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Abstract

Exact solutions are developed for instantaneous point sources subject to nonlinear diffusion
and loss or gain proportional to nth power of concentration, with n > 1. The solutions
for the loss give, at large times, power-law decrease to zero of slug central concentration
and logarithmic increase of slug semi-width. Those for gain give concentration decreasing
initially, going through a minimum, and then increasing, with blow-up to infinite concen-
tration in finite time. Slug semi-width increases with time to a finite maximum in finite
time at a blow-up. Taken in conjunction with previous studies, these new results provide
an overall schema for instantaneous nonlinear diffusion point sources with nonlinear loss
or gain for the total range n > 0. Six distinct regimes of behaviour of slug semi-width and
concentration are identified, depending on the range of n, 0 < n < 1, n — 1, or n > 1.
Three of them are for loss, and three for gain. The classical Barenblatt-Pattle nonlinear
instantaneous point-source solutions with material concentration occupy a central place in
the total schema.

1. Introduction

Nonlinear diffusion with linear or nonlinear loss may involve chemical reaction, irre-
versible absorption on a porous substrate, radioactive decay, solution or evaporation.
The relevant equation is

X"me^)m m
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282 J. R. Philip [2]

Here 0 (> 0) is concentration, normalized with respect to some standard concentration,
?, is time, rt is the radial space coordinate (0 < r» < oo) and 5 is the number of space
dimensions (1, 2 or 3). The diffusivity may take the power-law form

D(0) = £>,<r, 0 < m < 1 (2)

and the time rate of material loss may have the form

km = hxe
n. O)

Putting (2) and (3) in (1) and using the substitutions

we obtain the dimensionless equation

[ i ) e \ (5)

Instantaneous point-source solutions of (5) satisfy the initial condition

f = 0, 0<r<oo, 0 = Q8(r), (6)

with Q the dimensionless instantaneous source strength (0 < Q < oo) and with
<5() defined by an appropriate limiting process. Note that the physical instantaneous
source strength with dimensions [length]1, Qt = {D\/k\Yl2Q.

Philip gave exact solutions of (5), (6) for linear loss with m > 0, n = 1 [9] and for
nonlinear loss with 0<m>l,n = l—m (that is, 0 < n < 1) [10]. The solutions
applied for all s > 0, with s normally 1, 2 or 3 in physical applications. Solutions for
n = 1 were given previously for (s, m) = (1, 1) by Kersner [6] and for (s, m) = (2, 1)
by Miller and van Duijn [7]. The latter authors also gave the solution for n = 1 — m
in the special case (s, m) — (2, 1) [7].

For n — 1 the slug approaches a finite maximum radius and vanishes in the limit
as t —*• oo [7, 9]. On the other hand, for 0 < n < 1, the slug radius increases to a
finite maximum and then decreases to zero in a finite time [7, 10]. The difference in
behaviour is explained physically in terms of the different modes of approach of k{6)
to zero as 0 -+ 0 [9, 10].

Those studies covered only the range 0 < n < 1 and left open the question of
slug behaviour for n > 1. The solutions of [9, 10] were similarity solutions. This
paper extends the range of n by establishing relevant similarity solutions of (5), (6)
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[3] Nonlinear diffusion with loss or gain 283

for 1 < n < oo. A limitation is that the results are solely for the case s = 1, so (5) is
replaced by the specialized

dt dx \ dx)

Certain thermal and biological problems involve diffusion with gain, not loss. The
minus on the right of (1) and (5) is replaced by a plus. As Philip [9, 10] showed,
analyses for the cases m > 0, n — 1 andO < m < l,n = l—m (that is, 0 < n < l)go
similarly to those for loss, with appropriate modifications. In both cases, the solutions
for gain exhibit an initial decrease of central concentration, followed by indefinite
increase as t —> oo. For 0 < n < 1 [10] the influence of the initial conditions on the
solution tends to be lost in the limit as t -> oo, whereas for n = 1 [9] it persists for
all t < 0.

In this paper we extend the range of n for diffusion with gain also to 1 < n < oo.
The results for gain are also solely for s = 1. The relevant equation is (7) with the
minus on the right replaced by plus.

