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Abstract

The Chabauty–Kim method allows one to find rational points on curves under certain
technical conditions, generalising Chabauty’s proof of the Mordell conjecture for curves
with Mordell–Weil rank less than their genus. We show how the Chabauty–Kim method,
when these technical conditions are satisfied in depth 2, may be applied to bound
the number of rational points on a curve of higher rank. This provides a non-abelian
generalisation of Coleman’s effective Chabauty theorem.

1. Introduction

Chabauty’s method [Cha41] is one of the most powerful tools for studying the Diophantine
geometry of curves of genus larger than 1. In its original form, it gives a proof of the Mordell
conjecture for curves X/Q of genus g whose Jacobians have Mordell–Weil rank less than g. The
simple idea underlying the proof is to try to prove finiteness of the rational points of a curve X
with Jacobian J by bounding the intersection of X(Qp) and the p-adic closure of J(Q) inside
J(Qp).

This paper concerns two subsequent refinements of Chabauty’s argument. The first, due to
Coleman, is an effective version in the sense of giving a bound on the number of rational points.
This amounts to replacing ‘soft analysis’ (finding, on each residue disk of XQp , a non-trivial
power series vanishing on X(Q)), with ‘hard analysis’ (giving a bound on the number of zeros
of this power series). By bounding the number of zeros of this power series, Coleman produces
a bound on the size of X(Q).

The second, due to Kim [Kim05, Kim09], gives a generalisation of Chabauty’s method which
replaces the Jacobian with a non-abelian cohomology variety with values in (finite-dimensional
quotients of) a motivic fundamental group in the sense of Deligne [Del89]. As explained in
the next section, Kim’s method produces a decreasing sequence of subsets X(Qp) ⊃ X(Qp)1 ⊃
X(Qp)2 ⊃ · · · ⊃ X(Q). Conjecturally, X(Qp)n = X(Q) for all n � 0. However, in general it
is not known that X(Qp)n is eventually finite. By work of Coates and Kim [CK10], we know
unconditionally that X(Qp)n is finite for n� 0 when X is a curve whose Jacobian has complex
multiplication. Recently, Ellenberg and Hast extended this result to give a new proof of Faltings’
theorem for solvable covers of P1 [EH17].

In this paper we only use the set X(Qp)2, which is much simpler to describe. In analogy
with Coleman’s original result, we bound the size of X(Q), under certain technical conditions,
by bounding the size of X(Qp)2. Just as with the original effective Chabauty results, if one is
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careful, one can improve the bounds in various ways, but, in the interest of simplicity, here we
focus on the problem of finding an explicit bound on X(Qp)2 which is polynomial in the genus.

To explain our conditions more precisely, we introduce some notation. Let X be a curve of
genus g > 1 over Q, with rk Jac(X) = r = g. Define

ρf (J) := dim NS(Jac(XQ)) + dim(NS(Jac(XQ)c=−1)).

Our finiteness results will be dependent on one of the following conditions being satisfied.

– Condition A: r = g and ρf (J) > 1.

– Condition B: r = g and

dimH1
f (GT , H

2
ét(X ×XQ,Qp(1))) = 0.

For a generic curve X, the rank ρ(J) of the Néron–Severi group of J will be 1, and hence
Condition A will not hold. However, the condition that ρf (J) > 1 still arises in many examples
of interest. For example, if X is a non-trivial cover of a curve of higher genus, or more generally,
if J is isogenous to a product of two abelian varieties, then ρf (J) > ρ(J) > 2. By contrast,
it is very difficult to give examples when Condition B is satisfied; however, as explained in
[BD17, Lemma 2.4], the latter part of Condition B is implied by a conjecture of Bloch and
Kato [BK90, Conjecture 5.3(i)].

By [BD17, Proposition 2.2, Lemma 2.6], one may prove the finiteness of X(Qp)2 if Condition
A or Condition B holds. For v a prime of bad reduction, we define nv ∈ Z>0 to be the size of
the image of X(Qv) under j2,v (see the next section for a precise definition).

Theorem 1.1. Let X/Q be a curve of genus g > 1 with good reduction at a prime p > 3,
satisfying Condition A or Condition B. Let κp = 1 + (p− 1)/((p− 2) log(p)). Then:

(i) #X(Q) < κp(
∏
v∈T0 nv)#X(Fp)(16g3 + 15g2 − 16g + 10);

(ii) if X is hyperelliptic and p 6= 2g + 1, then

#X(Q) < κp

(∏
v∈T0

nv

)
((2g + 2)#X(Fp) + 2g#W (Fp) + 8g3 + 64g2 + 20g + 16),

where W is the subscheme of Weierstrass points.

As will be explained in the next section, one may obtain bounds on the local constants
nv in terms of the reduction data of the curve X at v. It seems difficult to avoid the bounds
obtained by the non-abelian Chabauty method depending on how bad the reduction of X is at
bad primes. For this reason, the extent to which this theorem could be used directly to prove
uniformity results in the manner of Stoll [Sto19] and Katz, Rabinoff, and Zureick-Brown [KRZ16]
is unclear.

However, in special cases, one can control the local factors to provide uniform bounds on
the number of rational points of special families of curves. We illustrate this with the following
corollary.

Corollary 1.2. Let X/Q be a smooth projective hyperelliptic curve of genus g with good
reduction at 3 and potential good reduction at all primes. If the curve satisfies Condition A or
Condition B, then

#X(Q) < 23g3 + 201g2 + 122g + 68.
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An example of a hyperelliptic curve satisfying the hypotheses regarding the reduction type
is given by

X : y2 = xn + k,

where n is a square-free positive integer prime to 6 and k is an integer prime to 3. If n is
composite, then X also satisfies ρ(J) > 1, and hence in this case the bound on the number of
rational points will hold whenever r = g.

The method of proof of Theorem 1.1 may also be used to bound the number of integral
points on hyperelliptic curves, answering a question of [BBM16].

