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Lay understanding of probability distributions

Daniel G. Goldstein∗ David Rothschild∗

Abstract

How accurate are laypeople’s intuitions about probability distributions of events? The economic and psychological

literatures provide opposing answers. A classical economic view assumes that ordinary decision makers consult perfect

expectations, while recent psychological research has emphasized biases in perceptions. In this work, we test laypeople’s

intuitions about probability distributions. To establish a ground truth against which accuracy can be assessed, we control

the information seen by each subject to establish unambiguous normative answers. We find that laypeople’s statistical

intuitions can be highly accurate, and depend strongly upon the elicitation method used. In particular, we find that eliciting

an entire distribution from a respondent using a graphical interface, and then computing simple statistics (such as means,

fractiles, and confidence intervals) on this distribution, leads to greater accuracy, on both the individual and aggregate

level, than the standard method of asking about the same statistics directly.
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1 Introduction

How accurate are laypeople’s statistical intuitions about

probability distributions? Turning to the literature, eco-

nomics and psychology seem to provide opposing answers

to this question. Classical economics assumes people ar-

rive at perfect expectations, while psychological research

has emphasized that perceptions of means and variances

are subject to many biases. For example, anchoring and

underadjustment (Tversky & Kahneman, 1974), and pri-

macy and recency effects (Deese & Kaufman, 1957) are

thought to cause subjective expectations to deviate system-

atically from the objective truth.

When people’s statistical intuitions about a problem de-

viate from a normative answer, a few possible paths merit

exploration. One is to question the normative answer (i.e.,

what information and assumptions are used to arrive at

the supposedly correct answer?), a second is to question

people’s general cognitive capacities (i.e., given the nec-

essary information and assumptions, are people’s mental

representations systematically deficient?), and a third is

to ask how the question was asked (e.g., does the elici-

tation technique distort respondents’ ability to communi-

cate what they know?). In this work, we test the accuracy

of people’s intuitions about probability distributions. To

settle the question of what is normative, we use a con-

trolled task in which normative answers can be computed

for each subject. To shed light on whether deviations from

the normative answers are due to biased mental represen-
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tations or difficulty with specific response formats, we test

two different methods of eliciting information about distri-

butions from laypeople. One method is graphical and the

other is stated. Should both methods result in similarly in-

correct responses, it would be consistent with biased men-

tal representations. However, if one response method all

but eliminates deviations from the normative answers on

a number of different metrics, it would be consistent with

the idea that people have rather accurate underlying men-

tal representations that they are better able to express in

some response formats than in others.

Our specific objective in this work is to test the accuracy

of laypeople’s forecasts about numeric information in the

environment. We chose numeric information because the

information stream of contemporary life is permeated with

numbers—such as the prices, weights, distances, dura-

tions, temperatures, and scores found in the news media—

on which economic forecasts are often based. We com-

pare a graphical elicitation procedure (henceforth graphi-

cal method) in which respondents visually “draw” an en-

tire probability distribution to a standard, stated method

(henceforth standard method) in which key statistics and

fractiles of a distribution are asked about directly.

We find that the graphical method is substantially bet-

ter than the standard method in both individual-level ac-

curacy (the mean absolute difference between individuals’

answers and the correct answers) and aggregated-level ac-

curacy (the mean absolute difference between averaged

individual responses and the correct answers). The re-

sults are robust across 10 different measures and several

methods of assessing accuracy. Further, they hold even

when the standard method is helped as much as possible

by cleaning data ex-post. In addition to obtaining more in-

formation than the standard method, the graphical method
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also seems to mitigate irrelevant presentation effects.

We describe here the task at a high level; a more de-

tailed description will come in the Methods section. In

the experiment, subjects sit at a computer screen and are

told that they will see 100 numbers (which represent a

sample from a larger population) flash before their eyes

in rapid succession. Their task is to predict how a future

sample from this same population might look. Subjects

in the graphical method condition use an interactive tool

to specify this hypothetical future sample: they essentially

draw a histogram using a simple interface. Subjects in the

standard method condition, in contrast, are asked to re-

spond to direct questions about how a future sample would

look, specifying, for instance its extreme values, median,

fractiles, and the like. Both techniques are ways of elicit-

ing distributions. Since the normative properties of future

samples are known in this task, the elicited distributions

can be compared in terms of accuracy on a variety of mea-

sures.

We next review the relevant literature, describe a multi-

condition experiment and its results, and conclude with a

discussion of implications for survey research as well as

economic and psychological studies of decision making.

1.1 Literature review

The notion of people as intuitive statisticians has a long

history, dating back to Laplace and embraced in the 20th

century by Brunswik (Peterson & Beach, 1967). This view

holds that probability theory and statistics both serve as a

norm against which intuitive inference can be judged, as

well as a codification of how people think. As Laplace said

of probability theory, it is but “common sense reduced to

a calculus” (Laplace 1814/1951). For useful reviews of

this extensive literature, see O’Hagan et al., (2006), Jenk-

inson (2005), Gigerenzer & Murray (1987) and Wallsten

& Budescu (1983). From this broad topic, we isolate here

a set of themes that are particularly relevant to this inves-

tigation.

Eliciting statistics of a univariate distribution. Eliciting

subjective statistical information from experts is a com-

mon problem with applications to forecasting, decision-

making, risk assessment and providing priors for Bayesian

statistical analysis (for a review, see O’Hagan et al., 2006).