2. Exact solutions for instantaneous point sources with loss

Bertsch et al. [4] gave an exact solution for the case

0 < m < oo, n = \+m. (8)

They gave no attention to the physical significance of their solution. Their formula-
tion contained two excess parameters and, more importantly, two additional constants
which were left arbitrary and undetermined. Here we remove these extraneous el-
ements by reference to the physics of the process and exploit the essentials of their
ingenious method of solution.

We seek instantaneous source solutions of

— = — \em—)-em+l (9)
dt dx \ dxj

subject to initial condition (6), which we rewrite as

* = 0, 0 < | J C | < O O , 9 = QS(r). (10)

In terms of v = 6m, (9) becomes

dv d2v 1 / dv\ ,
— = v 1 — -mv2. (11)
dt dx2 m\dxj
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Following [3], we seek solutions of the form

= 0, \x\>X(t); (12)

= «- 1 cosh- ' ( l+g) .

Here / and g are positive functions and a is a positive constant. These are determined
in the course of the analysis. Bertsch et al. included the unnecessary extra unknown
constant p in their formulation. This is absorbed into / .

Substituting (12) in (11) and equating coefficients of cosh0 (a, x), cosh (a, x) and
cosh2(a, x), we obtain

a2

' = — +m(l+2g + g2), (13)
m

' = -a2g-a2+2m(l+g), (14)

a2 = m2/(m + 1). (15)

These are the conditions under which (12) satisfies (11). Primes signify differentiation
with respect to t.

Subtracting (14) from (13) and using (15), we find

2

f' = m + (16)

and putting (15) in (14) gives

m<m^-a+g). (17)
Combining this with (16) and rearranging, we get

/ = m(2 + 8). (18)
(m + l)g'

Eliminating/' between (17) and the result of differentiating (18), we obtain

= 0. (19)

Solving (19) involves two constants of integration. One is fixed by the physical
requirement for an instantaneous point source that g —>• 0 as t —> 0. The second
(positive) constant, c, is evaluated later. The relevant solution is thus

ct= / [^1(2 + g,)]m/2 dgi (20)
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[5] Nonlinear diffusion with loss or gain 285

and it follows from (18) that

mg'"/2(2 + g)('"+2)/2

1)C " ^ }

We see that (20) gives g(t) implicitly and that putting g(t) in (21) gives f(t). The
required solution for 9 is then

f 1 f c o s h ( a ; t ) - l l l 1 / m

0 ( * , O = j l l — I , 0<\x\<X(t);

= 0, \x\>X(t). (22)

To complete the solution we evaluate c in terms of the dimensionless instantaneous
source strength Q. This requires us to examine the properties of the solution in the
limit as t ->• 0. In this limit g <£ 2, so that, to a good approximation, the solution
reduces to

g = l/2[(m + 2)ct]2"m+2\ (23)

/ = 2m [(m + 2)crr/(m+2>. (24)
(m + l)c

In the small t approximation then,

, o < „ , < * .
= 0, \x\>X, (25)

with

= a l(m + 2)c?J ' . (zo)

Now

/

X(t) o r / * « i i\

9(x,t)dx = - ^ —
a [ 2 m

2m

It follows that

(

( l) l
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This completes the solution.
It is of interest that the foregoing solution (9), (10) in the limit as t -> 0 is exactly

the classical Barenblatt-Pattle [3, 8] solution of the no-loss equation

dt dx \ dx)

subject to (10).

3. Implications of the solution with loss

Numerous mathematical and physical implications follow.

3.1. The overall process: new dimensionless quantities The foregoing solutions
describe the spread and loss of a finite slug of the material with dimensionless semi-
width X(t) increasing indefinitely and concentration 0(x, t) decreasing to zero, as
t —>• oo. The central concentration of the slug

0(0, t) =f-l/m. (30)

Superposed on the mnemonic decrease of 6(0, t) is systematic change of the con-
centration profile as t increases. This is conveniently measured by the shape function

^T- «-£• ^ ' -
Expressing X(t), 9(0, t), and #(£, /) in terms of new dimensionless variables, we

may remove the dependence of each of these on the dimensionless source strength Q.
Accordingly, we introduce the new variables