Theorem 1.3. Let X be a smooth projective hyperelliptic curve of genus g with good reduction
at p> 3 and Mordell–Weil rank g. Suppose X has a rational Weierstrass point∞; let Y :=X−∞,
and let Y (Z) denote the set of integral points of Y with respect to a minimal regular model.
Then

#Y (Z) < κp

(∏
v∈T0

mv

)
(8g3 + 44g2 − 34g + 9 + (2g + 1)#Y (Fp) + (2g − 1)#W (Fp))

if g > 1 and

#Y (Z) < 2κp

(∏
v

mv

)
#Y (Fp)

if g = 1, where themv are local constants as in [BBM16], andW denotes the scheme of Weierstrass
points not equal to ∞.

To explain the method of proof, we briefly recall Coleman’s proof of effective Chabauty
[Col85]. There, he gave a bound for the number of zeros of G :=

∫
ω in a residue disk ] z [ for ω a

global differential. This bound is derived from understanding some piece of the Newton polygon
of G: specifically, from bounding the length of the slope −1 segment of the Newton polygon. By
length of a segment, we take the usual convention: the length of the projection of the segment
onto the x-axis. We recall the following classical result.

Proposition 1.4. Suppose the slope 6−1 segment of the Newton polygon has endpoint (M,N).
Then G has at most M zeros in B(0, |p|).

Proof. See, for example, [Kob84, IV.4]. 2

In particular, Coleman related the Newton polygon of G to the zeros of ω mod p, which can
be bounded by elementary algebraic geometry.

The idea of the proof in the depth 2 case is similar. We want to bound the number of zeros of a
non-algebraic power series G (from depth 2 Chabauty–Kim; see Proposition 2.3) in a residue disk
] z [, or equivalently, understand the slopes of its Newton polygon. We would like to reduce this to
a question about the slopes of something algebraic, but as G involves double integrals, we have to
replace simply taking the derivative by applying a more complicated differential operator D. We
show in § 3 that for suitable ‘nice’ differential operators, we can relate the Newton polygon of G
to the zeros of D(G). We then want to find a D that sends our power series G to some algebraic
function whose zeros we can bound mod p. We give constructions of D in the general case,
hyperelliptic case, and hyperelliptic and integral points case in the three subsequent sections.
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2. Explicit Chabauty–Kim at depth 2

We begin with a brief review of a few essential results from the Chabauty–Kim method [Kim05,
Kim09]. Associated to a pointed curve (X, b) over Q, with good reduction outside a finite set T0,
and a prime p of good reduction, we have a map

jn : X(Q) → H1(GT , Un),

where T := T0 ∪ {p}, GT is the Galois group of the maximal extension of Q unramified outside T ,
and Un is the maximal n-unipotent quotient of the Qp pro-unipotent completion of πét

1 (XQ, b).
We also have local maps

jn,v : X(Qv) → H1(GQv , Un)

for v in T0 and
jn,p : X(Qp) → H1(GQp , Un)

(for the definition of H1
f (GQp , Un) see [Kim05]). We define

X(Qp)n := j−1
n,p

(
locp

( ⋂
v∈T0

loc−1
v (X(Qv))

))
⊂ X(Qp),

where locv is the localisation map from H1(GT , Un) to H1(Gv, Un). By construction, the set of
rational points X(Q) is a subset of X(Qp)n for all n.

The behaviour of the maps jn,v is fundamentally different depending on whether or not
v = p. In the v 6= p case, we have the following theorem, due to Kim and Tamagawa [KT08,
Corollary 0.2].

Theorem 2.1 (Kim and Tamagawa). Let v be a prime not equal to p. Then for all n, im(jv,n)
is finite.

In fact, one can bound the image of jn,v in terms of the reduction data of the curve as follows.
Let L be a finite extension of Qv over which XL acquires stable reduction. Let X/OL be a regular
semistable model, and let V (XkL) denote the set of irreducible components of the special fibre.
Since the model is regular, specialisation induces a well-defined map

rv : X(Qv) → V (XkL).

For v a prime of bad reduction, we define nv ∈ Z>0 to be the size of the image of X(Qv) under
j2,v in H1(Gv, U2).

Lemma 2.2. With notation as above,

nv 6 im(rv).

A detailed proof of this lemma will appear in forthcoming work of the second named
author and Alex Betts. However, for the sake of completeness, we briefly indicate the
method of proof. First, if L|Qv is a finite extension, then it is easy to show that
H1(GQv , Un) → H1(GL, Un) is injective, hence one reduces to the case where X has stable

reduction. In this case, one can use the description of the action of GL on π
ét,(v′)
1 (XQv

, b)

(the maximal prime-to-v quotient of πét
1 (XQv

, b)) in terms of the dual graph of a regular
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semistable model given in [Oda95] to deduce that if points b1 and b2 lie on a common irreducible

component of V (XkL), then the class of [π
ét,(v′)
1 (XQv

; b1, b2)] in H1(GL, π
ét,(v′)
1 (XQv

, b1)) is trivial.
This straightforwardly implies the lemma.

The finiteness of the maps jn,v allows us to partition the set X(Qp)n as follows. We refer to
a tuple α = (αv)v in

∏
v∈T0 im(jn,v) as a collection of local conditions, and define

X(Qp)α := j−1
n,p

(
locp

( ⋂
v∈T0

loc−1
v (αv)

))
⊂ X(Qp).

By construction, X(Qp)n is the disjoint union of the X(Qp)α for α a collection of local conditions.
The bound in Theorem 1.1 comes from a bound on #X(Qp)α in the case of n = 2, together with
a bound on the number of local conditions, that is, on the size of

∏
v∈T0 j2,vX(Qv).