There are several ways to assess beliefs about univariate

distributions. Fractile-based methods (e.g., Lau, Lau, &

Ho, 1998) ask people to state values such that various per-

centages of observations fall above or below them. For

instance, respondents might be asked to state what they

believe to be the 90th percentile of a distribution. Alterna-

tively, a probability-based method provides the respondent

with a value, and then asks the respondents to state the

percentage of observations they feel would fall above or

below that value. For example, respondents may be asked

what percentage of a distribution is greater than the value

750. Whether providing fractiles and recording respon-

dents’ estimated values, or providing values and recording

respondents’ estimated fractiles, distributions can be fit to

the responses. Neither method seems to dominate in terms

of obtaining calibrated estimates (O’Hagan et al., p. 102).

An often-reported finding with this approach is that esti-

mated subjective distributions tend to be too narrow. In

one characterization of an “overconfidence effect” confi-

dence intervals that are supposed to be 90% likely to con-

tain a true answer are often found to bracket the truth 50%

of the time or less (Lichtenstein et al., 1982). In what fol-

lows, we shall see if this holds in both elicitation formats.

An alternative method to elicit a histogram is to pro-

vide respondents bins of values and have them assign per-

centages of values that would fall within each bin. The

earliest reference we find to this method is Kabus (1976,

pointed to by Jenkinson, 2005), which provides an exam-

ple in which respondents are given bins consisting of in-

terest rates one year in the future (e.g, 4%, 4.25%, . . . ,

6.75%) and asked to assign probabilities to each bin such

that they sum to 100%. A similar method has been used

for decades by the Federal Reserve Bank of Philadel-

phia’s Survey of Professional Forecasters, in which expert

economists assign probabilities to ranges of variables such

as inflation.1 The histogram method is developed further

by Van Noortwijk et al. (1992), who created a computer in-

terface (for use by experts with the assistance of a trained

analyst) that allows respondents to alter the number (and

accordingly size) of bins as well as the expected number

of events that would fall within each. While the method

looks promising, it is hard to draw conclusions about its

effectiveness as the authors do not report an experiment or

provide a view of the user interface.

Goldstein, Sharpe and colleagues (Sharpe, Goldstein,

& Blythe, 2000; Goldstein, Johnson, & Sharpe, 2008)

created the graphical Distribution Builder methodology in

which bins are fixed and subjects assign probabilities to

bins by dragging stacks of markers into the bins. For

instance, when there are 100 markers, each represents a

probability of 1% and all 100 must be dragged into bins for

the distribution to be submitted. The authors cite psycho-

logical principles on which the method is based and find it

to have good test-retest reliability and validity for predict-

ing risk preferences, even a year into the future. More re-

cently, Delavande & Rohwedder (2008) introduced a sim-

ilar “balls and bins” method in which respondents are told

they must allocate a certain number (e.g., 20) of chances

or balls into a fixed set of bins by clicking icons to al-

ter the quantity in each bin while being shown the total

number of balls they need to re-allocate. Most recently,

1Here is a sample form from 1981: http://www.phil.frb.org/research-

and-data/real-time-center/survey-of-professional-forecasters/form-

examples/form81.pdf.
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Haran, Moore and Morewedge (2010) describe a “Subjec-

tive Probability Interval Estimate” (SPIES) method. As it

presents bins and asks people to state numeric probabili-

ties, it is similar to the histogram method of Kabus, with

the exception that its bins are assumed to be exhaustive

and that probabilities are forced not to exceed 100%.

The graphical method we present here is closest to the

Distribution Builder and the “balls and bins” methods. In-

stead of eliciting numerical fractiles or values, we present

subjects with 100 graphical markers. We chose this graph-

ical interface to confer the advantages of expressing prob-

abilities as frequencies (X out of 100) and because, by

design, it elicits only distributions with probabilities that

sum to 100%. Furthermore, it necessarily eliminates con-

fused, non-monotonic patterns of response that can arise in

fractile- and probability-based methods (e.g., stating that

the probability of exceeding a future income of $100,000

is less than the probability of exceeding a future income of

$200,000). A last advantage of a visual histogram method

is that Ibrekk and Morgan (1987, p. 527) found untrained

laypeople to prefer seeing information in histogram form,

relative to eight other roughly-equivalent representations,

such as CDFs, continuous densities, point ranges, box

plots, etc. While these properties of the graphical method

seem desirable from a psychological point of view, choice

of method should be an empirical decision. The literature

is silent on which method is superior, a topic we turn to

next.

Evaluating elicited distributions. To our knowledge,

very little testing has been done to compare graphical

and stated elicitation techniques when a “ground truth”

is known. Much is written on the topic of eliciting sub-

jective belief distributions, (e.g., Winkler, 1967; Staël von

Holstein, 1971; Van Lenthe, 1993a, b), however it is dif-

ficult to judge whether a subjective distribution has been

“well elicited” or not. Proxies to deal with this problem

have been proposed, for instance: checking how often

90% confidence intervals derived from elicited distribu-

tions bracket a correct answer across a number of prob-

lems (Haran, Moore, & Morewedge, 2010). Generaliza-

tions from this research have been that standard fractiles

and probability-based methods elicit confidence intervals

that are too narrow (e.g., Lichtenstein et al., 1982). An-

other metric for evaluating elicitation techniques is test-

retest reliability (Van Lenthe, 1993a, b; Goldstein, John-

son, Sharpe, 2008). While authors have appreciated that

different elicitation techniques lead to varying degrees of

calibration, and that method-induced bias is a basic prob-

lem, it was noted some years ago that “there is no con-

sensus about the question of which elicitation technique is

to be preferred” (van Lenthe, 1993b, p. 385). We believe

that this remains the case. However, insight can perhaps

be gained by moving away from studying belief distribu-

tions that cannot be judged in terms of accuracy (except

for calibration in aggregate) and towards distributions that

can be compared to a normative answer. In what follows,

we present the same sample of information to all subjects

(to provide a common base of knowledge) and then pose

questions about future samples that can be compared to a

normative ground truth.

