A CHARACTERIZATION OF A CLASS OF BARRELLED SEQUENCE SPACES

by J. SWETITS

(Received 19 May, 1976)

1. Introduction. In a recent paper [4] Bennett and Kalton characterized dense, barrelled subspaces of an arbitrary FK space, E. In this note, it is shown that if E is assumed to be an AK space, then the characterization assumes a simpler and more explicit form.

2. Definition and preliminaries. ω denotes the vector space of sequences of complex numbers. A subspace E of ω is a K space if it is endowed with a locally convex topology τ such that the linear functionals

\[x \to x_j \quad (j = 0, 1, 2, \ldots) \]

are continuous. In addition, if τ is complete and metrizable, then (E, τ) is an FK space.

If \(x = \{x_k\} \), let \(P_n x = \{x_0, x_1, \ldots, x_n, 0, \ldots\} \). If a K space (E, τ) has the property that \(P_n x \to x \) in τ for each \(x \in E \), then (E, τ) is called an AK space.

If E is an FK–AK space then the dual of E may be identified with

\[E^\beta = \left\{ y \in \omega : \sum_{j=0}^{\infty} x_j y_j \text{ converges } \forall x \in E \right\}. \]

If F is a subspace of \(E^\beta \) containing the space φ of sequences with only finitely many non-zero terms then E, F form a separated pair under the bilinear form

\[(x, y) = \sum_{j=0}^{\infty} x_j y_j. \]

\(\sigma(E, F), \tau(E, F) \) and \(\beta(E, F) \) denote the weak, Mackey and strong topologies, respectively, on E by F (see, e.g., [7]).

If \(A = (a_{nk}) \) is an infinite matrix of complex numbers, the sequence \(Ax = \{(Ax)_n\} \) is defined by

\[(Ax)_n = \sum_{k=0}^{\infty} a_{nk} x_k \quad (n = 0, 1, 2, \ldots). \]

\(E_A = \{x : Ax \in E\} \), where E is a given sequence space. \(A' \) denotes the transpose of A.

The following theorem is established in [8].

Theorem 2.1. Let E and F be sequence spaces, each containing φ, such that \((E^\beta, \sigma(E^\beta, E)) \) and \((F, \sigma(F, F^\beta)) \) are sequentially complete. If \(A = (a_{nk}) \) is an infinite

https://doi.org/10.1017/S0017089500003335 Published online by Cambridge University Press
matrix, then the following are equivalent:

(i) \(F_A \) contains \(E \);
(ii) \(E_\beta^A \) contains \(E^\beta \);
(iii) \(F_{A^*} \) contains \((E^\beta)^\beta \).

Proof. (i) \(\Rightarrow \) (ii). Let \(\{t_k\} \in F^\beta \) and \(\{x_k\} \in E \). Define the matrix \(B = (b_{nk}) \) by

\[
b_{nk} = \begin{cases}
 t_k & (0 \leq k \leq n), \\
 0 & (k > n).
\end{cases}
\]

Then

\[
\sum_{n=0}^{\infty} t_n \sum_{k=0}^{\infty} a_{nk} x_k = \lim_{j \to \infty} \sum_{n=0}^{j} t_n \sum_{k=0}^{\infty} a_{nk} x_k = \lim_{j \to \infty} \sum_{k=0}^{\infty} x_k \sum_{n=0}^{j} a_{nk} = \lim_{j \to \infty} [(BA)x]_j.
\]

The hypotheses on \(E \) insure that

\[
\lim_{j \to \infty} [(BA)x]_j = \sum_{k=0}^{\infty} x_k \lim_{j \to \infty} [(BA)e^k]_j = \sum_{k=0}^{\infty} x_k \sum_{n=0}^{\infty} t_n a_{nk},
\]

where \(e^k \) denotes the sequence with a one in the \(k \)th coordinate and zeros elsewhere.