2.1 Local structure at p
The power series G in the introduction is from the following result of [BD17].

Proposition 2.3 [BD17, Proposition 6.4]. Let X/Q be a curve of genus g > 1. Suppose X
satisfies Condition A or Condition B. Let ω0, . . . , ω2g−1 ∈ H0(X,Ω(D)) be differentials of the
second kind forming a basis of H1

dR(X), where D is an effective divisor. Then, for all local
conditions α, there are constants aij and ai, a differential of the third kind η, and a function
h ∈ H0(X,O(2D)) such that

X(Qp)α ⊂ {z ∈ X(Qp) : G(z) = 0},

where

G(z) :=
∑

06i,j<2g

aij

∫ z

b
ωiωj +

∑
06i<2g

ai

∫ z

b
ωi +

∫ z

b
η + h(z).

2.2 Proof of Corollary 1.2
In this subsection we prove that Theorem 1.1 implies Corollary 1.2.

Lemma 2.4. Let v 6= p be a prime of potential good reduction. Then, for all n, the map

jn,v : X(Qv) → H1(Gv, Un)

is trivial.

Proof. Let L|Qv be an extension over which X acquires good reduction. Then the map

jn,L : X(L) → H1(GL, Un)

has trivial image. Recall from [Ser97, I.5.8] that, given a profinite group G, closed normal
subgroup H, and G-group A, we get an exact sequence of pointed sets

H1(G/H,AH) → H1(G,A)
Res−→ H1(H,A).

We apply this when G = Gv, H = GL. We claim UGL
n = 1. To see this, note that it is enough

to show that the graded pieces Un[i] of Un with respect to the central series filtration satisfy
Un[i]Gw = 1, which follows from the fact that Un[i] is an unramified representation of GL of
weight −i.
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Hence we deduce that the restriction map

H1(Gv, Un)
Res−→ H1(GL, Un)

is injective. The lemma thus follows from commutativity of the following diagram.

X(Qv)
jn,v //

��

H1(Gv, Un)

Res
��

X(L)
jn,w // H1(GL, Un)

2

Now letX be as in Corollary 1.2. Then all the nv are 1. Taking p= 3 and using the Hasse–Weil

estimate #X(F3) 6 4 + 2g
√

3 and the trivial bound #W (F3) 6 4, we deduce

#X(Q) 6 (8g3 + (64 + 4
√

3)g2 + (64 + 4
√

3)g + 24)κ3,

from which the corollary follows.

3. Bounding the number of zeros via a differential operator

In this section, we explain how to bound the zeros of a power series G by finding a bound on

D(G) for a suitably ‘nice’ (in a way we will make precise shortly) differential operator D. The

construction of a nice differential operator in the case when G is the Coleman function from

Proposition 2.3 will be given in the next section.

We begin by fixing notation. We denote by v the p-adic valuation homomorphism Q×p → Z.

We fix a point b and a rational function x which is a uniformising parameter at b. We let ] b [

denote the tube (or residue disk) of b, that is, the set of points reducing to b mod p (we also

denote this set as ] b [, where b is the mod p reduction of b). Given an analytic function F on ] b [,

we let Nb(F ) denote the number of Cp-valued zeros of F in ] b [, counted with multiplicity.

Let Ci denote the function Qp[[x]] → Qp sending a power series to its xi coefficient. By a

differential operator we will simply mean an element of the non-commutative ring Qp[[x]][d/dx].

By an algebraic differential operator we will mean a differential operator in the image of

Qp(X)[d/dx], where Qp(X) denotes the function field of X over Qp. The order of a differential

operator will refer to its degree as a polynomial in d/dx, when given in the form
∑N

i=0 ai(d/dx)i,

for ai ∈ Qp[[x]].

Definition 3.1. A differential operator D =
∑N

i=0 gi(d
i/dxi) ∈ Qp[[x]][d/dx] is nice if all the gi

are in Zp[[x]], and gN is in Zp[[x]]×.

The main result of this section is the following proposition, which shows that one may use

nice differential operators to bound the zeros of power series, in analogy with Coleman’s use of

differentiation.

Proposition 3.2. Let G be a power series in Qp[[x]]. Let D be a nice differential operator of

order N . Suppose D(G) is an algebraic function with no poles on ] b [. Then the number of zeros

of G in ] b [ is at most κp(Nb(D(G)) +N).
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The proof of this proposition will occupy the remainder of the section. Before giving the
proof, we remark on how it is applied in the proof of Theorem 1.1. To deduce part (i) of the
theorem, it will be enough to deduce (under the assumptions of the theorem) that, for each
b ∈ X(Fp) and each set of local conditions α, we may choose a non-zero effective divisor D
disjoint from ] b [, and differentials ω0, . . . , ω2g−1 and a nice differential operator D of degree N ,
such that

Nb(D(G)) +N 6 16g3 + 15g2 − 16g + 10,

where G is the function from Proposition 2.3. In practice, we bound the number of zeros of D(G)
in ] b [ by the degree of D(G). In the hyperelliptic case, we choose D, ωi, and G in a more uniform
way (more precisely, they are the same for all points in X −W ), and for this reason, we get an
improved bound ∑

x∈(X−W )(Fp)

Nb(D(G)) +N 6 deg(D(G)) +N#(X −W )(Fp).

Lemma 3.3. Let F ∈ Qp[[x]] come from a non-zero element of Qp(X) without poles in ] b [. Then
{v(Ci(F )) : i > 0} is bounded below, and the least i such that v(Ci(F )) attains this bound is
less than or equal to Nb(F ).

Proof. There is some λ in Qp such that λF reduces to a non-zero rational function on XFp . Since
F has no poles in ] b [, the reduction mod p of λF is the redp(x)-adic expansion of λF thought
of as a rational section of XFp , hence the least i such that the minimum of v(Ci(F )) is attained
is just the order of redp(λF ). 2

Now let G be a power series in Qp[[x]], with D(G) ∈ H0(X,O(D)), with D an effective divisor
(in our intended application, G will be the power series in Proposition 2.3). Let M denote
the length of the slope 6 −1 part of the Newton polygon. Write D as

∑N
i=1 gi(d/dx)i, where

gN ∈ Zp[[x]]×. Recall the following well-known lemma.