Experienced frequencies. At the beginning of the ex-

perimental session, we chose to present numbers visually

in rapid succession for two reasons. First, we wanted to

establish a controlled sample of information that is fixed

within groups of subjects so that we could calculate nor-

mative answers. Second, we wanted to exploit an infor-

mation format that communicates probabilities in a way

people find easy to understand. A large literature on fre-

quency encoding (e.g., Hasher & Zacks, 1979; Hasher

& Zacks, 1984) suggests that encoding in frequencies is

relatively automatic and accurate. Kaufmann, Weber, &

Haisley (2013) find people experiencing frequencies over

time in a graphical risk tool had a better understanding of

the characteristics of a risky asset than those who were

simply provided with summary statics or a static distri-

bution. In addition, Hogarth & Soyer (2011) find that

people’s assessments of probabilities are much more ac-

curate when they are based on simulated experiences as

opposed to forecasting models. Note that the “decisions

from experience” literature (e.g., Hertwig et al, 2004; Hau,

Pleskac, & Hertwig, 2010), finds that people may under-

weight experienced probabilities relative to stated proba-

bilities. These results are generally based on choices be-

tween mixed gambles and involve the weighting of finan-

cial payoffs and risk attitudes. As such, it is difficult to

disentangle accuracy of perceptions from complexity of

preferences. Underweighting in choice is not the same as

underestimating in a forecast. The unambiguous norma-

tive answers in our task will allow us to directly test for

over- and under-estimation of probabilities in forecasts.

Cognitive biases. In the experiment that follows, we

present respondents with samples of numerical informa-

tion as a sequence of numbers and then ask the respon-

dents for generalizations about future samples. The in-

formation is presented sequentially over time. However,

these temporal and sequential aspects are irrelevant to the

generalization task, just as the order of values that occur in

a series of die rolls is irrelevant for determining whether

the die is loaded. Nonetheless, the workings of human

cognition can make irrelevant information hard to ignore.

Beliefs are influenced by the order in which information

is presented (Hogarth & Einhorn, 1992). Primacy and

recency effects (Deese & Kaufman, 1957) might suggest

that the first and last items sampled may have special influ-

ence when generalizing to future samples. Anchoring ef-

fects (Tversky & Kahneman, 1974) might cause responses

to be pulled in the direction of a prominent number, such

as the mode of a distribution. Peak-end biases in remem-
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Table 1: The 12 randomly-assigned sets of values that respondents observed. The last column contains counts of the

values of each number from 1 to 10 in the set. For example, set 2A contains 11 “1” values, 23 “2” values, and so on.

Frequency of values

Distribution Shuffle α,β Shape distribution 1 2 3 4 5 6 7 8 9 10

1 A 1,5 Floor 41 26 16 9 5 2 1 0 0 0

1 B 1,5 Floor 41 26 16 9 5 2 1 0 0 0

2 A 2,5 Left-of-center 11 23 24 19 12 7 3 1 0 0

2 B 2,5 Left-of-center 11 23 24 19 12 7 3 1 0 0

3 A 5,5 Symmetrical 0 2 8 17 23 23 17 8 2 0

3 B 5,5 Symmetrical 0 2 8 17 23 23 17 8 2 0

4 A 1,1 Uniform 10 10 10 10 10 10 10 10 10 10

4 B 1,1 Uniform 10 10 10 10 10 10 10 10 10 10

5 A 5,2 Right-of-center 0 0 1 3 7 12 19 24 23 11

5 B 5,2 Right-of-center 0 0 1 3 7 12 19 24 23 11

6 A 5,1 Ceiling 0 0 0 1 2 5 9 16 26 41

6 B 5,1 Ceiling 0 0 0 1 2 5 9 16 26 41

bered experience (Kahneman et al., 1993) might suggest

the highest and most recent values experienced will al-

ter perceptions of an average. Based on past research, we

should expect all these “presentation effects” and more, to

be operating on subjects’ judgments. However, some elic-

itation methods may be more susceptible to presentation

effects than others; some effects may arise more often in

stated response modes but less often in graphical modes.

To test the robustness of elicitation techniques to irrelevant

presentation effects, we randomly assign subjects to see

the same information in one of two orderings, and check

which elicitation techniques’ estimates differ least when

order is changed.

2 Methods

Experimentation was conducted online. Respondents con-

sisted of 619 adults recruited from the Amazon Mechani-

cal Turk labor market (Mason & Suri, 2012) who partici-

pated online in exchange for a flat cash payment. Partici-

pation lasted between two and five minutes, depending on

condition. At a high level, the experiment presents people

with samples from probability distributions and asks them

questions, using either the standard or graphical method,

about future samples from these distributions. Random

assignment took place along two dimensions—the distri-

bution sampled (six distributions presented in two random

shuffles) and questions asked (five conditions spanning the

graphical and standard methods)—making for a 30 cell ex-

periment that comprises two different shufflings (i.e., pre-

sentation orders). The sample size was chosen to provide

about 10 responses per condition, distribution, and shuffle

combination.2

In all conditions, after a consent form, the experiment

begins with a page stating “Imagine we have an extremely

large bag of ping pong balls. Each ball has a value between

1 and 10 written on it. We will randomly choose 100 balls

from the bag. On the next screen, we will show you their

values, one at a time, very quickly. This will take about

a minute. Say each value to yourself as it passes before

your eyes; try to remember as much as you can”. On the

next page, a fixation point appears for 450 milliseconds at

the center of the screen, after which 100 digits appear, one

at a time, with an exposure duration of 600 milliseconds

each. To prevent successive numbers from appearing as

one, each number fades and moves a few centimeters to

the left as it is replaced. This phase of the experiment lasts

one minute (100 numbers displayed for 600 milliseconds

each).

