with the head at a and the tail at
b. Here if a = (ay, ay) and b = (b, by), then

0 =10 = (@ = Bl By = i) -

We will make cuts and creases in the card (and in attachments to the card).
Creases in the card can be either valley or mountain folds, terminology from
origami with the obvious interpretation. All creases can be viewed as hinges
between the flat, planar pieces to either side. Those flat pieces are often called
faces, which are rigid except where hinged along the edges.

1.2 Rhombus Card

Our first pop-up is a rhombus, a four-sided figure (a quadrilateral) all of
whose edge lengths are equal. Fig. 1.4 shows the construction from a rectangle
of cardstock. After folding the cardstock in half along centerline L, the two
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Figure 1.4 Rhombus cuts and folds, producing Fig. 1.5.
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Figure 1.5 Rhombus card from the template in Fig. 1.4.

length-w cuts can be achieved by one scissors cut of length w perpendicular
to L. Then the mountain and valley creases shown pop out the rhombus, as
illustrated in Fig. 1.5. With several points labeled, the rim (green in Fig. 1.5)
is a 2D rhombus acbd lying in a plane orthogonal to the centerline L. The
sides of the rhombus have length w. We’'ll use the notation ac to represent
the line segment from point a to point ¢, and |ac| = w to indicate its length
(Box 1.3.)

Box 1.3 Segment Length |ab|

Throughout this book, we use lowercase letters to represent points, in
either 2D or 3D. We often need to refer to the length of a segment
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Figure 1.6 Snapshots of the rhombus card. Animation available (O’Rourke,
2021).

between two points. If a and b are two points, we use |ab| to mean the
length of the line segment from a to b (which of course is the same as |ba|,
the length from b to a). In terms of 3D coordinates, with a = (ay, ay,a.)
and b = (by, by, b.),

abl = /(az = b)? + (ay — b,)? + (2 = b.)?

Often this is expressed as |a — b|, because the difference of the point
coordinates is a vector from b to a, and |ab| is the length of this vector,
as explained in Box 1.2. Other sources notate this as ||a — bl|, where ||
indicates the norm of the vector.

. 7

The cut segment creates two sides, which then become the four sides of
the rhombus rim. Note that in the flattened template, points a and b have
the same location—they are co-located—and become opposite corners of the
rhombus. Fig. 1.6 shows snapshots of the card at increasing values of 6 from
0°—completely closed—to 180°—fully opened, when it matches the template
in Fig. 1.4.

This construction is called a parallel fold because the two valley creases and
the one mountain crease are parallel (and parallel to the card centerline). For
aesthetic reasons, often an extra layer of cardstock is pasted behind the front
and back faces of the card, so that the gap formed by popping up the rhombus
has a backdrop, rather than the hole shown in Fig. 1.6.
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6 1. Parallel Folds

Figure 1.7 Points b and d follow circular arcs centered on ¢ and a, respectively.

1.3 Circular Arc Equations

As is evident in Fig. 1.7, point b at the corner of the rhombus must remain
the fixed distance |¢b| = w from point ¢ throughout the opening motion, and
therefore must ride on a circle of radius w centered on c. Similarly, point d
remains distance |ad| = w from a, and so follows a circle centered on a. In
preparation of more complicated motions in later chapters, we now describe
these motions via algebraic equations.

The equation of a radius-w circle in the zy-plane, centered on the origin, is

2y =w?. (1.1)

The circles followed by points b and d lie instead in the zz-plane, a plane
orthogonal to the y-axis along the centerline L. Let’s focus on point d revolving
around a. One might think that the equation for d’s position is

2?22 =w?, (1.2)

simply substituting z for y and otherwise not mentioning y. But because that
equation does not constrain y, it describes circles for all values of y. So Eq. 1.2
describes an infinite cylinder centered on the y-axis (and in a 3D coordinate
system, Eq. 1.1 denotes an infinite cylinder centered on the z-axis). To describe
the circle that d follows, we need two equations, including one pinning down
the precise y-coordinate for point a.