Lemma 3.4. For any n1 6 n2,

v

(
n2!

n1!

)
6 logp(n1) +

n2 − n1

p− 1
.

Proof. Using Legendre’s formula v(n!) = (n− s(n))/(p− 1), where s(n) is the sum of digits in
base p, it follows that

v

(
n2!

n1!

)
=
n2 − n1

p− 1
+
s(n1)− s(n2)

p− 1
6
n2 − n1

p− 1
+
s(n1)

p− 1

6
n2 − n1

p− 1
+

(p− 1) logp(n1)

p− 1

=
n2 − n1

p− 1
+ logp(n1). 2

Lemma 3.5. Let M be the length of the slope 6 −1 part of the Newton polygon of G. Suppose
that M > 1, and i 6M satisfies

v(Ci(G)) 6 v(CM (G)) + v(M !/i!).

Then i > κ−1
p M.
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Proof. Since i 6M and M is the length of the slope 6 −1 part of the Newton polygon, we have

M − i 6 v(Ci(G))− v(CM (G)) 6 v(M !/i!).

This implies logp(i) + (M − i)/(p − 1) > M − i, by the previous lemma. Using the inequality
logp(i) 6 i/ log(p), we get

κpi >M. 2

Given a power series F , let S(F ) = {i > 0 : v(Ci(F )) = min{v(Cj(F )) : j > 0}} if this
minimum exists, and take S to be empty otherwise.

We now prove a key lemma which gives a quantitative relation between the Newton polygon
of G and the Newton polygon of D(G), when D is a nice differential operator. The idea of the
proof is as follows. Let s denote the least i such that v(Ci(D(G))) attains its minimum. We
would like to say that if the valuation of CM (G) is smaller than the valuation of Ci(G) for all
i < M , then the valuation of CM−N (D(G)) is smaller than that of Ci(D(G)) for all i < M −N
(and hence s >M −N).

This is not quite true, because when we apply (d/dx)N to CM (G)xM , we increase the
valuation by v(M !/(M−N)!), so it may happen that there is some cancellation. However, for such
cancellation to occur, there must be an M1 <M for which v(CM1(G)) is within v(M !/(M−N)!)
of v(CM (G)). Similarly, if v(CM1−N (D(G))) is not smaller than v(Ci(D(G))) for all i < M1−N ,
then there must be some M2 <M1 such that v(CM2(G)) is close to v(CM1(G)), and so on, giving
a sequence M,M1, . . . until we get to Mn 6 s + N . By construction, the v(CMi(G)) are ‘close
together’, but since M is the endpoint of the slope 6 −1 part of the Newton polygon they are
also ‘far apart’, and comparing these two conditions gives the lemma.

Note that, without any additional conditions on D or G, to prove a result of the form ‘D(G)
has small slopes impliesG has small slopes’, it is necessary to assume p > 2 (consider, for example,
the case D = (d/dx)−1 and G = exp(x)+1). Note that, by Lemma 3.3, if F is algebraic without
poles on ] b [, then minS(F ) 6 ordb(redp(F )). Hence the following lemma implies Proposition 3.2.

Lemma 3.6. Let p > 2, and let M be the length of the slope 6 −1 part of the Newton polygon
of G. Suppose S(D(G)) is non-empty. Then

M < κp(N + minS(D(G))).

Proof. For integers i 6 j, let

q(i, j) :=

{
v(i!/(j −N)!), if i > j −N,
0, otherwise.

For k > 0, let

T (k) = {0 6 i 6 k : v(Ci(G)) + q(i, k) 6 v(Ck(G)) + q(k, k)}.

Clearly, for all k, we have k ∈ T (k). Suppose N 6 k 6M , and T (k) = {k}. It follows that

v(Ck−N (D(G))) = v(Ck(G)) + q(k, k). (1)

Indeed, writing D =
∑
gi(d

i/dxi), we have that

Ck−N (D(G)) =
∑

i,j,m∈{0,...,N}×Z2
>0:j+m−i=k−N

m!

(m− i)!
Cm(G)Cj(gi). (2)
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Note that v((k!/(k −N)!)Ck(G)C0(gN )) = q(k, k)+v(Ck(G)) by assumption. For i in {0, . . . , N}
and j,m in {0, . . . k} such that j +m− i = k −N , by our assumption on T (k) we have

v

(
m!

(m− i)!
Cm(G)Cj(gi)

)
> v(Cm(G)) + v(m!)− v((m− i)!) > v(Cm(G)) + q(m, k)

> v(Ck(G)) + q(k, k),

with simultaneous equalities if and only if (i, j,m) = (N, 0, k).
For all 0 6 a < k −N , by expanding out D(G) as in (2), we have

v(Ca(D(G))) > min{v(Ci(G)) + q(i,N + i− j) : 0 6 i, j, i+ j 6 a}
> min{v(Ci(G)) + q(i, k) : 0 6 i 6 a},

since i− j 6 k −N implies q(i, k) 6 q(i,N + i− j). Hence by our assumption on T (k), we have

v(Ca(D(G))) > v(Ck(G)) + q(k, k).

We deduce that if k is less than or equal to M and satisfies T (k) = {k}, then

min(S(D(G))) +N > k. (3)

In particular, if T (M) = {M}, then the lemma follows.

Now suppose that T (M) has cardinality larger than 1. We define a decreasing sequence

M0, . . . ,Mn of positive integers as follows. Let M0 := M , and define M1 = minT (M0). If

T (M1) = {M1}, this is the end of the sequence, otherwise we define M2 as the minimum, and so

on. Let Mn be the last term in the sequence. Since T (Mn) = {Mn}, by (3) we have

min(S(D(G))) +N >Mn.