Since \(\{t_k\} \in F^\beta \), \(\{x_k\} \in E \) are arbitrary, it follows that \(A^* \) maps \(F^\beta \) to \(E^\beta \).

(ii) \(\Rightarrow \) (iii) follows from (i) \(\Rightarrow \) (ii) and the fact that \(F = (F^\beta)^\beta \) if \((F, \sigma(F, F^\beta)) \) is sequentially complete [10, p. 974].

(iii) \(\Rightarrow \) (i) is trivial.

3. A class of barrelled spaces.

Theorem 3.1. Let \(E \) be an FK–AK space and \(E_0 \) a subspace of \(E \) containing \(\phi \). \(E_0 \) is barrelled in \(E \) if and only if

(i) \(E_0^\beta = E^\beta \), and
(ii) \((E^\beta, \sigma(E^\beta, E_0)) \) is sequentially complete.

Proof. (Necessity) Let \(\{t_k\} \in E_0^\beta \), and define \(A = (a_{nk}) \) by

\[
a_{nk} = \begin{cases}
 t_k & (0 \leq k \leq n), \\
 0 & (k > n).
\end{cases}
\]
A CLASS OF BARRELED SEQUENCE SPACES

29

If \(c \) denotes the space of convergent sequences, then \(c_A \) includes \(E_0 \). Since \(c_A \) is an \(FK \) space [9, ch. 12], it follows from [4, Theorem 1] that \(c_A \) includes \(E \). Thus, for any \(x \in E, \sum_{k=0}^{\infty} t_k x_k \) converges. Consequently \(E^b \) includes \(E_0^b \). Since the reverse inclusion is satisfied, we have \(E_0^b = E^b \).

Let \(\{a^{(n)}\} \) be a sequence in \(E^b \) that is \(\sigma(E^b, E_0) \) Cauchy. If \(A = (a_{nk}) \) is defined by \(a_{nk} = a^{(n)}_k \), then \(c_A \) includes \(E_0 \). Consequently, \(c_A \) includes \(E \), [4, Theorem 1]. Condition (ii) now follows from the fact that \(E^b \) is \(\sigma(E^b, E) \) sequentially complete.

(Sufficiency). Let \(\{a^{(n)}\} \) be a sequence in \(E^b \) that is \(\sigma(E^b, E_0) \) bounded. Let \(m \) denote the space of bounded sequences, and define \(A = (a_{nk}) \) by \(a_{nk} = a^{(n)}_k \). Then \(m_A \) includes \(E_0 \). Conditions (i) and (ii) and Theorem 2.1 imply that \(m_A \) includes \(E \) since \((m, \sigma(m, \ell)) \) is sequentially complete (\(\ell \) = space of absolutely convergent series). Thus, \(\sigma(E^b, E_0) \) and \(\sigma(E^b, E) \) define the same bounded sequences and, hence, the same bounded sets. Thus, the topology \(\beta(E_0, E^b) \) is the restriction of \(\beta(E, E^b) = \tau(E, E^b) = FK \) topology of \(E \) to \(E_0 \). It follows that \(E_0 \) is barrelled in \(E \).

REMARKS. If \(E_0 \) is monotone (i.e., the coordinatewise product \(xy \in E_0 \) if \(x \in E_0 \) and \(y \) is a sequence of zeros and ones) then condition (ii) of Theorem 3.1 can be omitted [3, p. 55].

Let \(\{r_n\} \) denote a non-decreasing unbounded sequence of positive integers with \(r_0 = 1 \) and \(r_n = o(n) \). For each \(x \in \omega \) and each \(n = 0, 1, 2, \ldots, \) let \(c_n(x) \) denote the number of non-zero elements in \(\{x_0, x_1, \ldots, x_n\} \). If \(E \) is a sequence space, a scarce copy of \(E \) is the linear span of

\[\{x \in E : c_n(x) \leq r_n, n = 0, 1, 2, \ldots \}. \]

As corollaries to Theorem 3.1, we obtain Theorems 7, 8 and 10 of [2]. In each case the spaces are monotone and the verification of condition (i) of Theorem 3.1 is straightforward.