Respondents are randomly assigned to view numbers

from one of six distributions, described in Table 1. Val-

ues in a distribution were generated from a beta distribu-

tion with the specified α, β parameters. Six unique α, β

combinations were used, representing six standard types

of distributions. To achieve smooth distributions, a mil-

lion draws were taken from each beta distribution, sorted,

2There was no need to exclude any responses that answered the ques-

tion. Two further conditions were randomized into the study, where

respondents viewed distributions and determined which ones they saw,

rather than create distributions themselves; those conditions are used for

a related, but different study.
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scaled to be in the range from 1 to 10, rounded to the near-

est integer, and every 10,000th value was retained, starting

from the 5,000th value. Figure 1, top row, depicts the dis-

tributions graphically. For each of the unique α, β com-

binations, values are displayed in one of two random or-

ders or “shuffles”. To reduce unnecessary variation and

to test for order effects, the shuffling was the same for all

respondents assigned to a specific distribution and shuffle

combination.

After observing all 100 numbers from a randomly-

assigned distribution and shuffle combination, respon-

dents are told “Now imagine we throw the 100 balls you

just saw back into the bag and mix them up. After that, we

draw again 100 balls at random.” Subsequently, respon-

dents are questioned in one of five randomly-assigned con-

ditions, one representing the graphical method and four

using the standard method. See the Appendix for descrip-

tions of each condition, which we describe here.

Graphical method. This technique is a simpler varia-

tion of the Distribution Builder of Goldstein, Johnson, &

Sharpe (2003). Using the graphical user interface shown

in Figure A1 in the appendix, respondents are asked “How

many balls of each value (from 1 to 10) do you think we

would draw?” By clicking on buttons beneath columns

corresponding to the values from 1 to 10, respondents

place 100 virtual balls in ten bins, ultimately creating a

100 unit histogram that should reflect their beliefs about

a new sample drawn from the same population that gave

rise to the sample they initially observed. The graphi-

cal method takes advantage of frequencies (as opposed

to probabilities or percentages) in elicitation, exploiting

a representation that is easily comprehended by laypeople

(Hoffrage et al., 2000; Gigerenzer, 2011; Goldstein, John-

son, & Sharpe, 2008).

Stated fractiles (standard method). Respondents in this

condition are asked to imagine a second sample and to

estimate various fractiles of it in seven questions. To avoid

unfamiliar terminology (including the word “fractile”) the

following language is used “Imagine the new set of 100

balls were arranged in front of you with the smallest values

on the left and the largest values on the right. What do you

think would be the value of the 1st ball from the left? Since

each ball has a value from 1 to 10, your answer should be

between 1 and 10.” The question is repeated 6 more times

(within subject), asking for the value of 11th, 26th, 50th,

75th, 90th, and 100th ball, as shown in Figure A2. These

seven fractiles are chosen because together they capture

standard summary statistics: the extreme values, the inner

80% interval, the interquartile range, and the median.

The wording of this question was carefully chosen to

minimize differences between the graphical and standard

methods. First, it is emphasized that the possible values

range “between 1 and 10” in the standard method because

this information is explicit in the graphical method, which

has the values from 1 to 10 along its horizontal axis. Sec-

ond, the questions are deliberately arranged on the page

from the smallest to largest fractiles to reduce confusion.

Stated mean (standard method). Given the formula for

the mean (in case respondents do not know what it is),

respondents are asked to estimate the mean of a second

sample with the question, “In statistics, the mean of 100

values is the number you would get by adding up all the

values and dividing by 100. What do you think is the mean

of the 100 new values drawn?” This is shown in Figure

A3.

Stated average (standard method). To check whether

respondents think about the concepts of “average” and

“mean” similarly, which may not be the case since there

are many kinds of average, we asked about the average

value with the following question, “What do you think is

the average of the 100 new values drawn?” (Figure A4).

Stated confidence range (standard method). In this con-

dition, instead of asking respondents to imagine a second

draw of 100 balls, we instruct them, “Now imagine we

throw the 100 balls back into the bag and mix them up.

After that, we draw one ball at random.” Respondents are

asked two fill-in-the-blank questions: “I am 90% certain

the value of this ball would be greater than or equal to

___” and “I am 90% certain the value of this ball would

be less than or equal to ___”. The exact fractiles, of the

11th and 90th, in the stated fractiles condition were chosen

to match this condition (Figure A5).

To assess accuracy, a set of normative answers for this

task must be calculated. Recall that respondents were

asked about statistics computed on hypothetical second

samples drawn from the population from which the first

samples (shown to the respondents) was obtained. By

bootstrapping from the first samples, we estimated the

statistics (mean, fractiles, confidence ranges) of hypothet-

ical future samples and found them to be identical, after

rounding, to those based on the first samples. Accordingly,

statistics of the first samples are therefore the normative

answers in this experiment.

3 Results

The responses from the graphical method aggregate sim-

ply to reveal the distributions that respondents saw at the

start of the experiment. Figure 1 illustrates the aggre-

gated responses (average judged frequency for each num-

ber from 1 to 10) from the graphical method (at bottom),

compared to the normative distribution (at top), for all six

of distributions. We make three high-level observations.

First, Figure 1 reflects the aggregated-level accuracy of

the lower moments (mean and variance), as well as the ac-

curacy of higher moments like the skew. The abbreviated

tails of the distributions are captured in the Floor and Ceil-
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Figure 1: The aggregated responses from the graphical method (bottom) compared to the distributions rapidly presented

to subjects at the start of the experiment, which is the normative distribution (top).