= ct= i*
Jo

(32)

i 1/m

0o(r) = " 0(0, 0 = g~l/2(2 + gy^^K (33)
|(m + l)cj

The shape function then becomes

We shall use also the new dimensionless slug semi-width

' ( l + g ) . (35)
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[7] Nonlinear diffusion with loss or gain 287

3.2. Small-time behaviour We have seen that the limiting small-time behaviour,
(25), (26), is that of the analogous Barenblatt-Pattle no-loss solutions. We thus have,
for small t,

©o « 2-|/m[(m + 2)r]-l / (m+2), (36)

CJ za [{m ~\~ 2 ) r ] , (37)

" ~ \\ — s / • \3°)

It is of some interest to estimate the time when the influence on the solutions of the
loss process becomes significant. We may do this by replacing (2 + g\)ml2 in (32) by
the two leading terms of its Taylor expansion, so obtaining

(39)
m + 2

The fractional error in (23) of r for fixed g is therefore about m{m + 2)g/(4m + 16).
For m = 1, this is about 0.05 with g % 0.33, r ^ 0.19.

3.3. Large-time behaviour For large r, g » 2 and (32) give

that is,

g « [ ( m + l)r]1/(m+1). (40)

It follows from (33) that, in this approximation,

0o « [(/» + l)r]-1 / m (41)

and from (35) that

S % in[(m + 1)T] + In 2. (42)
m + 1

At large times the central concentration decreases like r~1/m and slug semi-width
increases like lnr.

It is a consequence of (42) that, for large r,

$ % {1 _ [(„ + 1)r]«-D/('"+i)}1/'n. ( 4 3 )

3.4. Solutions in closed form For arbitrary m > 0 the integral of (32) must be
evaluated numerically so that g(r), @o(r), S (r) and other aspects of the solutions are
necessarily expressed numerically. Some special values of m, however, yield solutions
in closed forms. They include the following.
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FIGURE 1. The function g(r) form = 1/2, 1 and 2. Comparison for loss, material conservation (k = 0)
and gain. The flame symbol signifies blow-up of the gain solution at g = 2.

3.5. Closed-form solutions for m = 2N - 1 When m = 2N - 1, with /V being
a positive integer, r(g) is expressible in terms of cosh~'(l + g). The solutions for
N = \ and 2 are:
for m = 1,

r = i [(1 + + g)]1/2 - cosh-'d + g)]; (44)

for m = 3,

T = i [[2*(2 + g) - 3](1 + «)[«(2 + g)]x'2 + 3cosh-'d + ^)]. (45)
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[9] Nonlinear diffusion with loss or gain 289

3.6. Closed-form solutions for m = 2N In these cases r (g) is polynomial. The
solution for N = 1 and 2 are:
for m = 2,

r = g2 + S3/3; (46)

for m = 4,

r = 4 ^ / 3 + g4 + g
5/5. (47)

3.7. The explicit solution for m = 2 In general the foregoing closed-form solutions
require various aspects of the solution to be expressed parametrically in terms of g,
with the dependence on r implicit. However (46) is a cubic, so the special case m = 2
gives g(z) and hence the r-dependence of all aspects of the solution explicitly. We
find for m = 2,

= 2cos -cos" 1 — - 1 , 0 < x < 4/3;g(r)
L

= 4/3; (48)

3 3 T - 2 / 9 r 2 - 1 2 r 3 3 r - 2 /9r2 - 12T

= i-i-+i—j—+i—2—v^—1> r>4/3-
Here, and in what follows, cos"1 denotes the principal value such that 0 < cos"1 < n.

4. Illustrative examples of diffusion with loss

We illustrate the preceding results in Figures 1-4. Each figure shows separately
the cases (a) m — 1/2, (b) m — 1, and (c) m = 2. On each figure we present, in
addition to the results for diffusion with loss, those for diffusion with gain (Section
5), and those for no loss (k = 0).

4.1. Solutions for g(r) These basic solutions are shown in Figure 1. The loss
solutions decrease gradually relative to the k = 0 solutions as r decreases. The
growth of g with r is like r1/(m+1) as r -> oo.