Note that for each i, we have

v(CMi+1(G)) + q(Mi+1,Mi) 6 v(CMi(G)) + q(Mi,Mi).

Hence

v(CMn(G))− v(CM0(G)) 6
∑
i

(q(Mi,Mi)− q(Mi+1,Mi)) 6 v(M0!/Mn!).

Since they lie in the slope 6 −1 part of the Newton polygon, this implies that Mn and M = M0

satisfy the inequality M − Mn 6 v(M !/Mn!), which by Lemma 3.4 is less than or equal to

logp(Mn) + (M −Mn)/(p− 1). Thus we deduce

min(S(D(G))) +N >Mn >M − p− 1

p− 2
logp(Mn).

The lemma then follows from the elementary estimate

logp(Mn) < Mn/ log(p). 2
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3.1 Example: integral points on elliptic curves
Before describing a general method for constructing suitable nice differential operators, we
illustrate how Proposition 3.2 can be used to prove effective versions of known finiteness results
in the quadratic Chabauty method by considering the simplest possible case: that of integral
points on a rank 1 elliptic curve. By work of Kim [Kim10], we know that integral points on rank
1 elliptic curves are contained in the zeros of

G(z) =

∫ z

t
ω0ω1 + a

∫ z

t
ω0ω0 + bi

for some constants a, bi ∈ Qp, where the number of bi is determined by the Tamagawa numbers
at bad primes. In this case, finding a differential operator is quite simple: if we take D = (d/ω0)2,
then

D(G) = x+ a.

Hence, in the notation of Proposition 3.2, we may take N = 2, and
∑

b∈(E−O)(Fp)Nb(D(G)) = 2,
giving the bound

#X(Zp)2 < 2κp#E(Fp)
(∏

v

mv

)
.

4. Differential operators for rational points: general case

To use Proposition 3.2 to bound X(Qp)2, it remains to give a construction of a nice differential
operator D such that D(G) is an algebraic function whose divisor can be controlled when G
is the iterated integral function from Proposition 2.3. The construction of the operator D is
elementary. First we make some preliminary notes about calculating the divisor of D(F ) when
F and D are algebraic.

Lemma 4.1. Let D =
∑
niPi be an effective divisor and let F (x) be a function in H0(X,O(D)).

Suppose dx is an algebraic differential with divisor W − W ′, with W,W ′ effective, and
W =

∑
miQi. Define D0 :=

∑
Pi and W0 :=

∑
Qi. Then, for all j > 0,

djF

dxj
∈ H0(X,O(jW + (j − 1)W0 +D + jD0)).

In particular, djF/dxj ∈ H0(X,O((2j − 1)W + (j + 1)D)).

Proof. When j = 1, this follows from the fact that the differential dF has poles only in the
support of D and has a pole of order ni + 1 at Pi. The differential dx only has zeros at W , each
of order 1. The general case follows by induction. 2

We now restrict to our specific case of interest. Fix a point z in X(Fp). Let D be an effective
divisor on X whose support is disjoint from ] z [. Let ω0, . . . , ω2g−1 ∈ H0(X,Ω1(D)) be a set of
differentials of the second kind forming a basis of H1

dR(X). Let x ∈ Qp[[t]] be a formal parameter
at some point z0 ∈ ] z [, such that dx is algebraic with divisor D1 − D0 (where D1 and D0 are
effective). Let fi := ωi/dx ∈ H0(X,O(D+D1)). Finally, let η be a differential in H0(X,Ω1(D)),
and let

G(z) :=
∑

aij

∫ z

b
ωiωj +

∑
ai

∫ z

b
ωi +

∫ z

b
η + h(z)

be the Coleman function from Proposition 2.3.
The first step in constructing a differential operator satisfying the hypotheses of

Proposition 3.2 is to reduce to constructing a nice differential operator which kills all the fi.
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Lemma 4.2. Suppose D1 =
∑N

i=0 gi(d/dx)i is a nice differential operator of degree N , with
coefficients in H0(X,O(E)), for an effective divisor E such that

D1(fi) = 0

for all i. Then D := D1(d/dx) is a nice differential operator with

D(G) ∈

{
H0(X,O(E + 3(N − 1)D1 + (N + 3)D)), N > 4

H0(X,O(E + (2N + 1)D1 + (N + 3)D)), N = 2, 3.

Proof. The operator D is nice because its leading coefficient is the same as that of D1. We deal
with the

∫
ωi,
∫
η, h and

∫
ωiωj terms of G separately. First, we have

D
(∫

ωi

)
= D1(fi) = 0.

For
∫
η, note that (d/dx)(

∫
η) = η/dx ∈ H0(X,O(D +D1)). Thus by Lemma 4.1,

D
(∫

η

)
∈ H0(X,O(E + (2N + 1)D1 + (N + 1)D)). (4)

For h, by Lemma 4.1 we have, for all k > 0,

dkh

dxk
∈ H0(X,O((2k − 1)D1 + (k + 2)D)),

hence
D(h) ∈ H0(X,O((2N + 1)D1 + (N + 3)D + E)). (5)

Finally,

D
(∫

ωiωj

)
= D1

(
fi

∫
ωj

)
=
∑
k6N

gk

(
d

dx

)k(
fi

∫
ωj

)

=
∑
k6N

gk
∑

06m6k

(
k

m

)(
d

dx

)m
(fi)

(
d

dx

)k−m(∫
ωj

)

= D1(fi)

∫
ωj +

∑
k6N

gk
∑

06m<k

(
k

m

)(
d

dx

)m
(fi)

(
d

dx

)k−m−1

(fj)

=
∑
k6N

gk
∑

06m<k

(
k

m

)(
d

dx

)m
(fi)