\(\omega \) has the topology of coordinatewise convergence, and, for \(p > 0, \ell^p = \left\{ x : \sum_{t=0}^{\infty} |x_t|^p < \infty \right\}. \)

Corollary 3.2. Every scarce copy of \(\omega \) is barrelled.

Corollary 3.3. Every scarce copy of \(\bigcap_{p > 0} \ell^p \) is barrelled as a subspace of \(\ell \).

Corollary 3.4. Let \(E \) be a monotone \(FK-AK \) space. The union of all the scarce copies of \(E \) is a barrelled subspace of \(E \).

It is noted that Corollary 3.4 strengthens Theorem 10 of [2], which is stated for solid spaces.

Another consequence of Theorem 3.1 is the following result.
COROLLARY 3.5. Let \(E \) be an FK–AK space and \(E_0 \) a subspace of \(E \) containing \(\phi \). The following are equivalent:

(i) \(E_0 \) is barrelled;

(ii) If \(G \) is a separable FK space containing \(E_0 \), then \(G \) contains \(E \).

Proof. (i) \(\Rightarrow \) (ii). This is a consequence of [4, Theorem 1]. (ii) \(\Rightarrow \) (i). Let \(\{t_k\} \in E_0^b \), and define \(A = (a_{nk}) \) by

\[
a_{nk} = \begin{cases}
 t_k & (0 \leq k \leq n), \\
 0 & (k > n).
\end{cases}
\]

Then \(c_A \) includes \(E_0 \). Since \(c_A \) is a separable FK space [1, p. 199], \(c_A \) includes \(E \). Thus, \(\{t_k\} \in E^b \), and condition (i) of Theorem 3.1 is satisfied.

Let \(\{a^{(n)}\} \) be a sequence in \(E^b \) that is \(\sigma(E^b, E_0) \) Cauchy. If \(A = (a_{nk}) \) is the matrix defined by \(a_{nk} = a_{k}^{(n)} \), then \(c_A \) includes \(E_0 \). It follows that \(c_A \) includes \(E \). Since \(E^b \) is \(\sigma(E^b, E) \) sequentially complete, condition (ii) of Theorem 3.1 is satisfied. Thus, \(E_0 \) is barrelled.

Remark. For FK–AK spaces, (ii) \(\Rightarrow \) (i) of Corollary 3.5 improves (ii) \(\Rightarrow \) (i) of [4, Theorem 1].

In Theorem 3.1, if it is not assumed that \(E \) is an AK space, then (i) and (ii) are not sufficient to insure that \(E_0 \) is barrelled in \(E \).

Let \(E \) be \(ac_0 \), the space of sequences that are almost convergent to 0, (see [6]). For \(x \in ac_0 \), let

\[
\|x\| = \sup_n |x_n|.
\]

Let \(E_0 = bs + c_0 \), where

\[
c_0 = \left\{ x \in \omega : \lim_{n \to \infty} x_n = 0 \right\},
\]

\[
bs = \left\{ x \in \omega : \sup_n \left| \sum_{j=0}^{n} x_j \right| < \infty \right\}.
\]

Then \(E_0^b = E^b = \ell \), and \(E_0 \) is dense in \(E \) [5, p. 29]. Furthermore, \(\ell \) is \(\sigma(\ell, E_0) \) sequentially complete. However, \(E_0 \) is a normed FK space when topologized by

\[
\|x\| = \inf \left\{ \sup_n |y_n| + \sup_n \left| \sum_{j=0}^{n} z_j \right| : x = y + z, y \in c_0, z \in bs \right\}.
\]

It follows from [4, Theorem 1] that \(E_0 \) is not barrelled in \(E \).

REFERENCES

Department of Mathematical and Computing Sciences

Old Dominion University

Norfolk, Virginia 23508