Let us say that the card back B has width W and height H (uppercase
distinguishing from lowercase w and h). Then point a has coordinates a =
(0, %, 0), and d is constrained by these two equations “simultaneously”:

2

)

x2+22:

g

y:

vl
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1.8. Circular Arc Equations 7

We will frequently need to “solve” equations simultaneously, but here there is
nothing to solve: we are just specifying that both equations constrain z,y, z at
the same time.

Similarly, point b follows the circle arc centered on ¢ = (w, %, 0) defined by
these two equations, where z is shifted by w:

(x —w)? + 22 = w?

y="%5.

Lastly we presage parametric equations, which were used to draw the spokes
in Fig. 1.7 and which will play a significant role in later chapters (Box 2.2).
Parametric equations rely on a parameter, which in our situation is the card
angle 0. The equations we just derived describe the full circle for point b
“all at once.” Parametric equations pinpoint the location of b for a specific

value of 6:
r=w+ wcosh ,
y=4, (1.3)
z=wsinf .

For example, if § = 90°, then cosf and sinf are 0 and 1, respectively, so

(z,y,2) = (w, &, w), which places b directly above ¢ = (w, &,0). (For more on
cosine and sine, see Box 1.4.)

Box 1.4 Trigonometry

We will use trigonometry sparingly and never need more than the basic
relationships illustrated in Fig. 1.8, always measuring angles counter-
clockwise. Note that not only is tan@ the ratio of the altitude to the
base of the triangle, but it is the length of the tangent from p to the x-
axis. This latter relationship helps to understand why, as 6 approaches
90°, tan @ grows without bound—approaches infinity.

p = (cos 6, sin )

Figure 1.8 Basic trigonometry: unit-radius circle.
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(b)

Figure 1.9 (a) Asymmetric cut: h > w. (b) Two parallel asymmetric cuts.

1.4 Parallelograms

Two simple modifications of the rhombus construction turn it into a use-
ful pop-up structure. First, rather than cut a length w to each side of the
centerline L, an asymmetric cut of w on the back B and h on the front
F leads to a pop-up parallelogram, w x h at card angle # = 90°. See
Fig. 1.9(a).

Second, two identical parallel cuts, symmetric or asymmetric about L,
result in a centered pop-up, rather than the parallelogram extending to
the card’s top edge. See Fig. 1.9(b). With A > w as in the figure, the
pop-up can serve as a face into which letters can be carved. When h <
w, the pop-up often serves as a platform on which other structures are
built.

Exercise 1.1 Practice: Within Card Profile

With the card width W and height H, which combinations of the pop-
up parallelogram dimensions w and h ensure that no portion of the
pop-up “sticks out” when the card is fully closed at § = 0°7 (See

Fig. 1.6.)

Exercise 1.2 Understanding: Arcs Intersection

In Fig. 1.9(b), what are the coordinates of the point p at which the red
and blue arcs cross? Here red marks the trajectory of point b, and blue
that of point d.
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Figure 1.10 (a) Template for angled cuts. (b) The pop-up.

1.5 Cut Variations

We'’ve examined symmetric and asymmetric cuts, but many other variations
are possible. For example, angled but symmetric cuts (and still creases parallel
to L), as in Fig. 1.10(a), lead to a very similar pop-up with parallel creases, as
in Fig. 1.10(b).

Before we turn to popping up letters, the reader might enjoy exploring sev-
eral other variants in the following exercises, perhaps verifying understanding
with scissors and paper (cardstock is not essential for quick experiments).

Exercise 1.3 Understanding: Parallel Unequal

Describe the behavior of the pop-up whose template is shown in Fig. 1.11.

I

Figure 1.11 Cuts are centered on L, parallel, but of unequal lengths.
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10 1. Parallel Folds

Exercise 1.4 Understanding: Three Parallel Cuts

Describe the behavior of the pop-up whose template is shown in Fig. 1.12.
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Figure 1.12 Three centered, parallel cuts.

.

Exercise 1.5 Understanding: Slanted Parallel

Describe the behavior of the pop-up whose template is shown in Fig. 1.13,
with valley creases as shown.

Figure 1.13 Parallel but slanted cuts.