(
d

dx

)k−m−1

(fj)

since D(f1) = 0. By Lemma 4.1, for all k 6 N , and all m < k,(
d

dx

)m
(fi)

(
d

dx

)k−m−1

(fj) ∈ H0(X,O((2k − 4)D1 + (k + 1)D2)),

where D2 := D1 +D. Hence

D
(∫

ωiωj

)
∈ H0(X,O(3(N − 1)D1 + (N + 1)D + E)). (6)

Putting (4), (5) and (6) together, we find

D(G) ∈ H0(X,O(E + (N + 3)D + max{3(N − 1), 2N + 1}D1)). 2
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4.1 Finding D1: the general case
By the previous lemma, to get a bound on the number of zeros of G, we need to construct a
nice differential operator (with algebraic coefficients we can control) which annihilates all the
fi := ωi/dx. In general, given m functions F1, . . . , Fm, it is an elementary exercise to construct
a non-trivial differential operator of order at most m which annihilates all the Fi. Hence the
non-trivial question is how to find a nice differential operator.

First we introduce some notation. Let F1, . . . , F2g be elements of a formal power series algebra
Qp[[x]]. Let S be subset of Z>0 of size 2g + 1. Write S = {n1, . . . , n2g+1} with ni < ni+1. Let
A(S, F1, . . . , F2g) denote the 2g × (2g + 1) matrix with entries in Qp[[x]] whose (i, j)th entry is
(1/nj !)(d

nj/dxnj )(Fi). Let A(j)(S, F1, . . . , F2g) denote the 2g × 2g matrix obtained by deleting
the jth column. Let D = DS,F1,...,F2g ∈ Qp[[x]][d/dx] denote the differential operator

DS,F1,...,F2g :=

2g+1∑
i=1

(−1)i+1n2g+1!

ni!
det(A(i))

dni

dxni
.

We first note that D is always a differential operator which annihilates the Fi, and then show
that the set S can be chosen so that D is nice.

Lemma 4.3. For any choice of S, and all i,

D(Fi) = 0.

Proof. For any power series f ,

DS,F1,...,F2g(f) = n2g+1! det



1

n1!

dn1

dxn1
(F1) . . .

1

n2g+1!

dn2g+1

dxn2g+1
(F1)

...
. . .

...

1

n1!

dn1

dxn1
(F2g) . . .

1

n2g+1!

dn2g+1

dxn2g+1
(F2g)

1

n1!

dn1

dxn1
(f) . . .

1

n2g+1!

dn2g+1

dxn2g+1
(f)


.

When f = Fi, the matrix does not have full rank. 2

We now apply this construction in our case of interest. Let D,D0, D1, ωi, fi be as defined
earlier in this section.

Lemma 4.4. There exists an S ∈ Z2g+1
>0 with maxS 6 deg(D) + 2g− 1 such that DS,f0,...,f2g−1 is

nice.

Proof. By construction, for any choice of S, the differential operator DS,f0,...,f2g−1 lies in
Zp[[x]][d/dx], hence the only non-trivial condition is that the leading coefficient is in Z×p . Note
that

1

ni!

dni

dxni
f |x=0 = Cni(f),

hence requiring that the leading coefficient is in Z×p is equivalent to requiring that

det(Ci(fj))16i62g,06j62g−1 ∈ Z×p .
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Therefore, by definition, the least N such that there exists a subset S with maxS 6 N + 1
for which DS,f0,...,f2g−1 is nice is exactly the least N such that the fi remain Fp-linearly

independent after reduction mod (p, xN ). Suppose that for all subsets S of {0, . . . , N} of size
2g+ 1, DS,f0,...,f2g−1 is not nice. Then there is a non-trivial Fp-linear combination of redp ω0, . . . ,
redp ω2g−1 which has a zero of order N . This gives an element of H0(XFp ,Ω

1(D)) with a zero of
order N , which completes the proof. 2

Proof of Theorem 1.1 part (i). To complete the proof of Theorem 1.1, it remains to estimate
the degree of the coefficients of a nice D := DS,f0,...,f2g−1 . We follow the construction of
basis differentials in [DDLR15, § 4.2]. Let P be a non-Weierstrass point of X(Qp) whose
mod p reduction is different from b, and let h ∈ Qp(X) be a non-constant function in
H0(X,O((g+ 1)P )). Let ω0, . . . , ωg−1 be a basis of H0(X,Ω1). Define ωi+g = hωi for 0 6 i6 g−1.
Then (ωi)06i62g−1 gives a basis of H1

dR(X).
Let ω ∈ H0(X,Ω1) be a differential which does not vanish mod p. Let x denote the formal

parameter on ] z [ obtained by integrating ω. Let D1 = (ω). As above, define fi = ωi/dx ∈
H0(X,O(D1 + (g + 1)P )).

Since D = (g + 1)P above, we have an S = {n1, . . . , n2g+1} such that D1 = DS,f0,...,f2g−1 is
nice and maxS 6 3g. Hence the differential operator D := D1(d/ω) has order at most 3g + 1.
To apply Lemma 4.2, it remains to estimate the degrees of the coefficients of DS,f0,...,f2g−1 .
By Lemma 4.1, we have, for all k > 0,(

dk

dxk

)
fi ∈ H0(X,O(2kD1 + (g + k + 1)P )).

The kth coefficient of D is hence a sum of functions in

H0

(
X,O

( ∑
16i62g+1,i 6=k

(2niD1 + (g + ni + 1)P )

))
.

Note that ∑
i 6=k

ni 6
3g∑

i=g+1

i = 4g2 + g.

Hence the coefficients of D1 are in

H0(X,O((8g2 + 2g)D1 + 3g(2g + 1)P )).

Applying Lemma 4.2 with g > 2, N = 3g, E = (8g2 +2g)D1 +3g(2g+1)P , and D = (g+1)P ,
we find that

D(G) ∈ H0(X,O((8g2 + 2g)D1 + 3g(2g + 1)P + 3(3g − 1)D1 + 3(g + 1)2P ))

= H0(X,O((8g2 + 11g − 3)D1 + 3(3g2 + 3g + 1)P )).