Figure 2: Comparison of accuracy for the 1st, 11th, 26th, 50th, 75th, 90th, and 100th fractiles using the standard method,

left, and graphical method, right. In grey, slightly jittered, are all individual-level responses. The dark rectangles and

error bars represent the mean of the individual responses and standard errors for any given normative value. The linear

trend of the individual response is the dashed line with its standard error shaded around it; the slope for the standard

method is 0.52 and R2 is 0.29, while the slope for the graphical method is 0.91 and R2 is 0.78.

ing distributions. The location of modes and direction of

skew are accurate in the Right-of- Center (ROC) and Left-

of-Center (LOC) distributions. There is rough symmetry

in the Symmetrical and Uniform distributions. Of course,

Figure 1 reflects the aggregated accuracy of the responses,

not the individual accuracy, but later figures will show the

individual-level variance is moderate. Second, while the

standard method directly addresses key statistics such as

fractiles, moments, and ranges, we can use the full distri-

butions from the graphical method to derive any of these

attributes. Third, the graphical method alone provides a

rich 100-unit distribution for respondents and researchers

to utilize, while the standard method provides only a small

selection of statistics. This is particularly consequential

(on both the individual and aggregate level) when the nor-

mative distributions are highly skewed or multimodal; this

level of detail is missed by simple elicitations of just a few

statistics.

We turn to a more quantitative analysis by comparing

the graphical and standard methods in terms of accuracy

for estimating fractiles of a distribution. The seven key

fractiles gathered directly with the standard method are the

1st, 11th, 26th, 50th, 75th, 90th, and 100th. In the graphical

method, these (and any other fractiles) can simply be read

off the distribution. With the six different distributions and

seven key fractiles, there are 42 normative answers, each

an integer from 1 to 10. Figure 2 shows the normative

values of the fractile on the x-axis and the subjective es-

timates on the y-axis. Exactly correct answers fall on the

diagonal 45° line. We examine individual and aggregate

level accuracy separately.

On the individual level, the graphical method attains

higher accuracy than the standard method. Figure 2

shows all the individual responses in grey. The individual-

level accuracy of the graphical method over the standard

method is apparent in the lack of highly inaccurate re-
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Figure 3: Comparison of individual-level accuracy for the

1st, 11th, 26th, 50th, 75th, 90th, and 100th fractiles, mean,

and confidence range using the standard method versus

graphical method. Error bars are +/- one standard error.

sponses for the graphical method in the upper left and

lower right corners. For example, in the standard method

33% of the responses are off by 3 or more units (among

the possible responses from 1 to 10), while the graphical

method has just 11% off by such a large amount. Simi-

larly, the dense gathering of responses near the diagonal

with the graphical method also reflects its accuracy. The

percentage of exactly correct responses nearly doubles in

the graphical method compared to the standard method:

49% versus 26% exactly correct. Unsurprisingly, more

accurate individual-level responses translate into a smaller

average absolute error for the graphical method. The av-

erage absolute error is 2.09 units for the standard method,

compared an average absolute error of 0.94 units for the

graphical method. That is, the average standard method

response was off by more than two units, while the average

graphical response was off by less than one. Beyond sta-

tistical significance (Welch Two Sample t-test, t=−12.7,

p<.001) this is a meaningful distinction as the graphical-

method error is less than half the size. Narrower standard

errors on the means given similar numbers of observations

illustrate the lower level of dispersion of responses in the

graphical method.

The graphical method is also more accurate on the ag-

gregate level. The regression lines in Figure 2, based on

all the individual responses, demonstrate this finding. A

slope coefficient of 1 and y-intercept of 0 would indi-

cate that the answers follow the diagonal exactly. The

graphical method’s regression line has a slope 0.91 and

y-intercept of 0.37. The standard method’s regression line

has a slope of 0.52 and y-intercept of 2.68. As the nor-

mative answer increases by a unit, the graphical method’s

estimates increase by about than one unit, while the stan-

dard method’s estimates increase by about a half of the

appropriate value. Further, the means of the individual re-

sponses cluster much closer to the diagonal than the stan-

dard method’s responses. The average mean is 1.36 units

Figure 4: Comparison of aggregated-level accuracy for the

1st, 11th, 26th, 50th, 75th, 90th, and 100th fractiles, mean,

and confidence range using the standard method versus

graphical method. Error bars are +/- one standard error.

from the normative answer for the standard method and

0.53 units from the normative answer for the graphical

method.

The basic findings are robust to how the responses are

grouped. Whereas Figure 2 showed the normative and

subjective answers in terms of the normative answer val-

ues, Figure 3 shows the mean absolute error for the seven

key fractiles, the mean, and confidence range for a total

of 10 different outcomes.3 The mean absolute error is the

individual-level error, as it shows the distance from the

normative answer for any given response. The smallest

difference between the graphical and standard methods is

0.79 at the 1st fractile, where the standard method’s error

is still twice the graphical method’s error. The error in

the standard method ranges from 87% larger (at the 11th

fractile) to 302% larger (at the 100th fractile). For estimat-

ing the mean, the standard method’s error is 70% larger.

For the lower and upper confidence ranges, the standard

method’s errors are 56% and 92% larger, respectively.

The condition where the respondents were asked to pro-

vide the “average” instead of the mean resulted in similar

responses. For instance, the mean response in the “mean”

condition was 5.65, while the mean response in the “av-

erage” condition was 5.62. Errors were similar as well;

the standard method’s average absolute error for the “av-

erage” was 1.36 versus 1.58 for the “mean”. The median

errors were identical.