1.6 Pop-Up Letters

It is now a short step from popping up a parallelogram box to popping up letters
“carved” into the front of such a box. Fig. 1.14 illustrates the idea for the letter
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Figure 1.14 (a) Pop-up letter T and (b) template. (¢) Several letters. Animation
available for (a) (O’Rourke, 2021). [Pattern from Card3D software.]

T, which can be generalized for any sequence of letters. There is software all
over the Web that creates a template for a given sequence of letters, and indeed
we used software for Fig. 1.14(c).

Exercise 1.6 Practice: Tallest Letter

If a card has dimensions W x H, what is the tallest letter one can pop-
up, without having some of the letter protrude when the card is fully
closed? (See also Exercise 1.1.)

1.7 Tents

So far we have explored constructions that pop-up cut portions of the front and

back of the card. This constrains the structure so that the top (the w-side) of

the popped-up parallelogram box (in Figs. 1.6 and 1.9) remains at all times

parallel to the card back B and the h-side of the parallelogram remains parallel

to the card front F. One can add structures not cut from the card, but instead
https://doi.org/10.1017/9781009093095.002 Published online by Cambridge University Press


https://doi.org/10.1017/9781009093095.002
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Figure 1.15 Tent, with h = 3w.

Figure 1.16 Two staircases. [Design and construction by Gail Parsloe. Based on
construction in (Jackson, 1993, p. 63).]

separately creased cardstock pasted onto the card back and front. Fig. 1.15
shows a simple tent that does not flatten at 6§ = 180° as have our previous
examples. When the card is fully opened at § = 180°, the tent has height

|ab] = v/ h? — w? |

which is positive whenever A > w. We will examine similar pasted-in structures
in the next chapter and especially in Chapters 5, 6, and 7.

1.8 Artistic Designs

Even with just the simple parallel fold, artistic designs can be made. Fig. 1.16
shows two intersecting staircases, one vertical and one horizontal. Each is con-
structed from parallel cuts staggered by the stair height. The extra layer of
cardstock as a backdrop highlights the design.

Fig. 1.17 shows a beautiful design, again constructed solely of parallel cuts
and a few “windows.” One can view the central circular region as akin to the
platform into which the T is cut in Fig. 1.14. We will see an analogous artistic
example in Chapter 6, Fig. 6.1.
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Figure 1.17 Logo for Evermore Origamic Architecture. [Construction by Gail
Parsloe. Pattern from origamicarchitecture.com.|

Exercise 1.7 Challenge: Half-Cylinder

Design a pop-up that approximates half of a cylinder when opened to
0 = 90°, as in Fig. 1.18.

Figure 1.18 A pop-up half-cylinder.

1.9 Creases as Centerlines

A theme throughout this book will be identifying substructures in a pop-up
design that have a simple relationship to the card angle # during the opening
motion. The simplest relationship is identity, and that is what is present in
the pop-up parallelogram structure. As mentioned earlier, the top face of the
parallelogram “box” always remains parallel to the card back B, and the lateral
face of the parallelogram remains parallel to the front face F. So the valley
creases where the parallelogram meets B and F (at points ¢ and d in Figs. 1.5
and 1.9) are “copies” of the card centerline L, exhibiting the same dihedral
angle 6.
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14 1. Parallel Folds

Figure 1.19 The card angle 6 at a repeats at a; and as. Animation availa-
ble (O’Rourke, 2021). [Design from (Jackson, 1993, p. 36).]

—

Figure 1.20 Fractal Christmas tree. [Design and construction by David Richeson;
used by permission of author.]

This permits building another pop-up structure on those creases, viewing
each crease as a displaced centerline. Fig. 1.19 shows one possibility. Here 6
occurs at a along L, as well as at points a; and as along Ly and Lo, respectively.
The pattern can be repeated, leading to the impressive fractal-like recursive
pop-up in Fig. 1.20.

Notes

Impressive commercial software is available for designing letter (and more com-
plex) pop-ups, e.g., Por-UpP CARD DESIGNER PRO, tamasoft.co.jp/craft/
popupcard-pro_en/.

For the Christmas tree design (Fig. 1.20), see Dave Richeson’s blog,
artfulmaths.com/blog/folding-christmas-fractals.
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