4.2. Slug semi-width Figure 2 shows 3(r) , the evolution of slug semi-width in
dimensionless form. Here also, S for loss gradually decreases relative to that for
k = 0. Its increase with r becomes logarithmically slow as T -> oo.

4.3. Slug central concentration Figure 3 depicts ®o(*0> the evolution of the central
concentration expressed in dimensionless form. Here also, @0 for loss gradually
decreases relative to that for it = 0 as r increases. The decrease of @0 is like r"1/m as
T - • OO.
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5 10

FIGURE 2. As Figure 1 for the function S ( T ) . H is the dimensionless slug semi-width. For the gain
solution H = n at blow-up.

4.4. Concentration profile shape Figure 4 shows #(r) for the indicated values of
T and so presents in dimensionless form the evolution of slug concentration profile
shape. We see that the shapes for loss deviate from the initial shape (r = 0), becoming
increasingly convex upward (decreasingly concave upward) as r increases. In the limit
as r - • oo, # = 1 for 0 < § < 1, with & = 0 for £ = 1.

Comparison of these results with those for gain is developed in later sections.

5. Exact solution for instantaneous point sources with gain

We extend the search to solution of

dt dx dx
(49)

Ames et al. [1] cite a solution of (49) due to Zmitrenko et al. [11], and state that "it
describes a blow-up regime". It is readily shown, however, that the cited "solution"
fails to satisfy (49). All is not lost, however, since our analysis of Section 3 suggests
the means of finding the instantaneous point-source solutions for (49), again subject
to initial conditions (10). In this case (11) is replaced by

dv

It
d2v

— h ^ +mv
,,2 (50)
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0 0.2 0.4 0.6 0.8

0.2 0.4 0.6 0.8 1.0

FIGURE 4. Dependence of concentration profile shape function #(£) on dimensionless time r for
m = 1/2, 1 and 2. Comparison for loss, material conservation (k = 0) and gain, i? : concentration
normalized with respect to central concentration. ? : modulus of space coordinate normalized with
respect to slug semi-width. The k = 0 curves hold for all T > 0 for material conservation and are also the
r -»• 0 limits of the curves for both gain and loss. Numerals on other curves denote values of r. Curves
labelled Tmax are limiting shapes at blow-up.
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[13] Nonlinear diffusion with loss or gain 293

and we seek solutions of the form

= 0, \x\>X(t); (51)

Once again we determine the positive functions/ and g and the positive constant or,
in the course of the analysis. By (51) and (50) and equating coefficients of cosh0(a, x),
cosh(a, x) and cosh2(a,;c), we secure the three conditions that (51) satisfies (49).
Equations (13) and (14) are replaced by

2r, r, , , «2 , „ 2
—gf+gf +fg = \-tn(l—2g + g) (52)

m
and

Equation (15) for a2 is unchanged.
We see that the transforms / -> —/,#->• —g, change (13) and (14) into (52)

and (53). Applying these transformations to the previous analysis therefore gives the
required solution. Equations (16)—(19) are transformed thus and the solution is then

ct = JS[gi(2-gl)r
/2 dgl; (54)

e mgml\2 - gy*+M

o<\xi<xity, (56)

= 0, \x\>X(t).

Evaluation of c goes precisely as before, with (23)-(26) still applicable. In conse-
quence, c is again given by (29) and just one matter remains. It is evident from (54)
and (55) that the solution holds only for 0 < g < 2. This translates into the bounds
0 < t < rmax and it follows from (54) that

cW = jf [g(2 - g)]m/2 dg = 2m+1 Tr ( ^ Y ^ ) l / r ( 2 + m). (57)

This completes the solution.
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"max ,

e,Omin

FIGURE 5. Diffusion with gain: dependence on m of rmax and ©Om,n- rmax : dimensionless time of
blow-up. 0Omin : dimensionless minimum central concentration.

6. Implications of the solution with gain

6.1. The overall process The solutions of Section 5 describe the spread and gain of
an initially finite slug of material. The process is completed within the finite reduced
time interval 0 < r < rmax, where

= 2" (58)

Figure 5 shows the dependence of rmax on m.
The dimensionless slug-semi-width S increases with r and attains the finite maxi-

mum value Smax at r = rmax. The dimensionless concentration @0 initially decreases,
passes through a minimum and increases with r until the slug blows up, the con-
centration becoming infinite everywhere in 0 < £ < 1 at the instant x = rmax. The
following equations (59)-{62) here replace equations (32)-(35) for loss:

r=

©o(r) = g~1/2(2 -

= 1 -
1 — cos[£cos~'(l - g)]

g

1/m

E = cos-\\-g).