Figure 4 shows the mean aggregated-level error (i.e.,

predictive error) for the key statistics. Each point on the

figure represents the average difference between the nor-

mative answer and the average of all of the responses for a

given distribution, method, and statistic. The standard er-

3There is some repetition in this figure, because, while the for the

standard method we ask for both the lower and upper bounds of the

80% confidence range and the 11th and 90th fractile, the lower and upper

bounds derived from the graphical method are, by definition, the same as

the 11th and 90th fractile.
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Figure 5: Comparison of accuracy across the 1st, 11th, 26th, 50th, 75th, 90th, and 100th fractiles of the standard method

versus graphical method, allowing for different segments of the observations. The individual-level is on the left and the

aggregated-level is on the right. “100%” includes all responses. “40%” includes only the perfectly monotonic responses

or the cleaned values. “40% Sample” includes a randomly sampled 40% of observations from the graphical method’s

responses.

rors are much larger on this figure because, for any given

fractile and statistic, there are just six values to average

the error over, which correspond to the six unique distri-

butions. Across the seven key fractiles, the overall mean

from the graphical method is just 0.78 units from the nor-

mative answer, while the average mean of the standard

method is 1.47 units away. Thus, the average aggregated

graphical answer is 0.69 units closer to the ground truth.

Again, this is not just statistically significant (Welch Two

Sample t-test, t=−4.66, p<.001), but a meaningful distinc-

tion as the error from the standard method is nearly twice

the size as that of the graphical method. This is not just in

aggregate across all six distributions and seven fractiles,

but on fractile-by-fractile basis the graphical method has

consistently smaller aggregated-level errors. For the frac-

tiles, the smallest difference in average absolute error is

0.30, but this ranges up to 1.27 with all errors being at least

30% larger (at the 11th fractile) with the standard method,

and as high as 297% (at the 100th fractile). The mean and

confidence bounds differences are not significant, but the

graphical methods have directionally smaller errors.

The aggregated-level errors are smaller than the compa-

rable individual-level errors. The difference is meaningful

for all statistics; Figures 3 and 4, which are both drawn to

the same scale, illustrate this point. Across the six distri-

butions and seven key fractiles the graphical method has

an average error of 0.94 on the individual-level and 0.78

on the aggregated-level. The standard method has an av-

erage error of 2.09 on the aggregated-level and 1.47 on

the individual level. The difference between the individ-

ual and aggregate level is larger in the standard method

than the graphical method, both in terms of the size and

ratio of difference.

Does the better performance of the graphical method

hold when the standard method’s data are cleaned ex-post?

In the standard method, subjects were asked to forecast

values of seven fractiles, from 1st to 100th, in order. While

the subjects are asked to provide values in order from low-

est to highest, some respondents provide reversed or non-

monotonic patterns of response (an issue also observed by

Delavande & Rohwedder, 2008), which seems to indicate

confusion. In Figure 5, we show four different data points

for both the individual-level and the aggregated-level re-

sults. First, we show the overall average error for the stan-

dard methods’ stated fractiles condition. As before, this is

the average absolute error for the individual-level and the

average of the error of the mean for the aggregated-level.

Second, we show the error for the standard method ob-

tained after discarding the reversed or non-monotonic re-

sponses; this leaves roughly 40% of the responses. Third,

we show the overall average error for the graphical meth-

ods’ seven fractiles. Finally, to compare the methods with

equal numbers of usable responses, we ran a simulation in

which we randomly drew 40% of the graphical method’s

subjects 1,000 times and plotted the mean accuracy and its

standard error.

On an individual-level, the graphical method is more

accurate and cost effective than the standard method, even

with ex-post help for the standard method. If we only

accept responses that are monotonically increasing, the

mean absolute error decreases substantially for the stan-

dard method. However, as illustrated by the left side of

Figure 5, despite this ex-post cleaning, the mean absolute

error for the graphical method (L3) is still smaller than

that of the cleaned standard method (L2). Thus, given

the same number of respondents, the cleaned standard

method yields only 40% as many usable observations,

which have an error that is 26% larger than that of the
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Figure 6: Comparison of changes between shufflings across the 1st, 11th, 26th, 50th, 75th, 90th, and 100th fractiles,

estimates of the mean and estimates of both upper and lower confidence bounds of the standard method as compared to

the graphical method. “100%” includes all responses. “40%” includes only the perfectly monotonic responses or the

cleaned values.

graphical method. To put this in perspective, a researcher

spending the same amount on the standard and graphical

methods would obtain 150% more usable responses with

the graphical method, and attain greater accuracy as well.

To compare the methods with equal numbers of usable re-

sponses, we ran a simulation in which we randomly drew

40% of the graphical method’s subjects 1,000 times. The

cleaned standard method’s error (L2) is still 26% larger

smaller than that of the graphical method (L4). Thus, a re-

searcher would pay 150% more with the standard method

to get the same number of usable answers and nonetheless

attain worse accuracy.

Similarly, the graphical method is more efficient than

the cleaned standard method on the aggregate level.

Shown on the right of Figure 5, accepting only responses

that are monotonically increasing, the mean predictive er-

ror decreases substantially for the standard method (R2)

and becomes equal to that of the graphical method (R3).

In this scenario, for the same quantity of observations a re-

searcher can create equally accurate averages by eliminat-

ing 60% of the respondents. Note that one could also cre-

ate rules to lower the error of the graphical methods’ ag-

gregated forecast, but we did not want apply even the sim-

plest rules ex-post to avoid any concerns about look-ahead

biases. As before, we compare equal numbers of usable

observations by randomly drawing 40% of the graphical

method’s subjects 1,000 times in simulation. The aver-

age predictive error from that simulation (R4) is the same

as the cleaned standard method’s (R2), meaning that a re-

searcher can create an equally accurate forecast by collect-

ing just 40% of the observations and using the graphical

method.