Hence D(G) has degree at most

(8g2 + 11g − 3)(2g − 2) + 3(3g2 + 3g + 1) = 16g3 + 15g2 − 19g + 9.

Applying Proposition 3.2, we deduce that on each residue disk, X(Qp)α has at most

κp(16g3 + 15g2 − 16g + 10)

points. 2
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5. Differential operators for rational points: hyperelliptic case

5.1 The hyperelliptic case: non-Weierstrass disks

In this subsection we prove the second part of Theorem 1.1. Let X be a hyperelliptic curve of

genus g with good reduction at p 6= 2g+1 and Mordell–Weil rank g. The assumptions on p imply

that X has a smooth model over Zp of the form

y2 = f(x) = x2g+2 + a2g+1x
2g+1 + · · ·+ a0.

Let W denote the subscheme of Weierstrass points.

As mentioned below Proposition 3.2, our strategy for applying Proposition 3.2 is slightly

different from the previous section, in that we choose one set of basis differentials and one

differential operator D for the whole of X −W . This means we get a bound of the form

#(X(Qp)α∩ ](X −W )Fp [) < κp(deg(D(G)) +N#(X −W )Fp),

and similarly for the Weierstrass disks.

Let ωi be the differential xidx/y. We take as a basis of H1
dR(X) a subset of the Q-span of

the differentials ωi := xidx/y, 0 6 i 6 2g. Hence, changing notation somewhat, we may write G

in the form

G(z) =
∑

06i,j62g

aij

∫ z

b
ωiωj +

∑
06i62g

ai

∫ z

b
ωi + h(z).

Let ∞ :=∞+ +∞− denote the degree 2 divisor of the two points ∞+,∞− above infinity. Since

all the ωi are in H0(X,Ω1((g + 1)∞)), h lies in H0(X,O(2(g + 1)∞)).

First let D0 be the differential operator d/ω0. Then define G1 := D0G. Hence

G1 =
∑

aijx
i

∫
ωj +

∑
aix

i + h1,

where h1 := y(d/dx)h. Define D1 = (d/dx)2g+1 and D = D1D0.

Lemma 5.1. Let W denote the degree 2g+2 divisor of Weierstrass points. Then the power series

D(G) lies in H0(X,O((g + 1)∞+ (4g + 1)W )).

Proof. We have D(
∫
ωi) = 0 for all i, so it will be enough to prove this for h and for

∫
ωiωj .

Note that we have div(dx) = W − 2∞, div(y) = W − (g+ 1)∞, and so div(ω0) = (g− 1)∞. For

h, we use Lemma 4.1 to deduce

D0(h) ∈ H0(X,O((3g + 2)∞)).

Since dx has divisor W − 2∞, if F ∈ H0(X,O(n∞+mW )), a direct computation gives

dF

dx
∈
{
H0(X,O((n− 1)∞+ (m+ 2)W )), m > 0,

H0(X,O((n− 1)∞+W )), m = 0.

Hence D(h) ∈ H0(X,O((g + 1)∞+ (4g + 1)W )).
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For
∫
ωiωj , we have

D
(∫

ωiωj

)
= D1

(
xi
∫
ωj

)
=

i∑
k=0

(
2g + 1

k

)
i!

(i− k)!
xi−k

(
d

dx

)2g−k+1 ∫
(ωj)

=
i∑

k=0

(
2g + 1

k

)
i!

(i− k)!
xi−k

(
d

dx

)2g−k(xj
y

)
. (7)

Now we have
xj

y
∈ H0(X,O((j − g − 1)∞+W )),

so (
d

dx

)(2g−k)(xj
y

)
∈ H0(X,O((j − 3g + k − 1)∞+ (4g − 2k + 1)W )),

which gives that

xi−k
(
d

dx

)(2g−k)(xj
y

)
∈ H0(X,O((i+ j − 1− 3g)∞+ (4g − 2k + 1)W )),

and thus each summand of (7) is an element of H0(X,O((g − 1)∞+ (4g + 1)W )). 2

Since the degree of (g+1)∞+(4g+1)W is 2g+2+(4g+1)(2g+2) = 8g2 +12g+4, applying
Proposition 3.2, and summing over all non-Weierstrass residue disks, we find that the number
of points of X(Qp)α which reduce to non-Weierstrass points away from infinity is at most

κp((8g
2 + 12g + 4) + (2g + 2)#(X −W −∞)(Fp)).

For the two points at infinity, we may apply the same analysis with the equation at infinity

y2 = a0x
2g+2 + a1x

2g+1 + · · ·+ 1.

We deduce that the number of points of X(Qp)α which reduce to non-Weierstrass points is at
most

κp((16g2 + 24g + 8) + (2g + 2)#(X −W )(Fp)).

5.2 The hyperelliptic case: Weierstrass points
The computation at Weierstrass disks is carried out in a manner similar to the method developed
in § 4. The essential difference is that, instead of trying to find a new nice differential operator
D1 annihilating the 2g functions {f0, . . . , f2g−1} for each residue disk ] b [, we find a differential
operator D1 which annihilates the 2g + 1 functions ωi/ω0 (0 6 i 6 2g) at all Weierstrass disks.
The price paid for this is that the degree is slightly larger. Let B ∈ M2g+1(Qp(X)) denote the
matrix

B =

(
1

(2i)!

(
d

ω0

)2i

xj
)

06i,j62g

.