(59)

(60)

(61)

(62)
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[15] Nonlinear diffusion with loss or gain 295

These results apply only for 0 < r < rmax.

6.2. Small-time behaviour Here also, the limiting small-time behaviour is described
by (25), (26) and is that of the Barenblatt-Pattle no-loss solutions. Equations (36)-(38)
apply here also. In this case the fractional error of the small-time approximation is
equal in magnitude, but opposite in sign, to that indicated in Section 3.2.

6.3. Behaviour as r —>• rmax It follows from (57)-(59) that, as r —> rmax and

g(x) « 2 - { [(m + 2) (rmax - r ) ] 2 / ( 2 + m ) , (63)

with dg/dr tending to infinity as r —• r
Then (60) gives for r - • rmax, g -+ 2,max.

eo(r) « \ ^ ^ (rmax - T)1 . (64)

We see that, as r —>• rmax, the central concentration goes to infinity like (rmax — r) 1/m.
In addition (62) gives for this limiting behaviour

S( r ) « n - [(m + 2) (rmax - r ) ] 1 / ( m + 2 ) . (65)

We see that

Smax = n, (66)

with da/dz tending to infinity as x -*• xmiiX.

Finally, combining (61), (62) and (65), we find that, as r —>• rmax,

(67)[ 1 l1/m

- {1 + cos [I {n - [(m + 2)(rmax - r)]1/(m+2)}]} I
and

*(£, W ) = {\[l +cos(?7r)]}1/m . (68)

6.4. Solutions in closed form As before, solutions must be expressed numerically
for arbitrary m > 0, but special values of m give solutions in closed forms.
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6.5. Closed-form solutions for m = 2N — 1 In these cases r(g) is expressible in
terms of cos"1 (1 — g)- The solutions for TV = 1 and 2 are:
form = 1,

r = i {cos-'O -g)-(\- g)[g{2 - g)]1'2); (69)

for m = 3,

T = - [3cos-'(l -g)- [2g(2 -g) + 3](1 - g)[g(2 - g)]l/2]. (70)

6.6. Closed-form solutions for m = 2N Here again r(g) is polynomial. The
solution for N = 1 and 2 are:
for m=2,

r=g2-g3P; (71)

for m = 4,

r = 4#3/3 - g4 + g
5/5. (72)

6.7. The explicit solution for m = 2 Here also we may solve the cubic (71) to
obtain g(r) explicitly. We thus obtain for m = 2,

- 1 , 0 < T < 4/3 = rmax. (73)

7. Illustrative examples of diffusion with gain

Figures 1-4 illustrate the results for diffusion with gain, as well as diffusion with
loss.

7.1. Solutions for g(r) See Figure 1. These basic solutions increase relative to the
k = 0 solutions as r increases. All solutions terminate at the blow-up point r = rmax,
g = 2, where dg/dr becomes infinite.

It is evident from (59) that g(r) has the symmetry property

g(r) = 2 - g(rmm - T), * ( W 2 ) = 1. (74)

Unfortunately the logarithmic plots of Figure 1 obscure this symmetry.
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Log slug
radius

Exponential to
oo as t -> oo

Blow-up at
finite t and
finite r

n>1

n=1 Exponential to
LOSS fin j te r as t - * oo

Oat
finite t

Log time

FIGURE 6. Schematic representation of nonlinear diffusion with nonlinear loss or gain. There are different
regimes of evolution of slug radius, according to the range of n. The solution for material conservation
(k = 0) is the separatrix between the solutions for loss and those for gain. All solutions converge in the
limit as r —v 0.

7.2. Slug semi-width See Figure 2. Here also, S for gain gradually increases
relative to the no-loss (k = 0) solutions. All solutions terminate at the blow-up point
^ = fmax. 3 = Smax = Ti. At this point dS/dz becomes infinite.