We turn now to comparing the methods on how well

they deal with irrelevant “presentation effects” that, nor-

matively, should have no bearing on responses. The stan-

dard method was much more prone to presentation ef-

fects, which we can see by comparing results from the

two different shufflings of each distribution.4 In Figure

6, we show that the differences in estimates between the

two shuffles are much larger in the standard method com-

pared to the graphical method. That is, the average re-

sponse in the standard method across the seven key frac-

tiles moves by 1.2 units (among the possible responses

from 1 to 10) due to irrelevant order information, while

the graphical method’s responses move by less than half a

unit (0.4). Even after cleaning the standard method’s data

ex-post, the graphical method is still more resistant to or-

der effects (average movements of 0.6 vs. 0.4 units). For

the mean, the differences are not only stark, as the stated

mean condition has a difference of 0.9 units versus just

0.3 units for the graphical method, but the standard error

is very telling. While there was a wide distribution of dif-

ferences in the stated mean for the six unique distributions,

4Recall that for each distribution we created two different orderings

(“shufflings”) of the numbers that were shown to subjects.
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Figure 7: Comparison of accuracy of the graphical methods and two different versions of the standard method. The top

chart shows the mean absolute error of the ranges that are supposed to be 80 percentage points wide. The bottom chart

aggregates all of the submitted confidence ranges in the category and determines the average width. “Cleaned” refers to

eliminating standard method responses that are not monotonically increasing.

the graphical method produced consistently small errors.

The differences in the stated confidence range condition

were very similar to the stated fractile condition. Presen-

tation effects, therefore, may not necessarily be the result

of a biased memory representation. It could be the case

that accurate mental representations lead to inaccurate es-

timates as a side effect of stated elicitation techniques, that

is, biases could be introduced at the point of linguistic ex-

pression.

Regarding confidence, three different sets of 80% con-

fidence ranges can be constructed from the experiment’s

conditions. First, in the standard method’s confidence

range condition respondents were asked for an interval

that would be 80% likely to contain a single draw from

the population. Second, in the standard method’s fractiles

condition, subjects were asked for the 11th and 90th frac-

tile. Third, in the graphical method, respondents specified

80% intervals (as well as many other kinds of interval) as a

consequence of submitting an entire 100 unit distribution.

Several potential methods can determine the density from

the true distribution that falls within the high and low val-

ues provided by the respondent. We choose a simple and

transparent method and find that our results seem to be ro-

bust under other methods. To determine the density that

lies within the respondent’s confidence range values, we

make the assumptions that are most advantageous for the

respondent’s accuracy.5

On an individual level, the absolute error of the graph-

ical method is well less than half of that of the standard

method, even under ex-post cleaning and the most favor-

able assumptions for the standard method. At the top of

Figure 7 we show the average absolute difference of the

confidence range sizes compared to the normative answer

(80 percentage points). For example, if the submitted con-

fidence range has a width of 70 percentage points, its error

is 10; if its width is 95 percentage points, its error is 15.

The graphical method’s average error is just 8 percentage

points. The next best method is the condition in which

we asked directly for the confidence and we drop all non-

monotonically increasing responses. The error in that con-

dition is 22 percentage points. If we do not provide ex-post

5For example, if the respondent states 3 as the 11th fractile and in

the true density the 9th to 15th fractiles are 3, then we assume that the

respondent has perfectly determined the 11th fractile. If the respondent

states 3 as the 11th fractile and in the true density the 15th to 21st fractiles

are 3, then we assume that the respondent has stated the 15th fractile

rather than the 11th fractile. That is we assign the fractiles that place the

respondent as close to the normative as possible with their response. This

method is robust to an array of other reasonable assignment options.
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cleaning to the standard response, the difference in the

error is even more dramatic, with the standard method’s

absolute error of 34 percentage points. The “stated con-

fidence range” condition is just slightly, but not signifi-

cantly, more accurate than the “stated fractile” condition.

On the aggregate level, the graphical method does not

suffer from the common issue of overly narrow confidence

ranges that are observed with the standard method. On the

bottom of Figure 7 we show the size of the average range,

where the normative range size is 80 percentage points.

On average, the respondents are very well calibrated us-

ing the graphical method. The bottom of Figure 7 shows

that about 82% of answers fall within average graphical

method response’s 80% confidence range. This stands

in sharp contrast with the standard method conditions, in

which only 48% (stated fractile condition) to 65% (stated

confidence range, cleaned for non-monotonic responses)

of answers fall within the 80% confidence ranges.

4 Discussion

We began by noting a difference in the psychological and

economic literatures concerning the statistical intuitions

of laypeople. Part of this difference is likely due to an

emphasis on aggregated-level accuracy in economics (the

wisdom of the crowds) and individual-level accuracy in

psychology. We see in our results, as one would expect,

that aggregated-level estimates are more accurate. How-

ever, we also observe that accuracy varies between elicita-

tion techniques. Both at the individual and the aggregate

level, laypeople’s responses are significantly more accu-

rate using the graphical rather than the standard method

that unfortunately is most used in experimental research.

This result holds across ten different measures (seven key

fractiles, means, upper and lower confidence bounds),

even after we apply a generous ex-post correction to the

standard method. Further tests reveal that irrelevant “pre-

sentation effects” seem to be much more of a problem un-

der the standard method. To get accurate estimates about

various statistics of a subjective probability distribution,

our findings suggest it may be better to elicit the entire

distribution graphically and compute arbitrary statistics,

rather than asking about the statistics directly.