Lemma 5.2. For all Weierstrass points z = (α, 0) ∈ X(Fp), det(B) ∈ O×X ,z.
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Proof. Clearly det(B) is defined at z, so it is sufficient to prove it is non-zero at z. First note

that, since x− α has a zero of order 2 at z, a linear combination of 1, x, . . . , x2g can have a zero

of order at most 4g. Hence the (2g + 1)× (4g + 1) matrix ((di/ωi0)xj |z)06i64g,06j62g has rank at

least 2g + 1. On the other hand, for all odd j, (dj/ωj0)xi is an odd function with respect to the

hyperelliptic involution, and hence vanishes at z. Hence B|z is invertible in M2g+1(Fp). 2

Proof of Theorem 1.1 part (ii). We deduce that we can apply the construction of § 4.1 with A

taken to be the (2g + 1)× (2g + 2) matrix((
d

ω0

)i
xj
)

06j62g,i=0,2,4,...,4g,4g+1

.

The function (d/ω0)ixj lies in H0(X,O((gi+ j)∞)), hence the differential operator

D1 = DS,ω0/ω0,ω1/ω0,...,ω2g/ω0

has coefficients in

H0

(
X,O

((
g

2g∑
i=1

2i

)
+ g(4g + 1) +

2g∑
j=0

j

))
= H0(X,O((4g3 + 8g2 + 2g)∞)).

Define D := D1D0, where D0 := (d/ω0). Applying Lemma 4.2 with E = (4g3 + 8g2 + 2g)∞,

N = 4g + 1, D1 = (g − 1)∞, D = (g + 1)∞, we deduce

D(G) ∈ H0(X,O((4g3 + 24g2 − 2g + 4)∞)).

The number of points of X(Qp)α on all Weierstrass disks is hence, by Proposition 3.2, at most

κp((4g + 2)#W (Fp) + 2(4g3 + 24g2 − 2g + 4)).

Combining with the bounds from the non-Weierstrass residue disks in the previous subsection,

we find that

#X(Qp)α 6 κp((2g + 2)#X(Fp) + 2g#W (Fp) + 8g3 + 64g2 + 20g + 16). 2

6. Integral points for hyperelliptic curves

The proof of the g > 1 case of Theorem 1.3 follows a similar strategy to the previous section.

Let X be a hyperelliptic curve of genus g > 1 with equation

y2 = f(x) = x2g+1 + a2gx
2g + · · ·+ a0

and suppose the rank of the Jacobian of X is equal to g. Then the set X(Zp)2 is partitioned into

a disjoint union of sets X(Zp)α. Each set X(Zp)α is contained in the set of zeros of a Coleman

function of the form

G(z) =
∑

06i,j<2g

aij

∫ z

b
ωiωj +

∑
06i<2g

ai

∫ z

b
ωi + h(z),
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where h ∈H0(X,O(4g∞)), with∞ now denoting the divisor of degree 1 consisting of the unique
point at infinity. Let W denote the degree 2g+ 1 divisor of Weierstrass points away from infinity
and define D0 := d/ω0. For non-Weierstrass points, we take the differential operator to be

D =

(
d

dx

)2g

D0.

Since ω0 has a zero of order (2g − 2) at ∞, we have

dh

ω0
∈ H0(X,O((6g − 1)∞)).

Similar to the case of an even degree model, since dx has divisor W − 3∞, if F is in
H0(X,O(nW +m∞)) then

dF

dx
∈
{
H0(X,O((n+ 2)W + (m− 2)∞)), n > 0,

H0(X,O(W + (m− 2)∞)), n = 0.

Hence D(h) is in H0(X,O((2g − 1)∞+ (4g − 1)W )).
For the remaining term, note that(

d

dx

)k(xj
y

)
∈ H0(X,O((2k + 1)W + (2j − 2k − 2g − 1)∞)). (8)

Since

D
(∫

ωiωj

)
=

(
d

dx

)2g(
xi
∫
ωj

)
=

∑
06k<2g

(
2g

k

)
i!

(i− k)!
xi−k

(
d

dx

)2g−k−1(xj
y

)
,

equation (8) implies

xi−k
(
d

dx

)2g−k−1(xj
y

)
∈ H0(X,O((4g − 2k − 1)W + (2j + 2i− 6g + 1)∞)).

Hence D(
∫
ωiωj) lies in H0(X,O((4g − 1)W + (2g − 3)∞)). Arguing as in § 5.1, we deduce that

the number of integral points of X which reduce to non-Weierstrass points mod p is bounded by

κp

(∏
v∈T0

mv

)
(8g2 + 4g − 4 + (2g + 1)#(Y −W )(Fp)).

6.1 Differential operators at Weierstrass points
Let B ∈M2g(Qp(X)) be the matrix(

1

(2i)!

(
d

ω0

)2i

xj
)

06i,j<2g

.

As in § 5.2, we may show det(B) is a unit at all points in W , and hence construct a differential
operator D1 from the matrix

A =

(
1

i!

(
d

ω0

)i
xj
)

06j<2g,i=0,2,...,4g−2,4g−1

.
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Since ω0 has a zero of order (2g − 2) at ∞, we find that(
d

ω0

)i
xj ∈ H0(X,O((i(2g − 1) + 2j)∞)).

We deduce that the coefficients of D1 lie in H0(X,O(8g3 + 4g2 − 6g+ 1)∞). Define D := D1D0,
where D0 := (d/ω0). Applying Lemma 4.2 with E = (8g3 + 4g2 − 6g + 1)∞, D1 = 2(g − 1)∞,
D = 2g∞ and N = 4g − 1, we deduce that D(G) lies in H0(X,O((8g3 + 36g2 − 38g + 13)∞)),
hence by Proposition 3.2, we find that the number of integral points reducing to Weierstrass
points is bounded by (∏

v

mv

)
κp(8g

3 + 36g2 − 38g + 13 + 4g#W (Fp)).

We deduce a bound for the total number of integral points of

κp

(∏
v∈T0

mv

)
(8g3 + 44g2 − 34g + 9 + (2g + 1)#Y (Fp) + (2g − 1)#W (Fp)).
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