7.3. Slug central concentration See Figure 3. Initially, @0 for gain decreases with
increasing r, though it gradually increases relative to @0 for k = 0. It has a minimum
0Omin at r = rmin and then increases, approaching infinity as r —*• r ^ at the blow-up
point.

Differentiating (60) shows that

= m/(m

and it follows that
I 1/(2")

mm{m + 2)m+2

Figure 5 shows the dependence on m of 0omin- Note that lim^oo 0omjn = 1-

(75)

(76)

7.4. Concentration profile shape The shapes for gain deviate from the initial (k =
0) shape in the sense opposite to those for loss. For r = tmax/2, & = [cos(^7r/2)]1/m,
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and for r = Tmax, 0 = {[cos(f7r/2)]/2}'/" .

8. Discussion

It remains to discuss some aspects of this work and to put it in perspective with
respect to previous studies, specifically [9, 10]. First, however, we place the present
results against a wider context by recognizing that our equations (9) and (49) are
particular cases of those established by Arrigo and Hill [2] as admitting classical
symmetry reductions. They are special cases of line 3 of their Table 5 with (our)
n = m + 1. We notice further that Hill et al. [5] found that separable solutions of (7)
hold only for n = 1, as in [9], and for n = m + 1, as in [10] and the present work.
The solutions of [9, 10] and this study are, however, not separable in the sense of Hill
etal.

8.1. Dependence of the results on source strength We have factored dimensionless
source strength Q out of results expressed in terms of r and 0O. It follows from (3),
(33) and (34) that

t <x Q'mT, (77)

and that, at fixed r

0(x,0)(xQ@o. (78)

Doubling Q shortens the time-scale by the factor 2~m and increases the central con-
centration (at fixed r) by the factor 2.

8.2. Persistence of initial conditions in solutions for gain It is of interest that, in
the present results for gain, the slug semi-width at blow-up is na when expressed in
terms of X. Slug dimensions at blow-up are thus independent of Q. The value of rmax

at blow-up is, however, determined by Q. The effect of the initial conditions (that is,
the value of Q) thus persists for solutions with gain for 0 < t < tmM.

Contrast this with the results for n = 1 [9], where the effect of the initial conditions
on the solutions for gain persists for all t > 0 and with those for 0 < n < 1 [10],
where the effect of the initial conditions disappears as / -> oo.

8.3. Importance of the Barenblatt-Pattle solutions The Barenblatt-Pattle [3, 8]
no-loss solutions were central to the instantaneous point-source solutions of (5) for
0 < n < 1 [10] and for n = 1 [9]. They are important here also; they give small-time
approximations to, and form separatrices between, the solutions for loss and gain. See
Figures 1-4.
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FIGURE 7. As Figure 6, but showing the different regimes of evolution of slug central concentration.

8.4. Dependence on n of solution behaviour It remains to place the present results
in the context of earlier studies of the classes 0 < n < 1 [10] and n = 1 [9]. Figure 6
represents, schematically, the time-dependence of slug radius (= semi-width in one
space dimension) for diffusion with loss and gain for three cases 0 < n < l , n = l
and the present n > 1. Also shown is the Barenblatt-Pattle (k = 0) result. Figure 7
gives the corresponding information for the slug central concentration.

Note that, in the limit as time approaches zero, all solutions (for fixed m and s)
agree with each other and with the Barenblatt-Pattle (k = 0) solution. The latter is a
separatrix between solutions for loss and those for gain. It gives a slug radius with
power-law decrease (slower than that for loss with n > 1) to zero at infinite time.

A limit to the generality of this schema is that the results for 0 < n < 1 and n = 1
are for arbitrary s > 0, whereas the present results for n > 1 are for s = 1 only. The
plausible conjecture that the schema holds also for all s > 0 when n > 1 remains
unproven.

8.5. Physical remark The different slug behaviour for diffusion with loss for
0 < n < 1 and for n = 1 has been physically explained [9,10] in terms of the relative
magnitudes of the loss function k at small 6 in the two cases. The explanation carries
over to the present new solutions: for n > 1, & is so small as 8 -* 0 that, in this
case, the rate of loss becomes so slow that the slug semi-width is able to increase
indefinitely.
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