We pause here to think about how the experiment might

have turned out. Had both the standard and graphical

methods exhibited strong, systematic errors and biases at

the individual and aggregate levels, it could be consistent

with a view that mental representations are systematically

and stubbornly biased (or with the idea that we simply

didn’t test a suitable elicitation method). Had the stan-

dard method turned out to be better, or had both meth-

ods turned out to be highly and equally accurate, it would

have been puzzling since there is ample evidence in the

literature that the standard method leads to biased esti-

mates. Lastly, the experiment could have turned out as

it did, with the graphical technique emerging as better.

This result seems consistent with two possibilities. First,

it could be the case that laypeople’s mental representa-

tions are fundamentally inaccurate but that the graphical

elicitation method somehow corrects them in spite of the

user, much like the spelling correction in a word proces-

sor causes those who do not know the spelling of a word

appear as if they do. Or, second, it could be the case that

underlying mental representations are accurate, but some-

thing about stated elicitation corrupts this accuracy at the

point when answers are articulated. We have doubts about

the first idea. While it is possible that the graphical method

could create the illusion of accuracy on one or two out-

come measures, we find it unlikely that it would have this

strong ameliorative effect on some ten measures, presen-

tation effects, and confidence ranges at both the individual

and aggregate levels, especially after the stated method’s

data have been cleaned. Furthermore, the second account

seems plausible. For example, a bias we see in the stated

method is that people tend to report answers that are biased

towards the middle of the distribution. Note the flatter re-

gression line in Figure 2 and the too-narrow confidence

ranges in Figure 7. Since we do not observe this in the

graphical method, people’s stated estimates could be bi-

ased at the moment they express them, similar to the phe-

nomenon of anchoring on a prominent number in memory

(here, the mode of the distribution).

In future work, we shall test this idea by collecting

process data about how people create distributions with

the graphical method. One hypothesis is that graphical

method may be causing people, bit by bit, to recall (and

extrapolate from) the full observed distribution rather than

taking a quick sample that is biased towards the center of

the distribution. This would happen if people initially re-

trieve values that are near the center but then, with the

requirement of producing 100 values, search memory to

retrieve more extreme observations. Conversely, in Figure

1 we note one asymmetry, with slightly too much weight

on the lower numbers in the normatively uniformly distri-

bution. That could be caused people starting on the lower

numbers and working upward. Either working from the

outside to the inside or the inside to the outside, the graph-

ical method may just induce people to think of the full pic-

ture. By using mouse-tracking technology, we can record

distributions as they are built and test whether they expand

from the inside out, or from low to high values.

When responding using the standard method, respon-

dents may use heuristics that make it seem as if they

are incapable of taking a mean or providing a confidence

range. This can be tested with a two-step method of hav-

ing respondents attempt to define the fractiles, mean, etc.,

from a distribution they have first provided in the graphical
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method. This two-step test would disentangle the accuracy

in generating future samples from accuracy in providing

summary statistics.

One limitation our of experiment is that, in the real

world, people make decisions on data they saw days,

weeks, or months in the past, while we tested people num-

bers they observed only minutes ago. People could store

and retrieve recent and distant stimuli differently (Lind-

skog et al., 2013). We assume that both methods drop off

in accuracy over long time periods, but it may be the case

that they do so at different rates, and this is a topic for our

future research.

To conclude, we find that laypeople’s intuitions about

probability distributions can be rather accurate when the

graphical elicitation technique is used, a finding that

brings the views from psychology and economics a bit

closer together. With the increasing pervasiveness of com-

puting power in everyday devices such as smartphones and

tablets, the graphical method holds promise for improving

the accuracy and efficiency of individual-level decisions

and aggregate-level polls and forecasts.
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Appendix: Questions

Step 1, Introduction:

Imagine we have an extremely large bag of ping pong

balls. Each ball has a value between 0 and 10 written on

it. We will randomly choose 100 balls from the bag.

On the next screen we will show you their values, one

at a time, very quickly. This will take about a minute.

Say each value to yourself as it passes before your eyes;

try to remember as much as you can.

Please answer the below question and then Press Con-

tinue to Start.

Step 2, 100 numbers are flashed across screen:

SAY EACH NUMBER TO YOURSELF AS IT FLASHES

PAST!

Figure A1: Balls and buckets (graphical method):

Figure A2: Standard fractiles (standard method):

Now imagine we throw the 100 balls you just saw back

into the bag and mix them up. After that, we again draw

100 balls at random.

Imagine the new set of 100 balls were arranged in front

of you with the smallest values on the left and the largest

values on the right. What do you think would be the value

of the 1st ball from the left?

Since each ball has a value from 1 to 10, your answer

should be between 1 and 10.

What do you think would be the value of the 11th ball

from the left?

What do you think would be the value of the 26th ball

from the left?

What do you think would be the value of the 50th ball

from the left?

What do you think would be the value of the 75th ball

from the left?

What do you think would be the value of the 90th ball

from the left?

What do you think would be the value of the 100th ball

from the left?
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Figure A3: Stated mean (standard method):

Now imagine we throw the 100 balls you just saw back

into the bag and mix them up. After that, we again draw

100 balls at random.

In statistics, the mean of 100 values is the number you

would get by adding up all the values and dividing by

100. What do you think is the mean of the 100 new values

drawn?

Since each ball has a value from 1 to 10, your answer

should be between 1 and 10.

Figure A4: Stated average (standard method):

Now imagine we throw the 100 balls you just saw back

into the bag and mix them up. After that, we again draw

100 balls at random.

What do you think is the average of the 100 new values

drawn?

Since each ball has a value from 1 to 10, your answer

should be between 1 and 10.

Figure A5: Stated confidence range (standard

method):

Now imagine we throw the 100 balls you just saw back

into the bag and mix them up. After that, we draw 1 ball

at random.

I am 90% certain the value of this ball would be greater

than or equal to:

I am 90% certain the value of this ball would be less

than or equal to:
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